程芳


摘 要 拓撲絕緣體的材料可大大提高計算機芯片的運行速度和工作效率,甚至可能會成為以自旋電子學為基礎的下一代全新計算機技術的基石.拓撲絕緣體的邊緣態展現出奇特的性質,電子在表面自由流動,不損耗任何能量.使用玻色化,重整化群,格林函數的方法從理論上研究了三個含時點接觸存在對拓撲邊緣態輸運性質的影響.得到電流隨偏壓和溫度變化的解析表達式,以及依賴于電子間相互作用冪指數變化規律.該理論提供了一種調控納米結構中輸運性質的手段.
關鍵詞 拓撲絕緣體;含時點接觸; 拉廷格液體;量子輸運
中圖分類號 O413.2 文獻標識碼 A 文章編號 1000-2537(2016)05-0061-04
Abstract The novel topological insulator material has provided the physical foundation for the dissipationless spin transport, possibly constructed the brand-new spintronic devices. The edge state of the topological insulator shows unusual helical feature due to the electron spin-momentum locking. Using the Luttinger liquid theory and nonequilibium Green function, the quantum transport in a quantum spin Hall bar with three quantum point contacts (QPCs) was studied. The currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties were induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.
Key words topological insulator; time dependent quantum point contacts; Luttinger liquid; quantum transport
全電操縱的自旋電子學器件的制備和性能研究是當今凝聚態物理領域的前沿研究課題[1-2].拓撲絕緣體是現代凝聚態物理中的一個重要研究主題.拓撲絕緣體不是常規的超導體,它只能攜帶很小的電流,不能用于超高效電源線,但它為微芯片開發的范式轉移鋪平了道路,這將導致自旋電子學的新應用,即利用電子自旋來攜帶信息.從電子能帶結構上來說,拓撲絕緣態不能用傳統的金屬、絕緣體來描述,而是一種全新的物質態.它的體電子態是有能隙的絕緣態,但它的表面(對三維體系)或者邊緣(對二維體系)電子態則是零能隙有手性的金屬態[3-7].螺旋的表面電子態具有線性色散關系并且自旋與動量滿足特定的手性關系.由于其獨特的能帶結構和手征特性,電子的輸運、磁學和光學性質將明顯不同于普通體系[8-13]. 這個快速成長的領域中的關鍵問題之一是如何檢測和控制的拓撲邊緣態.到目前為止,量子自旋霍爾壩的邊緣態已經通過直流偏壓下測量源極和漏極之間電導檢測到.最近,文獻[14-17]提出使用量子點接觸,即帶間耦合, 來控制邊緣態的輸運.量子霍爾效應不是唯一的拓撲絕緣體,最近物理學家陸續預言并實驗發現了一系列二維材料由于其自身的自旋軌道耦合導致新的拓撲絕緣態.在該類材料中,自旋軌道耦合會在體能帶打開一個帶隙分開完全占據的價帶和空的導帶,并在帶隙里面建立起邊緣態.量子自旋霍爾邊界狀態有重要的自旋過濾性質,它可以使自旋向上的電子向一個方向傳播,而使自旋向下的電子向另一個方向傳播.類比于一種螺旋型粒子的自旋和動量間的關系,后來把這種邊界狀態稱作“螺旋形狀態”.
1 螺旋Luttinger 液體的哈密頓量
螺旋Luttinger 液體的自旋與動量方向鎖定的,只有準一維系統一半的自由度.考慮一個由右移自旋向上,左移自旋向下的螺旋Luttinger 液體[18].由于時間反演對稱性,單粒子的背散射過程被禁止.自由電子的哈密頓量
3 結論
采用玻色化、重整化群及格林函數的方法從理論上研究了3個含時點接觸存在對拓撲邊緣態輸運性質的影響.得到泵浦電流隨偏壓和溫度變化的解析表達式,以及依賴于電子間相互作用冪指數變化規律.研究結果提供了一種調控納米結構中輸運性質的手段.
參考文獻:
[1]WOLF S A, AWSCHALOM D D, BUHRMAN R A, et al. Spintronics: a spin-based electronics vision for the future [J]. Science, 2001,294(16):1488-1495.
[2]UTIC' I, FABIAN J, SARMA S D. Spintronics: funda-mentals and applications [J]. Rev Mod Phys, 2004,76(2):323.
[3]QI X L, ZHANG S C. The quantum spin Hall effect and topological insulators [J]. Phys Today, 2010,63(1):33.
[4]HASAN M Z, KANE C L. Topological insulators [J]. Rev Mod Phys, 2010,82(4):3045–3067.
[5]MOORE J E. Perspective article the birth of topological insulators [J]. Nature, 2010,464(6):194-198.
[6]SHI L, ZHANG S C, CHANG K. Anomalous electron trajectory in topological insulators [J]. Phys Rev B, 2013,87(5):161115.
[7]CHEN M N, SHENG L, SHEN R, et al. Spin Chern pumping from the bulk of two-dimensional topological insulators [J]. Phys Rev B, 2015,91(12):125117.
[8]SHENG D N, WENG Z Y, SHENG L, et al. Quantum spin-hall effect and topologically invariant chern numbers [J]. Phys Rev Lett, 2006,97(3):036808.
[9]FU L, KANE C L, MELE E J. Topological insulators in three dimensions [J]. Phys Rev Lett, 2007,98(11):106803.
[10]BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin hall effect and topological phase transition in HgTe quantum wells [J]. Science, 2006,314(6):1757.
[11]CHANG K, LOU W K. Helical quantum states in HgTe quantum dots with inverted band structures [J]. Phys Rev Lett, 2011,106(2):206802.
[12]MIAO M S, YAN Q, WALLE C G, et al. Polarization-driven topological insulator transition in a GaN/InN/GaN quantum well [J]. Phys Rev Lett, 2012,109(8):186803.
[13]ZHANG D, LOU W K, MIAO M, et al. Interface-induced topological insulator transition in GaAs/Ge/GaAs quantum wells [J]. Phys Rev Lett, 2013,111(7):156402.
[14]STRM A, JOHANNESSON H. Tunneling between edge states in a quantum spin hall system [J]. Phys Rev Lett, 2009,102(9):096806.
[15]SCHMIDT T L. Current correlations in quantum spin hall insulators [J]. Phys Rev Lett, 2011,107(9):096602.
[16]TEO J C Y, KANE C L. Critical behavior of a point contact in a quantum spin Hall insulator [J]. Phys Rev B, 2009,79(23):235321.
[17]ZHANG L B, CHENG F, ZHAI F, et al. Electrical switching of the edge channel transport in HgTe quantum wells with an inverted band structure [J]. Phys Rev B, 2011,83(8):081402(R).
[18]RONETTI F, VANNUCCI L, DOLCETTO G, et al. Spin-thermoelectric transport induced by interactions and spin-flip processes in two-dimensional topological insulators [J]. Phys Rev B, 2016,93(16):165414.
(編輯 CXM)