林亦霞 王梓辛 劉歡 王征 梁滿中 戴小軍 陳良碧
(湖南師范大學 生命科學學院, 長沙 410081; *通訊聯系人, E-mail: hello_dxj@163.com, chenliangbi@126.com)
?
基于NYT 1433-2014中48對SSR引物的94份雜交稻親本DNA分子數字指紋庫研究
林亦霞 王梓辛 劉歡 王征 梁滿中 戴小軍*陳良碧*
(湖南師范大學 生命科學學院, 長沙 410081;*通訊聯系人, E-mail: hello_dxj@163.com, chenliangbi@126.com)
LIN Yixia, WANG Zixin, LIU Huan, et al. Research on DNA molecular digital fingerprint database based on 48 pairs of SSR primers for 94 hybrid rice parents in NYT 1433-2014. Chin J Rice Sci, 2016, 30(6): 593-602.
建立方法簡便、分辨率高的水稻品種遺傳多態性和真實性鑒定的分子指紋技術對于指導水稻育種和規范種子市場都具有重要意義。農業部頒布的水稻品種鑒定技術規程行業新標準是基于35個不同遺傳特點的代表性水稻品種建立的SSR分子標記技術規程。本研究根據該標準方法,對94份雜交水稻親本材料的遺傳多態性和特異性進行了比較分析,結果表明,供試品種間至少具有3對以上引物擴增的DNA片段差異,即利用該標準能很好地區分供試雜交水稻親本的遺傳差異。對新標準中48對推薦引物的比較與分析表明,46對引物擴增的DNA片段多態性較高,而RM176和RM551兩對引物擴增帶多態性較低,因此在其染色體的其他位點可進一步研究多態性更高的分子標記。與標準中35個水稻品種的指紋庫進行比較,發現了16個新的等位變異,這些位點可作為標準指紋庫的信息補充,豐富標準庫中的遺傳信息。對94個雜交水稻親本的分子指紋比較分析,發現23個親本材料具有特異性分子標記,這些特異分子標記可應用于雜交組合的真實性以及雜交種子純度的分子鑒定。根據供試親本的數字分子指紋,構建了87個不育系與7個父本雜交的虛擬組合數字分子指紋庫以及虛擬組合的真實性和純度快速鑒定的特異數字分子標記。
雜交稻; SSR引物; 數字指紋
SSR分子標記是共顯性標記,多態性豐富,具有操作簡便快捷和穩定性好等特點[1],已廣泛應用于遺傳圖譜的構建和遺傳多樣性分析等[2-3]。越來越多的研究表明SSR分子標記技術在水稻品種真偽及純度鑒定上顯示出了巨大的作用,具有無可比擬的優勢[4-10]。
2007年以前,利用SSR標記建立水稻分子指紋庫已有大量研究,但沒有得到行業普遍認可的標準。2007年農業部頒發了水稻真實性鑒定標準“水稻品種鑒定DNA指紋方法(NY/T1433-2007)”,但該標準所用SSR標記僅24對,且部分標記多態性不高,在鑒定品種真實性中存在局限性。2014年農業部重新發布了新修訂的行業新標準“水稻品種鑒定技術規程 SSR標記法(NY/T 1433-2014)”,該標準利用35個不同遺傳特點的代表性水稻品種篩選出了多態性較高的48對引物作為SSR核心標記,并對每對SSR標記標注了其常見等位變異和每個等位變異的bp值,彌補了舊標準的不足,為建立水稻數字分子指紋庫奠定基礎,為我國水稻新品種的審定以及新品種的分子遺傳多態性評價提供了重要的技術支持。
雜交水稻的大面積推廣應用為提高我國糧食產量做出了重大貢獻。雜交水稻親本的遺傳多態性是培育不同雜交組合的遺傳基礎,根據農業部水稻品種鑒定技術規程行業新標準,申請審定的雜交水稻新組合在以48對SSR引物構建的DNA分子指紋圖譜中,必須與其他已有品種具有不少于2個標記差異。因此,開展雜交水稻親本以及親本選育材料的分子遺傳多態性分析,對于雜交水稻育種具有重要指導作用。另外,以48對引物為基礎,開發更多的特異DNA片段,對于豐富水稻分子指紋數據庫以及開展雜交種子純度的快速分子鑒定都有重要意義。本研究以兩系和三系雜交稻親本為研究材料,構建數字分子指紋庫,分析其遺傳多態性和特異性,以期為雜交水稻選育和種子質量評價等提供技術支持[11-15]。
1.1 水稻材料
94個雜交水稻親本中包括秈稻溫敏不育系54個,來源于光敏不育系農墾58S不育基因源的粳稻不育系2個,秈稻不育系3個,三系野敗型不育系17個, 印尼型不育系3個, 岡型不育系1個, 遼型不育系2個, 馬協型不育系1個,紅蓮型不育系2個, BT型不育系2個,父本材料7個(表1)。
1.2 實驗方法
1.2.1 水稻DNA的提取
水稻葉片(或種子)按照CTAB法提取幼苗葉片DNA。
1.2.2 PCR擴增和凝膠電泳
根據農業行業標準(NY/T 1433-2014)推薦的48對SSR核心標記物序列,由上海生工公司合成PCR引物。SSR反應在10 μL的反應體系中進行,其中包括2×TaqPCR Mix 5 μL,ddH2O 3 μL,引物(20 μmol/L) 各0.5 μL,模板DNA(50 ng/μL) 1 μL。 擴增條件為94℃下預變性 4 min; 94℃下變性45 s, 55℃下退火45 s, 72℃下延伸1 min,35個循環;最終72℃下延伸8 min。PCR擴增產物和參照品種一起在8%聚丙烯酰胺凝膠電泳,然后進行觀察記錄分析。
1.2.3 數據賦值及數據庫建立
根據各標記的標準樣品,對各水稻材料的電泳條帶結果進行賦值: 純合位點的基因型數據記錄為X/X,X為該位點等位變異的大小;雜合位點的基因型數據記錄為X/Y,其中X、Y為該位點上兩個不同的等位變異,小片段數據在前,大片段數據在后。缺失位點等位變異數據記錄為0/0。根據以上數據重復性驗證后對水稻各品種建立分子指紋數據庫。
1.2.4 新片段克隆測序
對擴增出的農業部標準提供的指紋庫中不存在的新帶型的片段重復驗證后進行切膠回收,回收產物連接到載體PMD-18T,轉化后對菌落進行PCR檢測并測序。
2.1 雜交水稻親本數字分子指紋庫與遺傳多樣性分析
根據農業行業標準(NY/T 1433-2014)的48對SSR引物和35個代表性品種作為參照品種,構建供試雜交水稻親本材料數字分子指紋庫。圖1為水稻不育系品種“準S”的擴增結果,圖1-A為引物RM85擴增圖譜,參照品種齊粒絲苗(104 bp)、安育早1號(95 bp)、紫香糯(80 bp)各有1條帶,準S擴增出的條帶與參照品種齊粒絲苗擴增帶一致,準S該位點的數字分子賦值為104/104。圖1-B為引物OSR28擴增圖譜,5個參照品種分別是合江18(178 bp)、旱輪稻(172 bp)、紅殼老來青(169 bp)、Dasanbyeo(135 bp)、竹云糯(132 bp),準S擴增的條帶與參照品種Dasanbyeo一致,即準S該位點的數字分子賦值為135/135。
表1 供試的94個雜交稻親本的名稱與代號
Table 1. Name and code of 94 tested hybrid rice parents.

代號Code材料Material類型Type代號Code材料Material類型Type1陸18SLu18ST48BYXX1T2長選3SChangxuan3SPT49BYXX2T3農墾58SNongken58SP50BYXX3T4廣占63SGuangzhan63ST51BYXX4T5準SZhunST52BYXX5T6安農S-1AnnongS-1T53BYXX6T7901ST54BYXX7T8湘陵628SXiangling628ST55BYXX8T9B101ST56BYXX9T10廣湘24SGuangxiang24ST577001SP11株1SZhu1ST58N5088SP121103ST59PA64SPT13BY58ST60V20AWA14T91S-選T91S-chosenT61豐源AFengyuanAWA15D40ST62T98AWA16GS6T63五豐AWufengAWA17荊18SJing18ST64634AWA18隆605SLong605ST65天豐ATianfengAWA19永早3SYongzao3ST66D62AWA20香125SXiang125ST67川香29AChuanxiangAWA21賀1SHe1ST68宜香AYixiangAWA22N111ST69優ZAYouZAWA23標810SBiao810ST70炳1ABing1AWA24T91ST71岳4AYue4AWA25恒59SHeng59ST72賀11AHe11AWA26早SZaoST73隆398ALong398AWA27810ST74吉天AJitianAWA28N118ST75隆晶4302ALongjing4302AWA29YOST76深95AShen95AWA30H638ST77Ⅱ32AIA3188ST78優1AYou1AIA32710ST79中九AZhongjiuAIA33安湘SAnxiangST80岡46AGang46AGA34750ST8124-64AL35株25SZhu25ST82H13AL36H629ST83武香AWuxiangAM37Y58ST84粵泰AYuetaiAHL38明SMingST85超泰AChaotaiAHL39隆74SLong74ST86T1ABT40KT27ST87199ABT41華煜4127SHuayu4127ST889311F42錦4128SJin4128ST899311-選9311-chosenF43云峰SYunfengST90R527F44天安STiananST91R111F45N2ST92R58F46衡農SHengnongST93R624F47W6154SPT94R217F
T-溫敏不育系; P-來源于農墾58S的粳稻光敏不育系; PT-來源于農墾58S的秈稻溫敏不育系; WA-野敗型不育系; IA-印水型不育系; GA-岡型不育系; HL-紅蓮型不育系; L-遼型不育系; M-馬協型不育系; F-父本材料。 9311-有芒9311; 9311-選-無芒9311; BYXX1~BYXX9為新選育未審定的兩用核不育系。
T, Thermo-sensitive genetic male sterile line; P,japonicamale sterile line derived from Nongken 58S; PT,indicamale sterile line derived from Nongken 58S; WA, Wild abortion type sterile line; IA, Cytoplasmic male sterile line; GA, Type-G CMS line; HL, HL-type CMS line; L, Liao-type CMS line; M, Maxie-type CMS line; F, Male parent. 9311, Awned 9311. 9311-chosen, Awnless 9311; BYXX1-BYXX9, New genic male sterile lines before examination.
1-紫香糯; 2-安育早1號; 3-齊粒絲苗; 4-天安S; 5-竹云糯; 6-Dasanbyeo; 7-紅殼老來青; 8-旱輪稻; 9-合江18。A-SSR引物RM85; B-SSR引物OSR28。
1, Zixiangnuo; 2, Anyuzao 1; 3, Qilisimiao; 4, Tian′an S; 5, Zhuyunnuo; 6, Dasanbyeo; 7, Hongkelaolaiqing; 8, Hanlundao; 9, Hejiang 18. A, SSR primer RM85; B, SSR primer OSR28.
圖1 準S上SSR標記RM85和OSR28擴增電泳結果
Fig.1. Electrophoretogram amplified with RM85 and OSR28 in Zhun S.
將48對引物的準S擴增片段大小進行統計和賦值,該品種的數字分子指紋結果見表2。對94個雜交稻親本按照此種方式進行賦值,建立數字分子指紋庫。
利用軟件NTSYS-PC對94個雜交水稻親本的遺傳相似系數進行分析(表3),各品種間遺傳相似系數變幅0.54~0.97,其中遺傳相似系數最高的兩個品種是標810S和810S,標810S是810S的自然突變體,其遺傳相似系數高達0.97,這兩個品種有3對引物的差異,其中2對引物的差異為擴增條帶有或無,1對引物為擴增條帶遷移率不同。遺傳相似系數最低的是陸18S和H13A,僅為0.54。兩個品種間有40對引物的差異,陸18S是早秈型溫敏核不育系,H13A是粳稻遼型細胞質雄性不育系,親緣關系遠,遺傳差異大。根據品種間差異的引物數不少于2對判定為“不同品種”的標準,94個雜交水稻親本都為不同品種。該研究結果表明新標準的48對SSR標記具較強的核DNA多態性區分功能。
2.2 48對SSR分子標記的多態性比較
DNA分子標記的多態性是衡量該標記有效性的重要標志。供試的48對SSR引物在94個雜交水稻親本中共檢測到197個等位變異。每對引物擴增的等位變異范圍為2~7個,平均值為4.10,PIC范圍為0.25~0.77,平均值為0.56(表4),具較高多態性。
表2 準S核DNA數字分子指紋
Table 2. Results of digital molecular fingerprint of Zhun S nuclear DNA.

序號No.引物Primer基因型Genotype/bp序號No.引物Primer基因型Genotype/bp序號No.引物Primer基因型Genotype/bp1RM583189/18917RM267156/15633OSR28135/1352RM71148/14818RM253142/14234RM590139/1393RM85104/10419RM481162/16235RM21160/1604RM471104/10420RM339146/14636RM3331120/1205RM274162/16221RM278142/14237RM443119/1196RM190109/10922RM258128/12838RM49092/927RM336154/15423RM224155/15539RM424263/2638RM72163/16324RM17185/18540RM423268/2689RM219222/22225RM493237/23741RM571179/17910RM311170/17026RM561185/18542RM231180/18011RM209132/13227RM8277165/16543RM567248/24812RM19216/21628RM551184/18444RM289106/10613RM1195146/14629RM598156/15645RM54289/8914RM208180/18030RM176136/13646RM316196/19615RM232141/14131RM432168/16847RM332167/16716RM119169/16932RM331171/17148RM7102173/173
表3 供試94個雜交水稻親本的遺傳相似系數比較
Table 3. Genetic similarity coefficient comparison of the tested 94 hybrid rice parents.

材料Material遺傳相似系數Geneticsimilaritycoefficient區間Range平均值Mean材料Material遺傳相似系數Geneticsimilaritycoefficient區間Range平均值Mean陸18SLu18S0.54-0.890.71BYXX10.65-0.810.68長選3SChangxuan3S0.61-0.820.69BYXX20.64-0.810.72農墾58SNongken58S0.55-0.880.62BYXX30.59-0.830.79廣占63SGuangzhan63S0.56-0.830.69BYXX40.59-0.840.71準SZhunS0.55-0.820.73BYXX50.57-0.840.70安農S-1AnnongS-10.60-0.770.69BYXX60.60-0.840.69901S0.60-0.960.72BYXX70.61-0.800.70湘陵628SXiangling628S0.60-0.960.68BYXX80.58-0.840.70B101S0.61-0.790.69BYXX90.59-0.800.71廣湘24SGuangxiang24S0.56-0.790.687001S0.58-0.880.63株1SZhu1S0.55-0.800.70N5088S0.57-0.860.641103S0.63-0.800.72PA64S0.58-0.770.69BY58S0.60-0.750.68V20A0.62-0.840.71T91S-選T91S-chosen0.61-0.800.69豐源AFengyuanA0.61-0.850.72D40S0.57-0.890.70T98A0.62-0.820.71GS60.56-0.890.69五豐AWufengA0.61-0.930.73荊18SJing18S0.56-0.930.69634A0.63-0.880.72隆605SLong605S0.58-0.930.70天豐ATianfengA0.61-0.880.72永早3SYongzao3S0.55-0.900.70D62A0.60-0.840.71香125SXiang125S0.56-0.900.70川香29AChuanxiangA0.55-0.820.72賀1SHe1S0.59-0.830.70宜香AYixiangA0.66-0.850.72N111S0.64-0.760.69優ZAYouZA0.65-0.890.73標810SBiao810S0.62-0.970.71炳1ABing1A0.57-0.890.72T91S0.55-0.820.71岳4AYue4A0.60-0.850.72恒59SHeng59S0.63-0.770.70賀11AHe11A0.54-0.770.68早SZaoS0.59-0.830.71隆398ALong398A0.59-0.790.70810S0.61-0.970.70吉天AJitianA0.58-0.800.69N118S0.59-0.860.70隆晶4302ALongjing4302A0.56-0.820.70YOS0.61-0.800.70深95AShen95A0.65-0.820.73H638S0.64-0.910.71Ⅱ32A0.60-0.890.7388S0.63-0.830.70優1AYou1A0.61-0.840.71710S0.61-0.860.71中九AZhongjiuA0.61-0.800.70安湘SAnxiangS0.61-0.850.71岡46AGang46A0.60-0.890.73750S0.59-0.860.7224-64A0.57-0.820.64株25SZhu25S0.60-0.860.70H13A0.54-0.800.63H629S0.59-0.910.71武香AWuxiangA0.62-0.770.68Y58S0.60-0.790.68粵泰AYuetaiA0.62-0.850.73明SMingS0.58-0.820.70超泰AChaotaiA0.58-0.750.69隆74SLong74S0.59-0.750.68T1A0.55-0.800.63KT27S0.57-0.760.68199A0.56-0.800.63華煜4127SHuayu4127S0.62-0.930.6993110.61-0.820.73錦4128SJin4128S0.56-0.920.719311-選9311-chosen0.61-0.820.69云峰SYunfengS0.57-0.850.71R5270.62-0.810.70天安STiananS0.58-0.850.70R1110.60-0.830.66N2S0.59-0.780.71R580.62-0.870.69衡農SHengnongS0.59-0.790.72R6240.61-0.820.69W6154S0.58-0.790.71R2170.61-0.870.69
表 4 48對分子標記在供試雜交水稻親本中等位基因數及多態性信息指數比較
Table 4. Number of alleles and PIC for the test hybrid rice parents of 48 SSR molecular markers.

引物Primer等位基因數No.ofalleles多態性信息量PIC引物Primer等位基因數No.ofalleles多態性信息量PIC引物Primer等位基因數No.ofalleles多態性信息量PICRM58350.68RM26730.58OSR2850.46RM7130.51RM25340.57RM59030.59RM8540.39RM48150.55RM2170.75RM47130.53RM33930.41RM333160.77RM27420.35RM27840.66RM44330.30RM19050.58RM25840.60RM49040.47RM33670.69RM22470.75RM42440.64RM7270.60RM1720.46RM42330.47RM21960.70RM49350.64RM57130.54RM31140.60RM56140.29RM23140.66RM20950.70RM827760.39RM56730.38RM1950.68RM55130.25RM28920.37RM119560.75RM59830.63RM54230.35RM20850.67RM17620.26RM31640.70RM23250.71RM43240.75RM33240.54RM11920.76RM33120.46RM710240.69平均值Mean4.100.56
引物RM224等位基因數為7,擴增出15種帶型,其PIC值高達0.75,另一對引物RM119,等位基因數為2,雖只擴增出2種帶型,其PIC值高達0.76。表明這兩個標記位點呈高度多態性。而第6染色體標記引物RM176等位基因數為2,只有2種帶型,其PIC值僅為0.26,該標記在供試材料的遺傳差異分析中貢獻率最大不超過10%。第4染色體上標記引物RM551等位基因數為3,擴增出3種帶型,但PIC值也僅0.25。該標記在供試材料的遺傳差異分析中貢獻率最大不超過7%。表明這兩個標記位點多態性不高,對品種間的差異分辨力弱。
2.3 雜交水稻親本中新增等位變異位的分析
與35個參照水稻品種構建的分子指紋庫進行比對,在供試的雜交水稻親本中的有13對SSR引物擴增出了16條新條帶。例如引物RM231在安農S-1中擴增出了一條比參照品種輪回01(194 bp)、合江18(192 bp)、陸川早1號(186 bp)小的條帶(圖2),經克隆測序該新帶長度為180 bp。其全序列為CCAGATTATTTCCTGAGGTCAAGGGCTTTGAGTCTCTCTCTCTCTCTCTCTCTCTCTCTCTTAAAAAAGATCTGTTTGTATTTCATTGCAATACATGTAGTTATCAGTAATAACAGAAAGAACATTTGTACATTACTCTCAATCACTACATTTTTTTTCAATGCAGAACTATGCAAGTGA。除在安農S-1外,在準S、KT27S等13個材料中都擴增出了該條帶,且序列完全一致。

1-陸川早1號; 2-合江18; 3-輪回01; 4-安農S-1。
1, Luchuanzao 1; 2, Hejiang 18; 3, Lunhui 01; 4, Annong S-1.
圖2 引物RM231在安農S-1中擴增出的新條帶
Fig. 2. New band amplified with primer RM231 of Annong S-1.
引物RM72擴增出了兩條新帶,其中在R527、R58等9個水稻材料中擴增出的新條帶為165 bp的新片段,全序列為CCGGCGATAAAACAATGAGAAATTAGGTACATAATAATAATAATAGTAATAATAATAATAATAATAATAATAATAATAATAATAATAATAGTAATAATAATAGTAATAGTAATAATAAAAGCATAAATAACTTGCAACCCATATCCCTTAGTTAGGACCGATGCA。在長選3S、明S等7個材料中擴增出的新條帶為152 bp,全序列為GCATCGGTCCTAACTAAGGGATATGGGTTGCAAGTTATTTATGCTTTTATTATTACTATTACTATTATTATTACTATTATTATTATTATTATTATTATTATTATTACTATTATTATTATTATGTACCTAATTTCTCATTGTTTTATCGCCGG。
表5 雜交水稻親本新增等位變異位點及片段大小
Table 5. New allelic variants point and fragment size of hybrid rice parents.

序號No.引物Primer參照品種等位變異點Commonallelicvariationpoint/bp新增等位變異點Newallelicvariationpoint材料名稱Material1RM583180,189,192,1951589311,9311-選2RM8580,95,10493荊18S,隆605S,廣占63S,天安S3RM190109,120,122128YOS4RM190109,120,122107B101S,BY58S,T91S-選5RM72163,175,178,190,193152長選3S,PA64S,明S,N111S,YOS,H638S,H629S6RM72163,175,178,190,193165華煜4127S,R527,R111,R58,R624,R217,恒59S,901S7RM219194,200,202,215,222186安農S,明S,N118S,標810S,安湘S,株25S8RM19216,247,250,253221賀1S,N111S9RM253133,135,142119隆74S,BYXX6,超泰A10RM481146,162,165182云峰S,荊18S,R111,D40S11RM481146,162,165156隆74S12RM432168,172,188180云峰S,天安S,華煜4127S,錦4128S,KT27S,隆398A,陸18S,廣占63S,賀11A,GS6,隆605S,N111S,標810S,810S,N118S,H638S,88S,750S,H629S,931113RM49092,97,99108陸18S,GS6,永早3S14RM231186,192,194180錦4128S,KT27S,準S,安農S,BYXX7,永早3S,標810S,810S,H638S,H629S,岳4A,901S15RM332162,164,167184陸18S,GS6,T91S,W6154S,株25S16RM336151,154,160,163,166,193144宜香A,24-64A
另外RM190、RM481等8對引物擴增出的新條帶只出現在1~3份材料中(表4),例如引物RM190在不育系YOS中擴增出了1條128 bp特異帶。引物RM481在隆74S中擴增出了1條156 bp特異帶。引物RM583在父本9311和9311-選中擴增出了1條158 bp特異帶。這種特異位點可用于雜交水稻親本以及組合的真實性和純度的快速分子檢測。
2.4 虛擬雜交組合數字分子指紋庫及特異分子標記
雜交組合包含了雙親的全部遺傳信息,雜交組合核DNA的數字分子指紋即父母本的互補數字分子指紋,根據已知的雜交水稻親本的數字分子指紋,可虛擬出雜交組合的數字分子指紋。
例如,根據 YOS和9311的數字分子指紋,虛擬出了YOS/9311的雜交組合數字分子指紋(表5)。該數字分子指紋與另外86個不育系雜9311的組合以及YOS雜另6個父本的組合的數字分子指紋都具有3對以上的差異位點,故該虛擬組合符合新品種遺傳審定標準。在該虛擬組合生產應用中,引物RM583擴增出的158 bp/189 bp可作為雜交組合真實性和純度分子快速檢測標記,即雜交組合種子中只有189 bp條帶的為混雜種子,混雜來源于不育系自交種子;只有158 bp條帶的也為混雜種子,混雜來源于父本的機械混雜;具有xxxbp/189 bp或189 bp/xxxbp條帶為串粉混雜種子;不含158 bp和189 bp條帶的種子為稻田落粒谷混雜或其他機械混雜種子。
目前中國在雜交稻品種選育方面正快速形成育繁推一體化的品種創新體系,雜交稻親本選育必將進入快速發展時期,但現代分子生物學技術在雜交育種中的貢獻率仍較低,加強分子技術與傳統育種技術的緊密結合已成為雜交水稻育種的迫切需求[16-19]。開展雜交水稻親本選育過程中核DNA數字分子指紋分析,是加速新品種選育的有效途徑,即對新選育材料進行DNA數字分子指紋分析,并將數字信息提交到數據庫進行比對,以具2對以上變異位點作為篩選標準,只有達到該標準的親本材料應用于雜種優勢測配,這樣有利于減少雜交稻親本選育的盲目性和大量無效測配勞動,提高雜交育種效率[20-23]。
表6 YOS /9311雜交組合數字分子指紋
Table 6. Results of digital molecular fingerprint of YOS /9311 hybrids.

序號No.引物Primer基因型Genotype/bp序號No.引物Primer基因型Genotype/bp序號No.引物Primer基因型Genotype/bp1RM583189/18917RM267156/15633OSR28135/1352RM71139/14818RM253142/14234RM590139/1463RM85104/10419RM481162/16535RM21128/1384RM471102/10420RM339146/14636RM3331110/1105RM274149/16221RM278128/13837RM443119/1236RM190122/12822RM258128/13238RM49092/927RM336154/15423RM224153/15339RM424280/2808RM72152/15224RM17159/18540RM423268/2719RM219202/21525RM493237/24041RM571179/18510RM311170/17026RM561185/18742RM231192/19211RM209132/13227RM8277165/16543RM567248/24812RM19247/24728RM551184/19044RM28987/10613RM1195142/14629RM598153/15645RM54289/8914RM208167/18230RM176136/13646RM316200/20015RM232150/16131RM432168/18847RM332164/16416RM119169/16932RM331151/17148RM7102170/190
目前,雜交水稻市場的品種套牌、冒牌等侵權事件時有發生,建立不同品種的數字分子指紋庫是解決這一問題的有效手段[24-25]。前期許多研究建立的水稻品種分子指紋圖譜,主要依據條帶的多少進行比對,不能數字化,加之沒有參照品種作對照,不同實驗條件下其電泳帶的遷移率不盡相同,導致分子指紋圖譜的相似性分析易出現偏差,另外前期的24對標準引物信息量偏少,部分引物多態性不高,導致水稻品種的分子指紋特異性不高[26-29]。利用農業部行業新標準(NY/T 1433-2014)易于構建雜交水稻親本以及組合特異的數字分子指紋,更有利于水稻品種的產權保護。
本研究也發現新標準中標記引物RM176和RM551作為分子標記的多態性不高,對不同品種的分辨力較弱,有必要在其染色體上開發新的分子標記。本研究同時篩選到16個新的等位變異位,這些位點可作為標準指紋庫的信息補充,豐富標準庫中的遺傳信息。
SSR標記在單個座位上檢測到的多態性遠高于其他幾種分子標記,且廣泛隨機均勻地分布于整個基因組,能準確高效地鑒別大量等位基因,利用父母本特異互補帶可作為快速鑒定品種真實性和純度的理想分子標記[30-35]。本研究在雜交水稻親本材料中篩選出23份材料的特異分子標記,這些特異分子標記可作為雜交水稻親本以及組合中是否混雜其他品種的分子檢測標記,對于還未篩選出特異分子標記的材料,可以進一步增加SSR標記篩選數,開發出特異性強的快速鑒定品種真實性和純度的理想分子標記。
根據目前我國在生產上應用的主要不育系、父本以及近10年的雜交組合,構建我國雜交水稻數字分子指紋信息庫,并建立網絡化公共服務平臺,讓所有雜交水稻育種工作者能利用該服務平臺開展雜交水稻親本資源創新和虛擬配組,以評價其新材料的遺傳多態性以及所配組合的遺傳類型,這可能對雜交水稻育種產生重大促進作用。
本研究建立了94份雜交水稻親本的數字分子指紋庫,供試材料間具有3個以上的遺傳差異位點。篩選出23個材料的特異數字分子標記,這些特異數字分子標記可應用于種子真實性或純度的快速分子鑒定。根據供試的不育系和父本的數字分子指紋建立了虛擬雜交水稻F1代的數字分子指紋庫和虛擬組合的特異數字分子標記。
[1] 蔣和平, 孫煒琳, 陳曦. 中國種業發展的現狀及對策. 農業科技管理, 2004(2): 23-28.
Jiang H P, Sun W L, Chen X. Current situation and countermeasures of China seed industry.ManagAgricSciTechnol, 2004(2): 23-28. (in Chinese)
[2] 楊瑞芳, 白建江, 方軍, 等. 分子標記輔助選擇選育高抗性淀粉水稻新品種. 核農學報, 2015, 29(12): 2259-2267.
Yang R F, Bai J J, Fang J, et al. Establishment of marker-assisted selection for breeding rice varieties with high resistant starch content.JNuclAgricSci, 2015, 29(12): 2259-2267. (in Chinese with English abstract)
[3] Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis.MolBreeding, 1996, 2: 225-238.
[4] Lv X G, Shi Y F, Xu X, et al.Oryzasativachloroplast signal recognition particle 43 (OscpSRP43) is required for chloroplast development and photosynthesis.PloSOne, 2015, 10(11): 143-149.
[5] Liu J P, Zhang C C, Wei C C, et al. RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice.PlantPhysiol, 2016, 170: 429-443.
[6] 程本義, 夏俊輝, 沈偉峰, 等. 微衛星標記分析我國南方常規水稻品種的遺傳差異. 核農學報, 2009, 23(1): 7-11.
Cheng B Y, Xia J H, Shen W F, et al. Microsatellite marker analysis of genetic differences between conventional rice varieties in South China.JNuclAgricSci, 2009, 23(1): 7-11. (in Chinese with English abstract)
[7] 李紅宇, 張龍海, 劉夢紅, 等. 東北地區水稻品種與日本引進北地區水稻品種遺傳多樣性比較. 核農學報, 2011, 25(6): 1082-1087.
Li H Y, Zhang L H, Liu M H, et al. Comparison study of genetic diversity between rice varieties from Northeast China and Japan.JNuclAgricSci, 2011, 25(6): 1082-1087. (in Chinese with English abstract)
[8] Cai Z J, Wang B R, Xu M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China.JSoilsSed, 2015, 15(2): 260-270.
[9] 宣云, 趙偉, 宋豐順, 等. 利用 SSR 標記分析部分粳稻品種的遺傳多樣性. 核農學報, 2007, 21(3): 217-220.
Xuan Y, Zhao W, Song F S, et al. Genetic diversity analysis of some japonica rice varieties with SSR markers.JNuclAgricSci, 2007, 21(3): 217-220.(in Chinese with English abstract)
[10]趙中秋, 鄭海雷, 張春光. 分子標記的發展及其在植物研究中的應用. 福建熱作科技, 2000(4): 68-72.
Zhao Z Q, Zheng H L, Zhang C G. Development and application of molecular markers in plant research.FujianSci&TechnolTropCrops, 2000(4): 68-72. (in Chinese)
[11]羅世友, 陳紅萍, 吳小燕, 等. 應用分子標記輔助選育抗褐飛虱水稻恢復. 分子植物育種, 2015, 13(11): 2404-2415.
Luo S Y, Chen H P, Wu X Y, et al. Breeding restorer lines with resistance to brown planthopper by marker-assisted selection.MolPlantBreeding, 2015, 13(11): 2404-2415. (in Chinese with English abstract)
[12]從夕漢, 李莉, 滕斌, 等. 56個雜交水稻骨干親本SSR指紋圖譜的構建及遺傳相似性分析. 生物學雜志, 2010, 27(1): 87-91.
Cong X H, Li L, Teng B, et al. Establishment of SSR fingerprintmap and analysis of genetic similarity among 56 backbone parental lines in hybrid rice.JBiol, 2010, 27(1): 87-91. (in Chinese with English abstract)
[13]NY/T 1433-2014. 水稻品種真實性鑒定SSR標記法. 北京: 中國農業出版社.
NY/T 1433-2014. Rice variety genuineness verification with SSR markers. Beijing: China Agriculture Press. (in Chinese)
[14]高方遠, 陸賢軍, 周良強, 等. 香優1號DNA指紋分析及種子純度鑒定. 西南農業學報, 2002, 15(4): 22-25.
Gao F Y, Lu X J, Zhou L Q, et al. Xiangyou 1 DNA fingerprinting and seed quality identification.SouthwestChinaJAgricSci, 2002, 15(4): 22-25. (in Chinese with English abstract)
[15]肖小余, 王玉平, 張建勇, 等. 四川主要雜交稻親本的SSR多態性分析和指紋圖譜的構建與應用. 中國水稻科學, 2006, 20(1): 1-7.
Xiao X Y, Wang Y P, Zhang J Y, et al. Construction and application of hybrid rice in Sichuan mainly of SSR polymorphism analysis and fingerprinting.ChinJRiceSci, 2006, 20(1): 1-7. (in Chinese with English abstract)
[16]張彥, 郭士偉, 何冰, 等. 利用SSR標記建立雜交水稻分子指紋圖譜數據庫. 江蘇農業學報, 2006, 22(2): 181-183.
Zhang Y, Guo S W, He B, Gao D Y. Hybrid rice with SSR molecular markers to establish fingerprint database.JiangsuJAgricSci, 2006, 22(2): 181-183. (in Chinese with English abstract)
[17]顏靜宛, 田大剛, 許彥, 等. 雜交稻主要親本的SSR分子身份證數據庫的構建. 福建農業學報, 2011, 26(2): 148-152.
Yan J W, Tian D G, Xu Y, et al. Construction of hybrid rice parents SSR molecular identification database.FujianJAgricSci, 2011, 26(2): 148-152. (in Chinese with English abstract)
[18]辛業蕓, 張展, 熊易平, 等. 應用SSR分子標記鑒定超級雜交水稻組合及其純度. 中國水稻科學, 2005, 19(2): 95-100.
Xin Y Y, Zhang Z, Xiong Y P, et al. Identification and purity test of super hybrid rice with SSR molecular markers.ChinJRiceSci, 2005, 19(2): 95-100. (in Chinese with English abstract)
[19]李進波, 方宣均, 楊國才,等. 兩系雜交稻親本SSR指紋圖譜的建立及其在種子純度鑒定中的應用. 雜交水稻, 2005, 20(2): 50-53.
Li J B, Fang X J, Yang G C, et al. The establishment of two-line hybrid rice parents SSR Fingerprinting and its application in purity identification.HybridRice, 2005, 20(2): 50-53. (in Chinese with English abstract)
[20]程本義, 吳偉, 夏俊輝, 等. 浙江省水稻品種DNA指紋數據庫的初步構建及其應用. 浙江農業學報, 2009, 21(6): 555-560.
Chen B Y, Wu W, Xia J H, et al. Preliminary construction of Zhejiang rice DNA fingerprinting database and its application.ActaAgricZhejiang, 2009, 21(6): 555-560. (in Chinese with English abstract)
[21]莊杰云, 施勇烽, 應杰政, 等. 中國主栽水稻品種微衛星標記數據庫的初步構建. 中國水稻科學, 2006, 20(3): 460-468.
Zhuang J Y, Shi Y F, Ying J Z, et al. Preliminary Construction of Chinese major rice varieties microsatellite marker database.ChinJRiceSci, 2006, 20(3): 460-468. (in Chinese with English abstract)
[22]李召華, 朱克永, 陳祖武, 等. 分子標記技術在雜交水稻種子純度鑒定中的應用. 雜交水稻, 2006, 21(4): 11-14.
Li Z H, Zhu K Y, Chen Z W, et al. Molecular marker technology in hybrid rice seed purity identification.HybridRice, 2013, 21(4): 1295-1301. (in Chinese)
[23]黃成志, 黃文章, 嚴明建, 等. 利用SSR分子標記鑒定雜交水稻真偽與純度. 安徽農業科學, 2009, 37(8): 3437-3438.
Huang C Z, Huang W Z, Yan M J, et al. Identification of true or false and purity of hybrid rice with SSR molecular marker.JAnhuiAgricSci, 2009, 37(8): 3437-3438. (in Chinese with English abstract)
[24]彭鎖堂, 莊杰云, 顏啟傳, 等. 我國主要雜交水稻組合及其親本SSR標記和純度鑒定. 中國水稻科學, 2003, 17(1): 1-5.
Peng S T, Zhuang J Y, Yan Q C, et al. SSR markers selection and purity detection of major hybrid rice combinations and their parents in china.ChinJRiceSci, 2003, 17(1): 1-5. (in Chinese with English abstract)
[25]王鳳格, 趙久然, 孫世賢, 等. 我國玉米DNA指紋數據庫管理系統的建立. 玉米科學, 2010, 18(2): 41-44, 49.
Wang F G, Zhao J R, Sun S X, et al. Construction of maize DNA fingerprint database system in China.JMaizeSci, 2010, 18(2): 41-44, 49.(in Chinese with English abstract)
[26]Bredemeijer G, Cooke R, Ganal M, et al. Construction and testing of microsatellite database containing more than 500 tomato varieties.TheorApplGenet, 2012, 105: 1019-1026.
[27]Verburg P H, Neumann K, Nol L. Challenges in using land use and land cover data for global change studies.GlobalChangeBiol, 2011, 17: 974-989.
[28]Biradar C M, Thenkabail P S, Noojipady P et al. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing.IntJApplEarthObservGeoinform, 2009, 11: 114-129.
[29]Thenkabail P S, Biradar C M, Noojipady P, et al. Global irrigated area map (GIAM) derived from remote sensing, for the end of the last millennium.IntJRemoteSens, 2009, 30: 3679-3733.
[30]Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980.Science, 2011, 333: 616-620
[31]王鳳格, 趙久然, 戴景瑞, 等. 玉米品種DNA 指紋數據庫構建的標準化規范. 分子植物育種, 2007, 5(1): 128-132.
Wang F G, Zhao J R, Dai J R, et al. Criteria for the construction of maize DNA fingerprint database.MolPlantBreeding, 2007, 5(1): 128-132.(in Chinese with English abstract)
[32]Cantini C, Iezzoni A F, Lamboy W F, et al. DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats.JAmSocHortSci, 2001, 126: 205-209.
[33]Case C, Kandola K, Chui L, et al. Examining DNA fingerprinting as an epidemiology tool in the tuberculosis program in the Northwest Territories, Canada.IntlJCircumpolarHealth, 2013, 9: 72.
[34]Ashkenazi V, Chani E, Lavi U. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses.Genome, 2001, 44: 50-62.
[35]Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice.NatGenet, 2010, 42(6): 545-549.
Research on DNA Molecular Digital Fingerprint Database Based on 48 Pairs of SSR Primers for 94 Hybrid Rice Parents in NYT 1433-2014
LIN Yi-xia, WANG Zi-xin, LIU Huan, WANG Zheng, LIANG Man-zhong, DAI Xiao-jun*, CHEN Liang-bi*
(CollegeofLifeScience,HunanNormalUniversity,Changsha410081,China;*Corresponding author, E-mail: hello_dxj@163.com, chenliangbi@126.com)
It is of great significance to establish the simple molecular fingerprinting technique with high resolution for identification of the genetic polymorphism and the authenticity of different rice varieties, so as to guide rice breeding and regulate its seed market. The new standards of technical regulation on identification of the rice varieties with SSR markers, formulated by the Ministry of Agriculture of P.R. China, recommended the use of 35 control standard
amples with different genetic characteristics for identification of rice varieties. The genetic polymorphism and specificity of 94 hybrid rice parents were compared based on the standard method. The results indicated that the tested varieties differed at least three pairs of mutated loci or the genetic differences between the parents of hybrid rice could been well distinguished. By comparing the polymorphism of the 48 recommended primers of the new standard, 46 primers showed higher polymorphism except RM176 and RM551. Thus, higher polymorphic alternative molecular markers would be identified in other loci of the same chromosome. 16 new allelic variation sites were found and could be used as supplementary of standard fingerprint database and enrich genetic variation sites information. By analyzing molecular fingerprint of 94 hybrid parental materials, 23 have specific molecular markers and can be used in authenticity analysis of hybrid combination and purity identification of hybrid seeds. According to the digital molecular fingerprint of the tested rice parent, we constructed a virtual digital molecular fingerprint database including 87 female sterile lines and 7 male parents, and specific digital molecular marker of virtual hybridized combination authenticity and rapid seed purity identification.
hybrid rice; SSR primer; digital fingerprint
2015-12-29; 修改稿收到日期: 2016-03-12。
國家自然科學基金資助項目(3147430); 生態學重點學科資助項目(0713)。
Q755; S511.01
A
1001-7216(2016)06-0593-10
林亦霞, 王梓辛, 劉歡, 等. 基于NYT 1433-2014中48對SSR引物的94份雜交稻親本DNA分子數字指紋庫研究. 中國水稻科學, 2016, 30(6): 593-602.