夏媛媛, 蔡長(zhǎng)青, 盧椏楠, 甘慧泉, 周泉波
(1廣東醫(yī)學(xué)院,廣東 湛江 524023; 2廣東省第二人民醫(yī)院腫瘤二科,廣東 廣州 510317; 3中山大學(xué)孫逸仙紀(jì)念醫(yī)院麻醉科,廣東 廣州 510120; 4廣東省人民醫(yī)院檢驗(yàn)科,廣東 廣州 510080;5中山大學(xué)孫逸仙紀(jì)念醫(yī)院肝膽胰外科,廣東 廣州 510120)
?
人胰腺癌細(xì)胞培養(yǎng)上清對(duì)樹(shù)突狀細(xì)胞TIM-3表達(dá)及其功能的影響*
夏媛媛1,2,蔡長(zhǎng)青2△,盧椏楠3,甘慧泉4,周泉波5△
(1廣東醫(yī)學(xué)院,廣東 湛江 524023;2廣東省第二人民醫(yī)院腫瘤二科,廣東 廣州 510317;3中山大學(xué)孫逸仙紀(jì)念醫(yī)院麻醉科,廣東 廣州 510120;4廣東省人民醫(yī)院檢驗(yàn)科,廣東 廣州 510080;5中山大學(xué)孫逸仙紀(jì)念醫(yī)院肝膽胰外科,廣東 廣州 510120)
目的: 研究人胰腺癌微環(huán)境對(duì)樹(shù)突狀細(xì)胞(DCs)T細(xì)胞免疫球蛋白及黏蛋白-3(TIM-3)表達(dá)及其功能的影響,初步探討腫瘤微環(huán)境調(diào)節(jié)DCs上TIM-3表達(dá)的可能機(jī)制。方法:流式細(xì)胞術(shù)檢測(cè)腫瘤浸潤(rùn)樹(shù)突狀細(xì)胞(TIDC)以及癌旁組織、胰腺癌患者和健康人外周血誘導(dǎo)DCs上TIM-3的表達(dá);觀察人胰腺癌細(xì)胞培養(yǎng)液上清對(duì)健康人外周血單個(gè)核細(xì)胞經(jīng)rhGM-CSF和rhIL-4誘導(dǎo)擴(kuò)增制備DCs上 TIM-3表達(dá)的影響;酶聯(lián)免疫吸附法(ELISA)檢測(cè)TIM-3+DCs組和對(duì)照組的DCs分別與凋亡胰腺癌細(xì)胞Capan-2共培養(yǎng)上清中細(xì)胞因子IFN-β和IL-12水平。結(jié)果:胰腺癌組織中TIDC上TIM-3的表達(dá)明顯高于癌旁組織及患者和健康人外周血的DCs(P<0.01)。人胰腺癌細(xì)胞株Canpan-2、SW1990和Panc-1的上清液較人皮膚成纖維細(xì)胞Hs27顯著上調(diào)DCs上TIM-3表達(dá)(P<0.05),聯(lián)合阻斷VEGF、IL-10和PGE2可明顯降低Canpan-2細(xì)胞上清對(duì)DCs上TIM-3的上調(diào)作用(P<0.05)。TIM-3高表達(dá)DCs組較低表達(dá)組分泌的IL-12和IFN-β水平低,而阻斷TIM-3后,IFN-β和IL-12水平均升高(P<0.01)。而這種升高趨勢(shì)可在加入DNase和RNase后消失。結(jié)論:人胰腺癌TIDC上TIM-3表達(dá)升高導(dǎo)致其固有免疫功能受損;腫瘤細(xì)胞分泌的VEGF、IL-10和PGE2可能參與TIM-3的表達(dá)調(diào)控。
胰腺癌; 樹(shù)突狀細(xì)胞; 腫瘤微環(huán)境; T細(xì)胞免疫球蛋白及黏蛋白-3
胰腺癌是常見(jiàn)的消化系腫瘤之一,由于手術(shù)及放化療對(duì)治療效果的局限性[1],腫瘤免疫治療已成為新的研究熱點(diǎn),腫瘤微環(huán)境對(duì)腫瘤的發(fā)生、發(fā)展以及免疫逃逸的影響更是引起人們的廣泛關(guān)注。目前認(rèn)為,樹(shù)突狀細(xì)胞(dendritic cells,DCs)是功能最強(qiáng)大的專職抗原提呈細(xì)胞(antigen-presenting cells,APC)。腫瘤及其營(yíng)造的微環(huán)境能夠通過(guò)各種機(jī)制導(dǎo)致DCs的分化和成熟障礙,抑制DCs抗原提呈和激活T細(xì)胞的能力[2-3]。研究表明[4-5]:T細(xì)胞免疫球蛋白及黏蛋白-3(T-cell immunoglobulin and mucin-3, TIM-3)對(duì)DCs參與的腫瘤免疫起負(fù)性調(diào)節(jié)作用。
那么,在胰腺癌中DCs是否表達(dá)TIM-3? TIM-3是否參與了胰腺癌DCs介導(dǎo)的固有免疫應(yīng)答?腫瘤微環(huán)境通過(guò)何種途徑調(diào)節(jié)其表達(dá)?本課題通過(guò)觀察人胰腺癌組織中腫瘤浸潤(rùn)樹(shù)突狀細(xì)胞(tumor-infiltrating dendritic cells,TIDC)上TIM-3的表達(dá)情況,分析胰腺癌細(xì)胞通過(guò)腫瘤微環(huán)境影響TIDC表型的可能因素,進(jìn)一步探討TIM-3對(duì)TIDC 固有免疫的影響。為研究胰腺癌細(xì)胞免疫逃逸機(jī)制及尋找新的胰腺癌的免疫治療靶點(diǎn)打下基礎(chǔ)。
1材料
1.1主要試劑與儀器重組人粒-巨噬細(xì)胞集落刺激因子(rhGM-CSF)、重組人白細(xì)胞介素4(rhIL-4)、RPMI-1640和DMEM培養(yǎng)基(HyClone);胎牛血清(FBS)、0.25%胰蛋白酶(Gibco);淋巴細(xì)胞分離液(TBD);抗人CD1α單克隆抗體(monoclonal antibo-dy, mAb)、抗人S-100 mAb和IL-10 mAb(Abcam);免疫組化試劑盒(博士德生物公司);抗人CD11c-FITC抗體及同型對(duì)照抗體(BD);抗人TIM-3-PECy7抗體(eBioscience);TIM-3 阻斷抗體(BioLegend);VEGFR2 mAb(R&D);PGE2受體EP2封閉肽(AH6809)(Cayman);人IL-12和IFN-β ELISA試劑盒(Elabscience);CCK-8(Dojindo)。順鉑(cis-diaminodichloroplatin,DDP)凍干粉(齊魯制藥);AnnexinⅤ/PI凋亡檢測(cè)試劑盒(凱基公司);DNase和RNase(TaKaRa);流式細(xì)胞儀(FACSCalibur,BD);低速離心機(jī)和低溫高速離心機(jī)(Beckman);細(xì)胞培養(yǎng)箱(Forma Series Ⅱ, Thermo);超凈臺(tái)(VS-840K-U, 蘇凈);倒置普通光學(xué)顯微鏡和熒光顯微鏡(Nikon);酶標(biāo)儀(Denley Dragon Wellscan MK2)。
1.2標(biāo)本來(lái)源人胰腺癌患者手術(shù)標(biāo)本及外周血4例均來(lái)源中山大學(xué)孫逸仙紀(jì)念醫(yī)院肝膽外科,瘤體重量4.20~7.82 g,平均6.04 g。患者年齡48~70歲,平均60.25歲,男7例、女2例,均符合腫瘤手術(shù)切除指征,未發(fā)現(xiàn)遠(yuǎn)處轉(zhuǎn)移,術(shù)后病理診斷為胰腺癌;癌旁組織取自距腫瘤切緣2~3 cm的正常胰腺組織。健康人外周血濃縮白細(xì)胞來(lái)源于廣州市中心血站。
本研究符合醫(yī)學(xué)倫理學(xué)標(biāo)準(zhǔn),經(jīng)醫(yī)院倫理委員會(huì)批準(zhǔn),得到患者家屬的知情同意。
1.3細(xì)胞株來(lái)源人胰腺癌細(xì)胞株SW1990、Capan-2、Panc-1及人皮膚成纖維細(xì)胞(human skin fibroblast) Hs27由中山大學(xué)孫逸仙紀(jì)念醫(yī)院肝膽外科實(shí)驗(yàn)室提供。
2方法
2.1人胰腺癌組織免疫組化檢測(cè)將人胰腺癌組織及癌旁胰腺組織手術(shù)標(biāo)本進(jìn)行常規(guī)固定、包埋、切片,分別用鼠抗CD1α單抗及鼠抗S-100單抗作為Ⅰ抗,生物素化的羊抗鼠IgG作為Ⅱ抗,參照SABC免疫組化試劑盒書(shū)說(shuō)明書(shū)對(duì)胰腺癌組織及癌旁組織切片進(jìn)行免疫組織化學(xué)染色,DAB顯色后在光學(xué)顯微鏡下觀察染色結(jié)果。
2.2人胰腺癌組織及癌旁組織中浸潤(rùn)性DCs的制備手術(shù)新鮮腫瘤組織經(jīng)0.25%胰蛋白酶和0.04%Ⅳ型膠原酶37 ℃充分消化,組織碎塊研磨,200目孔徑鋼網(wǎng)濾過(guò)收集單細(xì)胞懸液,洗滌,調(diào)整細(xì)胞密度1×1010/L,淋巴細(xì)胞分離液分離細(xì)胞后調(diào)整細(xì)胞密度為1×109/L,37 ℃、5% CO2細(xì)胞培養(yǎng)箱中培養(yǎng)過(guò)夜,次日收集懸浮細(xì)胞,洗滌,用含2%FBS的PBS重懸細(xì)胞。
2.3外周血DCs的誘導(dǎo)及體外培養(yǎng)胰腺癌患者及健康人外周血經(jīng)淋巴細(xì)胞分離液分離單個(gè)核細(xì)胞(peripheral blood mononuclear cells,PBMC),用含10% FBS的RPMI-1640培養(yǎng)液重懸細(xì)胞,調(diào)整為(2~3)×109/L,加入6孔板(每孔2 mL),37 ℃、5% CO2細(xì)胞培養(yǎng)箱培養(yǎng)4 h,洗去懸浮的淋巴細(xì)胞,取貼壁單個(gè)核細(xì)胞加入含10% FBS的RPMI-1640培養(yǎng)液,補(bǔ)充終濃度為100 μg/L的 rhGM-CSF和50 μg/L 的rhIL-4,每3 d換液并補(bǔ)充相應(yīng)濃度的rhGM-CSF、rhIL-4,第6天收獲未成熟的樹(shù)突狀細(xì)胞(immature dendritic cells, imDC),備用。臺(tái)盼蘭染色,檢測(cè)活細(xì)胞率。
2.4流式細(xì)胞術(shù)檢測(cè)DCs表面TIM-3的表達(dá)各組DCs用流式洗液(PBS加入2% FBS)洗2次后,重懸并分別加入抗人TIM-3-PECy7抗體和抗人CD11c-FITC抗體,4 ℃避光孵育30 min, 洗滌2次后上機(jī)檢測(cè)。
2.5流式細(xì)胞術(shù)分選CD11c+DCs將外周血誘導(dǎo)培養(yǎng)獲得的imDC 用CD11c-FITC抗體標(biāo)記,4 ℃避光孵育30 min, PBS再洗2次后上流式細(xì)胞儀進(jìn)行CD11c+DCs的無(wú)菌分選,鑒定純度。分選獲得CD11c+DCs離心濃縮(1 000 r/min,5 min),用含10% FBS的RPMI-1640培養(yǎng)液重懸,備用。分選流式細(xì)胞儀嚴(yán)格執(zhí)行無(wú)菌維護(hù)流程[6]。
2.6細(xì)胞培養(yǎng)及胰腺癌細(xì)胞培養(yǎng)上清的制備人胰腺癌細(xì)胞株(Capan-2、SW1990、Panc-1)與人皮膚成纖維細(xì)胞株(HS27)在含10% FBS的RPMI-1640培養(yǎng)液中,37 ℃、5% CO2細(xì)胞培養(yǎng)箱培養(yǎng),常規(guī)傳代。將胰腺癌細(xì)胞株與Hs27細(xì)胞經(jīng)胰酶消化后,以5×108/L密度接種于10 cm培養(yǎng)皿中(10 mL),37 ℃、5% CO2培養(yǎng)48 h后收集培養(yǎng)上清,離心(1 500 r/min, 5 min)去除細(xì)胞碎片,微孔濾膜(0.22 μm)過(guò)濾后分裝,-80 ℃保存?zhèn)溆谩?/p>
2.7胰腺癌細(xì)胞培養(yǎng)液上清對(duì)DCs表達(dá)TIM-3的影響健康人外周血單核細(xì)胞體外誘導(dǎo)培養(yǎng)至第6天生成的imDC,分成2組,第1組分別加入含有25%的3種胰腺癌細(xì)胞上清的培養(yǎng)液,第2組加入含25% HS27細(xì)胞上清的培養(yǎng)液,培養(yǎng)48 h, 收集各組DCs,流式細(xì)胞術(shù)檢測(cè)TIM-3的表達(dá)情況。
2.8阻斷胰腺癌細(xì)胞培養(yǎng)液上清中VEGF、IL-10和PGE2對(duì)DCs表達(dá)TIM-3的影響收集體外誘導(dǎo)培養(yǎng)至第6天生成的imDC,分為4組,第1、2、3組在含25%Capan-2細(xì)胞上清的培養(yǎng)液中分別加入anti-VEGFR2抗體、anti-IL-10抗體和PGE2受體EP2封閉肽,第4組在含25%Capan-2細(xì)胞上清的培養(yǎng)液中聯(lián)合加入anti-VEGF-R2抗體、anti-IL-10抗體和PGE2受體EP2封閉肽,培養(yǎng)48 h,流式細(xì)胞術(shù)檢測(cè)TIM-3的表達(dá)情況。
2.9CCK-8法測(cè)藥物細(xì)胞毒性試驗(yàn)取對(duì)數(shù)生長(zhǎng)期的胰腺癌細(xì)胞,胰酶消化后1 000 r/min離心5 min后棄上清,用10% FBS的RPMI-1640重懸細(xì)胞,調(diào)整細(xì)胞密度為5×107/L,每孔取100 μL種96孔板,放置于37 ℃、5% CO2細(xì)胞培養(yǎng)箱培養(yǎng)24 h,待細(xì)胞貼壁后,加入10 μL含不同濃度藥物的培養(yǎng)基,每種濃度設(shè)5個(gè)復(fù)孔,培養(yǎng)24 h后吸棄含藥物的培養(yǎng)基,每孔加入100 μL新鮮含10% FBS的RPMI-1640培養(yǎng)液及10 μL CCK-8,孵育1 h后觀察顯色程度,酶標(biāo)儀測(cè)定在450 nm處的吸光度(A)值。GraphPad Prism 5軟件計(jì)算藥物不同濃度抑制率,得到IC50。
2.10DCs與凋亡的Capan-2細(xì)胞共培養(yǎng)的分組取對(duì)數(shù)生長(zhǎng)期的Capan-2細(xì)胞,分別按不同濃度加入DDP,作用時(shí)間分別為12、24、36、48 h,胰酶消化收集細(xì)胞,按AnnexinⅤ/PI凋亡檢測(cè)試劑盒說(shuō)明書(shū)操作,流式細(xì)胞術(shù)測(cè)細(xì)胞凋亡率,篩選出DDP作用Capan-2細(xì)胞的最佳作用濃度和時(shí)間。將健康人外周血單核細(xì)胞經(jīng)體外誘導(dǎo)培養(yǎng)、流式分選的CD11c+DCs分成4組,第1組加入含有25%Capan-2細(xì)胞上清的培養(yǎng)液培養(yǎng)48 h, 第2組加入含25%成纖維細(xì)胞上清的培養(yǎng)液培養(yǎng)48 h,第3組在第1組基礎(chǔ)上再加入TIM-3單克隆抗體。將前3組DCs與用順鉑處理后凋亡的Capan-2細(xì)胞按5∶1比例混勻共培養(yǎng) 24 h,第4組在第3組處理的DCs基礎(chǔ)上與DNase和RNase處理的凋亡Capan-2細(xì)胞共培養(yǎng),收集各組培養(yǎng)液,4 ℃、1 500 r/min離心10 min,取上清液,待測(cè)。
2.11ELISA檢測(cè)各組DCs分泌的細(xì)胞因子IFN-β和IL-12的水平在酶標(biāo)包被板上設(shè)立標(biāo)準(zhǔn)孔,每組2個(gè)復(fù)孔,具體步驟按試劑說(shuō)明書(shū)進(jìn)行,運(yùn)用酶標(biāo)儀自動(dòng)分析檢測(cè)結(jié)果,讀出具體檢測(cè)值。實(shí)驗(yàn)重復(fù)3次,取平均值作為最終結(jié)果。
3統(tǒng)計(jì)學(xué)處理
采用SPSS 13.0軟件,對(duì)所有數(shù)據(jù)均進(jìn)行正態(tài)性檢驗(yàn), 正態(tài)分布的計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(mean±SD) 表示,組間比較采用單因素方差分析(one-way ANOVA),方差齊組間多重比較采用LSD分析,方差不齊組間多重比較采用Dunnett’s T3分析。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1胰腺癌組織及癌旁組織中DCs的觀察
免疫組化觀察9例癌旁胰腺組織和胰腺癌組織中均發(fā)現(xiàn)有浸潤(rùn)的CD1α+S-100+DCs,見(jiàn)圖1。
2胰腺癌患者TIDC、癌旁組織中DCs、外周血及健康人外周血DCs上TIM-3表達(dá)的比較
流式細(xì)胞術(shù)檢測(cè)結(jié)果顯示胰腺癌組織中TIDC上TIM-3表達(dá)為(71.79±11.74)%,高于癌旁組織中、胰腺癌患者及健康人外周血DCs上TIM-3表達(dá),數(shù)據(jù)分別為(11.46±6.68)%、(9.38±3.94)%和(4.10±2.24)%,差異顯著(P<0.01)。臺(tái)盼蘭染色檢測(cè)各組DCs存活率均大于93%,見(jiàn)圖2。

Figure 1.Immunohistochemistry detection of TIDC from pancreatic cancer tissues and adjacent tissues in human. A: CD1α+DCs in para-carcinoma tissue; B: S-100+DCs in para-carcinoma tissue; C: CD1α+DCs in pancreatic cancer tissue; D: S-100+DCs in pancreatic cancer tissue; E: CD1α+DCs in pancreatic cancer tissue; F: S-100+DCs in pancreatic cancer tissue (A~D:×100; E, F:×400).
圖1胰腺癌腫瘤組織及癌旁組織中分布的DCs

Figure 2.Expression of TIM-3 on surface of TIDC isolated from human pancreatic cancer and of myeloid dendritic cells (MDC) from peripheral blood. A: TIM-3 expression on DCs from pancreatic cancer tissues [TIDC(Pt)], para-carcinoma tissues[PcDC(Pt)] and peripheral blood of the same patients [MDC(Pt)]or healthy population [MDC(HP)], analyzed by flow cytometry. Numbers in top right quadrants indicate percentages of TIM-3+CD11c+cells among CD11c+cells. B: percentages of TIM-3+CD11c+cells among CD11c+cells in the 4 groups. Mean±SD.n=4.**P<0.01vsTIDC(Pt).
圖2分離自胰腺癌組織的TIDC及體外誘導(dǎo)的MDC表面TIM-3的表達(dá)
3胰腺癌細(xì)胞培養(yǎng)液上清對(duì)DCs表面TIM-3表達(dá)的影響
流式細(xì)胞術(shù)檢測(cè)結(jié)果顯示:含25%Capan-2、SW1990和Panc-1胰腺癌細(xì)胞培養(yǎng)液上清的3組DCs上TIM-3的相對(duì)表達(dá)量分別為(44.52±8.62)%、(52.05±6.48)%和(47.90±10.38)%,均高于Hs27細(xì)胞組TIM-3相對(duì)表達(dá)量[(12.67±4.27)%](P<0.05)。而含胰腺癌細(xì)胞上清的3組數(shù)值比較無(wú)顯著差異,見(jiàn)圖3。

Figure 3.Expression of TIM-3 on surface of DCs treated for 48 h with supernatants of Capan-2, SW1990 and Panc-1 tumor cells or Hs27 cells (25% in total medium). Mean±SD.n=4.*P<0.05vsHs27.
圖3胰腺癌細(xì)胞及Hs27細(xì)胞上清對(duì)DCs上TIM-3表達(dá)的影響
4阻斷胰腺癌上清中VEGF、IL-10和PGE2對(duì)DCs表達(dá)TIM-3的影響
分別在含25% Capan-2細(xì)胞上清的培養(yǎng)液中加入anti-VEGF-R2抗體、anti-IL-10抗體和PGE2受體EP2封閉肽,培養(yǎng)imDC 48 h后,流式細(xì)胞術(shù)檢測(cè)DCs上 TIM-3相對(duì)表達(dá)量,3組表達(dá)率分別為(38.09±5.87)%、(43.12±5.08)%和(39.53±4.60)%,與未加抗體組[(44.52±8.62)%]比較,有降低趨勢(shì),但差異無(wú)統(tǒng)計(jì)學(xué)意義;聯(lián)合阻斷3種細(xì)胞因子作用后,TIM-3的表達(dá)水平明顯下調(diào)[(27.44±5.55)%](P<0.05),但并未完全抑制其表達(dá),見(jiàn)圖4。
5DCs與凋亡胰腺癌細(xì)胞Capan-2共培養(yǎng)上清中細(xì)胞因子IFN-β、IL-12水平
CCK-8法測(cè)得DDP對(duì)Capan-2胰腺癌細(xì)胞24 h的IC50為13.6 mg/L。2倍IC50(27.2 mg/L)的DDP,作用于Capan-2細(xì)胞,12 h開(kāi)始凋亡增加,36 h凋亡逐漸達(dá)到高峰值,48 h后以晚期凋亡和壞死為主(圖5),于是選擇27.2 mg/L作用36 h為DDP致Capan-2細(xì)胞凋亡的濃度和時(shí)間。凋亡Capan-2細(xì)胞與各組CD11c+DCs(流式分選CD11c+DCs純度>98%,圖6)共培養(yǎng),TIM-3高表達(dá)DCs組(Capan-2上清組)、TIM-3低表達(dá)DCs組(Hs27上清組)、TIM-3高表達(dá)DCs+TIM-3 mAb組和TIM-3高表達(dá)DCs+DNase+RNase組上清中細(xì)胞因子IL-12和IFN-β水平比較結(jié)果見(jiàn)圖7。

Figure 4.Expression of TIM-3 on surface of DCs treated with VEGF, IL-10 and PGE2inhibitors.A: expression of TIM-3 on surface of DCs treated for 48 h with supernatants of Capan-2 cells untreated or treated with anti-VEGFR2 (vascular endothelial growth factor receptor 2), anti-IL-10 and EP2 blocker (EP2 receptor bloking peptide) alone, or a combination of all three inhibitors; B: percentages of TIM-3+CD11c+cells among CD11c+cells in the 5 groups. Mean±SD.n=4.*P<0.05vscombination.
圖4抑制胰腺癌細(xì)胞培養(yǎng)液上清中VEGF、IL-10和PGE2對(duì)DCs表達(dá)TIM-3的影響

Figure 5.The percentages of apoptotic Capan-2 cells induced by DDP (27.2 mg/L) at different time points. UT: untreated.
圖52倍IC50(27.2 mg/L)的DDP作用不同時(shí)間后Capan-2細(xì)胞的凋亡情況
近期有學(xué)者研究報(bào)道,肺癌及結(jié)直腸腺癌荷瘤小鼠腫瘤組織浸潤(rùn)的DCs及晚期肺癌、胃腺癌等患者腫瘤相關(guān)性DCs (tumor-associated DCs,TADC) 均高表達(dá)TIM-3,而癌旁組織、脾和外周血中DCs表面TIM-3低表達(dá)或幾乎不表達(dá)[5]。TIM-3表達(dá)與核酸介導(dǎo)的固有免疫密切相關(guān)。
TIM-3是2002 年Monney 等[7]發(fā)現(xiàn)并鑒定的Th1細(xì)胞表面的含免疫球蛋白和黏蛋白結(jié)構(gòu)域的跨膜蛋白。TIM-3 可通過(guò)與其天然配體半乳糖凝集素-9結(jié)合,誘導(dǎo)Th1、Th17及Tc細(xì)胞凋亡或抑制其分化[8]。研究顯示TIM-3還表達(dá)于多種固有免疫細(xì)胞亞群包括人NK細(xì)胞、巨噬細(xì)胞、未成熟的DCs[9-10]。而目前人胰腺癌TADC上TIM-3表達(dá)情況未見(jiàn)有報(bào)道。

Figure 6.Purity of CD11c+DCs detected by flow cytometry after sorting. The left curve indicates the control antibody-labeled DCs, while the right M1 indicates percentage of CD11c+DCs labeled by fluoresence.
圖6流式細(xì)胞術(shù)分選CD11c+DC的純度檢測(cè)

Figure 7.TIM-3 suppressed IL-12 and IFN-β production in DCs. The levels of IL-12 and IFN-β produced by four groups of dendritic cells after co-culture with apopto-tic Capan-2 cells at the ratio of 5∶1 for 24 h, detected by ELISA. A: Capan-2 Sup+DCs; B: Hs27 Sup+DCs; C: Capan-2 Sup+DCs+TIM-3 mAb; D: Capan-2 Sup+DCs+TIM-3 mAb+DNase+RNase. Mean±SD.n=4.**P<0.01vsC;▲▲P<0.01vsB.
圖7DCs上TIM-3表達(dá)對(duì)IL-12和IFN-β分泌的影響
本研究通過(guò)免疫組化發(fā)現(xiàn)胰腺癌患者腫瘤組織中存在大量浸潤(rùn)性CD1α+S-100+DCs。我們進(jìn)一步研究發(fā)現(xiàn):胰腺癌組織中TIDC上TIM-3的表達(dá)明顯高于癌旁組織中DCs及患者和健康人外周血DCs,提示胰腺癌局部微環(huán)境可能與DCs上TIM-3 表達(dá)增高有關(guān)。研究腫瘤微環(huán)境中TIDC表型及功能狀態(tài)變化的原因,有助于深入認(rèn)識(shí)腫瘤免疫逃逸機(jī)制,找到促進(jìn)機(jī)體抗腫瘤免疫應(yīng)答的治療方法。
許多研究表明TIDC的分化和成熟發(fā)生障礙與腫瘤復(fù)雜的微環(huán)境關(guān)系密切[2-3]。在胰腺癌組織中,癌細(xì)胞可以產(chǎn)生細(xì)胞因子(如TGF-β、IL-10和IL-6),又可以表達(dá)表面分子(如VEGF、Fas-L、PD-L1和IDO)[11-13],腫瘤微環(huán)境內(nèi)還存在許多免疫抑制細(xì)胞(如CAFs、tolerogenic DCs、MDSCs、immunosuppressive TAMs和Treg cells)[14],這些免疫抑制細(xì)胞可通過(guò)消耗精氨酸、產(chǎn)生ROS和NO來(lái)抑制抗腫瘤免疫,與Treg細(xì)胞分泌的轉(zhuǎn)化生長(zhǎng)因子 β(transforming growth factor β, TGF-β)和白細(xì)胞介素10(interleukin-10,IL-10)等共同形成一個(gè)免疫抑制環(huán)境,影響DCs分子表型和功能。我們通過(guò)研究人胰腺癌細(xì)胞培養(yǎng)液上清對(duì)DCs上TIM-3表達(dá)的影響,結(jié)果發(fā)現(xiàn)含有Capan-2、SW1990和Panc-1 3種胰腺癌細(xì)胞株上清的培養(yǎng)液對(duì)DCs上TIM-3表達(dá)均有不同程度上調(diào)作用;當(dāng)在Capan-2細(xì)胞上清中聯(lián)合加入VEGFR2 mAb、IL-10 mAb和PGE2受體EP2阻斷劑時(shí), DCs上TIM-3表達(dá)量有明顯下調(diào),但并未完全抑制其表達(dá),而分別單獨(dú)加入VEGFR2 mAb、IL-10 mAb和PGE2受體EP2阻斷劑后,TIM-3表達(dá)則并無(wú)明顯下調(diào),提示胰腺癌微環(huán)境中參與DCs表達(dá)TIM-3調(diào)節(jié)的因素可能是多方面的,其中VEGF、IL-10及炎癥因子PGE2等可能共同參與了對(duì)DCs上TIM-3表達(dá)的正性調(diào)節(jié)。且已有研究表明在體內(nèi)腫瘤免疫抑制微環(huán)境中這些細(xì)胞因子相互影響,對(duì)DCs的調(diào)節(jié)作用更為廣泛。VEGF是一種重要的血管生成刺激因子,由腫瘤細(xì)胞釋放后,對(duì)腫瘤的血管生成起著關(guān)鍵作用,還可以抑制CD34+前體細(xì)胞向DCs的分化, 在抑制腫瘤微環(huán)境中TIDC 的成熟過(guò)程中發(fā)揮著重要作用,導(dǎo)致腫瘤逃避機(jī)體的免疫監(jiān)視[15]。而IL-10能抑制DCs 的分化成熟及抗原提呈能力、表達(dá)免疫抑制性受體[16],同時(shí)IL-10 的分泌又受到TGF-β的影響,TGF-β可顯著促進(jìn)IL-10 的分泌[17]。另外免疫炎性反應(yīng)也是腫瘤微環(huán)境的重要特征之一,在人和小鼠腫瘤內(nèi)腫瘤相關(guān)巨噬細(xì)胞(tumor-assocciated macrophages,TAMs),能夠產(chǎn)生大量的炎性細(xì)胞因子,腫瘤本身在 Toll樣受體(Toll-like recepters,TLRs)配體激活后也會(huì)產(chǎn)生大量炎性細(xì)胞因子[18],PGE2在大腸癌、原發(fā)性胃癌、乳腺癌等多種腫瘤組織中均發(fā)現(xiàn)高表達(dá)[19-21],是腫瘤微環(huán)境中重要的炎癥因子,參與了TIDC免疫抑制的發(fā)生[22]并且PGE2可通過(guò)EGFR-MAPK信號(hào)通路上調(diào)VEGF的表達(dá)[22-23];復(fù)雜的腫瘤免疫抑制的微環(huán)境[24-25],使得腫瘤局部免疫應(yīng)答逐漸趨于負(fù)性調(diào)節(jié),形成免疫耐受是導(dǎo)致腫瘤細(xì)胞免疫逃逸的重要原因。
綜上所述,腫瘤微環(huán)境中負(fù)性免疫抑制因子及炎癥因子可能是造成TIDC上TIM-3表達(dá)上調(diào)的原因之一。
本研究還初步探討了TIM-3對(duì)TIDC功能的影響。IL-12是一種Th1型細(xì)胞因子,主要由成熟樹(shù)突狀細(xì)胞產(chǎn)生,是Th0細(xì)胞向Th1細(xì)胞分化的主要誘導(dǎo)因子,參與腫瘤細(xì)胞免疫,與NK細(xì)胞、T淋巴細(xì)胞等協(xié)同發(fā)揮抗腫瘤作用[26-29]。INF-β屬于Ⅰ型干擾素,能促進(jìn)CD4+T細(xì)胞分泌IFN-γ,可激活NK細(xì)胞,進(jìn)一步增強(qiáng)NK細(xì)胞非特異性殺傷靶細(xì)胞的作用。檢測(cè)IFN-β和IL-12水平,可以反映DCs固有免疫功能。細(xì)胞毒性藥物DDP是胰腺癌化療的一線用藥,能引起腫瘤細(xì)胞凋亡,同時(shí)會(huì)釋放內(nèi)源性核酸分子(DNA或RNA)導(dǎo)抗腫瘤的免疫應(yīng)答[30]。我們通過(guò)實(shí)驗(yàn)發(fā)現(xiàn)TIM-3+DCs與凋亡胰腺癌細(xì)胞Capan-2共培養(yǎng)后上清中細(xì)胞因子IL-12和IFN-β水平較對(duì)照組水平低,而阻斷TIM-3后,IFN-β和IL-12水平明顯升高,但加入DNase和RNase后,這種升高趨勢(shì)被消除,提示胰腺癌微環(huán)境中TIDC上表達(dá)的TIM-3可能參與了核酸介導(dǎo)的固有免疫應(yīng)答的負(fù)性調(diào)節(jié),TIDC上TIM-3 的高表達(dá)可能抑制了化療誘導(dǎo)的腫瘤細(xì)胞死亡后釋放的內(nèi)源性核酸對(duì)DCs固有免疫免疫應(yīng)答的激活,這也可能是導(dǎo)致胰腺癌對(duì)化療產(chǎn)生耐藥原因之一。而阻斷TIM-3是否可以增強(qiáng)胰腺癌化療的效果、促進(jìn)胰腺癌核酸疫苗抗腫瘤免疫應(yīng)答有待于體內(nèi)實(shí)驗(yàn)的驗(yàn)證。
本研究結(jié)果表明:TIM-3是胰腺癌腫瘤微環(huán)境中DCs固有免疫激活的負(fù)性調(diào)節(jié)因子之一;腫瘤細(xì)胞分泌的VEGF、IL-10和PGE2可能參與了對(duì)TIM-3表達(dá)的調(diào)控。研究為胰腺癌以DCs為基礎(chǔ)的免疫治療提供新的思路。但是,引起TIM-3高表達(dá)的轉(zhuǎn)錄因子及其下游的信號(hào)通路如何?在不同組織環(huán)境TIM-3通過(guò)什么途徑對(duì)固有免疫、適應(yīng)性免疫進(jìn)行調(diào)節(jié)?如何改善免疫抑制性的微環(huán)境提高DCs抗腫瘤效應(yīng)?這一系列問(wèn)題都有待進(jìn)一步探索。
[1]Tanemura M, Miyoshi E, Nagano H, et al.Cancer immunotherapy for pancreatic cancer utilizing α-gal epitope/natural anti-Gal antibody reaction[J].World J Gastroenterol, 2015,21(40):11396-11410.
[2]Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells[J]. Annu Rev Immunol,2007, 25:267-296.
[3]巴俊慧, 吳本權(quán),王艷紅,等.MUC1 mRNA 體外負(fù)載樹(shù)突狀細(xì)胞誘導(dǎo)細(xì)胞毒性T 細(xì)胞對(duì)非小細(xì)胞肺癌的殺傷作用[J].中國(guó)病理生理雜志,2014,30(9):1574-1579.
[4]Golden-Mason L, Palmer BE, Kassam N, et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+and CD8+T cells[J]. J Virol, 2009, 83(18):9122-9130.
[5]Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1[J]. Nat Immunol,2012,13(9):832-842.
[6]劉錫娟,丁慧榮,田志華,等. FACSAria流式細(xì)胞儀無(wú)菌操作分選高純度細(xì)胞亞群[J]. 安徽醫(yī)科大學(xué)學(xué)報(bào),2014,49(12):1811-1814.
[7]Monney L,Sabatos CA,Gaglia JL,et al.Th1-specific cell surface protein TIM-3 regulatesmacrophage activation and severity of an autoimmune disease[J]. Nature,2002,415(6871):536-541.
[8]Tembhre MK, Parihar AS, Sharma A,et al.Participation of T cell immunoglobulin and mucin domain-3 (TIM-3) and its ligand (galectin-9) in the pathogenesis of active generalized vitiligo[J].Immunol Res,2015,62(1):23-34.
[9]Anderson AC, Anderson DE, Bregoli L,et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells[J]. Science, 2007, 318(5853):1141-1143.
[10]Han G,Chen G,Shen B,et al. Tim-3: an activation mar-ker and activation limiter of innate immune cells[J]. Front Immunol,2013,4:449.
[11]Teraoka H, Sawada T,Nishihara T,et al. Enhanced VEGF production and decreased immunogenicity induced by TGF-beta 1 promote liver metastasis of pancreatic cancer[J]. Br J Cancer,2001, 85(4):612-617.
[12]Morse MA, Hall JR, Plate JM. Countering tumor-induced immunosuppression during immunotherapy for pancreatic cancer[J]. Expert Opin Biol Ther,2009,9(3):331-339.
[13]Loos M, Giese NA, Kleeff J,et al. Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer[J].Cancer Lett, 2008,268(1):98-109.
[14]Koido S, Homma S, Hara E, et al. Regulation of tumor immunity by tumor/dendritic cell fusions[J]. Clin Dev Immunol, 2010,2010:516768.
[15]Gabrilovich DI,Ishida T, Ohm JE,et al. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function[J]. Clin Cancer Res,1999,5(10):2963-2970.
[16]劉崢嶸,張敏,黎緯明,等.IL-10誘導(dǎo)小鼠樹(shù)突狀細(xì)胞耐受的分子機(jī)制[J].中國(guó)病理生理雜志,2008, 24(2):374-378.
[17]Allavena P, Piemonti L, Longoni D, et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophage[J]. Eur J Immunol,1998,28(1):359-369.
[18]He W,Liu Q,Wang L,et al. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance[J].Mol Immunol,2007,44(11): 2850-2859.
[19]Jaffe BM,Parker CW,Philpott GW.Immunochemical measurement of prostaglandin or prostaglandin-like activity from normal and neoplastic cultured tissue[J].Surg Forum,1971,22:90-92.
[20]Uefuji K,Ichikura T,Mochizuki H.Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer[J].Clin Cancer Res,2000,6(1):135-138.
[21]Watson J,Chuah SY.Prostaglandins,steroids and human mammary cancer[J].Eur J Cancer Clin Oncol,1985,21(9):1051-1055.
[22]Obermajer N,Muthuswamy R,Lesnock J,et al.Positive feedback between PGE2and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells[J].Blood,2011,118(20):5498-5505.
[23]Ding YB,Shi RH,Tong JD,et al.PGE2 up-regulates vascular endothelial growth factor expression in MKN28 gastric cancer cells via epidermal growth factor receptor signaling system[J].Exp Oncol,2005,27(2):108-113.
[24]Shevach EM. Mechanisms of Foxp3+T regulatory cell-mediated suppression[J]. Immunity, 2009,30(5):636-645.
[25]Mougiakakos D, Choudhury A, Lladser A, et al. Regulatory T cells in cancer[J]. Adv Cancer Res,2010,107:57-117.
[26]Minkis K, Kavannagh DG, Alter G, et al.Type 2 bias of T cell expanded from the blood of melanoma patients switched to type1 by IL-12p70 mRNA-transfected dendritic cells[J]. Cacer Res, 2008, 68(22): 9441-9450.
[27]Sinigaglia F, D’Ambrosio D, Panina-Bordignon P,et al. Regulation of the IL-12/IL-12R axis: a critical step in T-helper cell differentiation and effector function[J]. Immunol Rev, 1999, 170(8):65-72.
[28]Dowell AC, Oldham KA, Bhatt RI, et al. Long-term proliferation of functional human NK cells, with conversion of CD56dimNK cells to a CD56brightphenotype, induced by carcinoma cells co-expressing 4-1BBL and IL-12[J].Cancer Immunol Immunother, 2012,61(5):615-628.
[29]Tugues S, Burkhard SH, Ohs I,et al.New insights into IL-12-mediated tumor suppression[J].Cell Death Differ, 2015,22(2):237-246.
[30]Emens LA.Chemotherapy and tumor immunity: an unexpected collaboration[J].Front Biosci, 2008,13(1):249-257.
(責(zé)任編輯: 林白霜, 羅森)
Effect of human pancreatic cancer cell supernatant on expression of TIM-3 and function of dendritic cells
XIA Yuan-yuan1,2, CAI Chang-qing2, LU Ya-nan3, GAN Hui-quan4,ZHOU Quan-bo5
(1GuangdongMedicalCollege,Zhanjiang524023,China;2DepartmentⅡofOncology,TheSecondPeople’sHospitalofGuangdongProvince,Guangzhou510317,China;3DepartmentofAnesthesiology,SunYat-senMemorialHospital,SunYat-senUniversity,Guangzhou510120,China;4DepartmentofClinicalLaboratory,GuangdongGeneralHospital,Guangzhou510080,China;5DepartmentofHepatopancreatobiliarySurgery,SunYat-senMemorialHospital,SunYat-senUniversity,Guangzhou510120,China.E-mail:cchangq@163.com;zhquanbo@126.com)
AIM: To investigate the influence and mechanisms of human pancreatic cancer tumor microenvironments on T-cell immunoglobulin mucin-3 (TIM-3) expression and function of dendritic cells (DCs). METHODS: Tumor-infiltrating dendritic cells (TIDC) and para-carcinoma tissue DCs were isolated by Ficoll-Hypaque density centrifugation from trypsinized pancreatic carcinoma tissues, and the peripheral blood mononuclear cells were isolated from pancreatic cancer patients or healthy people. The expression of TIM-3 on DCs was detected by flow cytometry. DCs isolated from healthy people peripheral blood mononuclear cells were induced by rhGM-CSF and IL-4. The expression of TIM-3 in the DCs treated with the culture supernatants of Capan-2, SW1990 and Panc-1 pancreatic cancer cells or human skin fibroblast (Hs27) cells for 48 h, and in the DCs treated with supernatants of Capan-2 cells, anti-VEGF-R2, anti-IL-10 and EP2 receptor blocking peptide were evaluated by flow cytometry. The releases of IFN-β and IL-12 in the culture supernatants of DCs pretreated with monoclonal antibody (mAb) to TIM-3 or DNase+RNase, followed by stimulation with apoptotic Capan-2 cells, were detected by ELISA. RESULTS: DCs in tumor microenvironments had higher expression of TIM-3 than the DCs from para-carcinoma tissues and pancreatic cancer patient or healthy people peripheral blood (P<0.01). TIM-3 expression in the DCs treated with the culture supernatants of Capan-2, SW1990 and Panc-1 pancreatic cancer cells for 48 h was much higher than that in Hs27 cells (P<0.05). Treatment with a combination of anti-VEGF-R2, anti-IL-10 and EP2 receptor blocking peptide largely diminished the upregulation of TIM-3 on the DCs mediated by Capan-2 cell supernatants (P<0.05). The concentrations of IFN-β and IL-12 in the DCs with high expression level of TIM-3 were lower than those in the DCs with low TIM-3 expression level. Treatment with mAb to TIM-3 resulted in much more IFN-β and IL-12 releases (P<0.01), but DNase+RNase made this effect disappear. CONCLUSION: TIM-3 serves as a negative regulator of DCs innate immune responses in the pancreatic cancer microenvironments. The secretion of soluble factors to tumor microenvironment by pancreatic cancer cells, including IL-10, VEGF and PGE2, may contribute to the regulation of TIM-3 expression.
Pancreatic cancer; Dendritic cells; Tumor microenvironment; T-cell immunoglobulin and mucin-3
1000- 4718(2016)04- 0628- 09
2015- 11- 02
2016- 01- 13
國(guó)家自然科學(xué)基金資助項(xiàng)目(No.81000917;No.81370059)
Tel: 020-89168114; E-mail: cchangq@163.com; zhquanbo@126.com
R730.23
A
10.3969/j.issn.1000- 4718.2016.04.009
雜志網(wǎng)址: http://www.cjpp.net