索琳娜,劉寶存,趙同科,吳 瓊,安志裝
(北京市農林科學院植物營養與資源研究所,北京 100097)
北京市菜地土壤重金屬現狀分析與評價
索琳娜,劉寶存,趙同科,吳 瓊,安志裝※
(北京市農林科學院植物營養與資源研究所,北京 100097)
近年來北京蔬菜種植業得到迅速發展,已成為農業經濟的支柱產業之一。為了解北京地區菜地以重金屬為主要指標的土壤環境質量現狀,采集北京市主要蔬菜生產區表層土壤(0~20cm),測定鎘(Cd)、鉛(Pb)、銅(Cu)、鉻(Cr)、鋅(Zn)、鎳(Ni)、汞(Hg)含量和基礎理化性質。依照《土壤環境質量標準》和《土壤環境監測技術規范》采用單項和綜合污染指數法進行評價,結果表明,與土壤背景值相比,大興、昌平、密云、延慶、房山、順義、通州區內Cd、Cr明顯富集,順義區、房山區Cd質量分數平均值接近于《食用農產品產地環境質量評價標準》限量值(0.40 mg/kg),但未超過《土壤環境質量標準》中二級限量值(0.60 mg/kg)。Cd、Cu、Zn、Cr單項污染指數平均值處于>0.7~1.0,屬于尚清潔(警戒限)水平,且土壤Cd質量分數變異系數極高,40%以上樣點存在“輕度”和“中度”污染,設施菜地較裸露菜地相比存在較高Cd污染風險。綜上,北京市菜地土壤重金屬環境質量指標總體安全,處于非污染狀態,但存在一定程度的Cd、Cr、Cu、Zn累積污染風險。
土壤;重金屬;污染;北京市;菜地;評價
2014年,環境保護部和國土資源部聯合發布的《全國土壤污染狀況調查公報》顯示,中國耕地土壤污染點位超標率達19.4%,其中重金屬超標點位數占全部超標點位數的82.8%[1]。重金屬污染問題已成為中國廣泛關注的重大生態環境問題,對現代農業和社會經濟的可持續發展、農業生態環境和農產品質量安全構成了嚴重威脅。隨著北京市社會經濟的快速發展,耕地資源急劇下降,利用強度增加,化肥、有機肥、農藥、農膜等農業生產資料投入持續增加,單位耕地面積環境承載壓力增大,而農業土壤環境質量狀況直接或間接關系到農產品質量安全、人類和動物健康,影響著北京都市農業的健康發展。開展以重金屬為目標的北京市土壤環境質量狀況調查十分必要。
關于北京市不同利用方式、不同區域的農業土壤重金屬及環境質量評價的研究已有很多,陳同斌等[2]開展了北京市較大范圍的土壤調查研究,提出了土壤重金屬背景值;2005-2009年間[3-13],許多科研工作者依據國家環保局和技術監督局聯合發布的《土壤環境質量標準(GB15618-1995)》[14]在北京市范圍內開展了針對污灌區[15-17]、不同土地利用方式[8, 18-20]以及個別區縣[21-22]的土壤環境質量調查和分析。近年來,在北京全市范圍內開展的較為系統的調查工作較少[23-28],針對全市菜地土壤環境質量評價分析的研究更少。本研究基于《土壤環境質量標準》、2004年和2006年國家環境保護總局頒布的三項旨在保護環境和保障人體健康的《土壤環境監測技術規范(HJ/T 166-2004)》、《食用農產品產地環境質量評價標準(HJ/T 332-2006)》以及《溫室蔬菜產地環境質量評價標準(HJ/T 333-2006)》[29-31],開展菜地土壤以重金屬為目標的較大規模土壤環境質量更新調查及評價,從而客觀了解北京市最新的菜地土壤環境質量狀況,并對現有生產模式進行科學評價和指導,為北京都市農業的健康發展提供基礎支持。
1.1 樣品采集與分析
本研究采用陳同斌等在系統研究北京市土壤重金屬背景值時采用的非均勻布點方法[2],以蔬菜集中產區為主要調查研究對象,于2011-2013年對北京市菜地土壤進行了較大規模的調查,共采集319個樣點(圖1)。

圖1 北京菜地土壤采樣點位置圖Fig.1 Location of sampling sites in Beijing
采樣點分布于大興(主要位于長子營鎮,共55個點)、豐臺(主要位于王佐鎮和花鄉,共7個點)、昌平(主要位于小湯山鎮、南邵鎮、百善鎮和馬池口鎮,共92個點)、密云(主要位于李各莊、東邵渠、河南寨,共22個點)、延慶(主要位于舊縣鎮、延慶鎮和東關,共26個點)、房山(主要位于竇店鎮、韓村河鎮和閻村鎮,共86個點)、順義(主要位于李遂鎮,共8個點)、通州(主要位于宋莊鎮和潞城鎮,共23個點)8個行政區內,采樣區土壤基本化學性質如表1所示。
土壤樣品采集和預處理參照《土壤環境監測技術規范》進行[31]。土壤全氮采用H2SO4-H2O2消煮,凱氏法測定;有效磷采用鉬銻抗分光光度法;速效鉀采用火焰原子吸收光譜法;pH值采用MP-511型pH計測定,水土比為2.5:1(mL/g);全鹽量采用稱質量法測定[29-31]。用于測定重金屬質量分數的土壤樣品采用美國國家環保局(USEPA)推薦的HNO3-H2O2法消煮,鎘(Cd)、鉛(Pb)采用石墨爐原子吸收分光光度法,銅(Cu)、鉻(Cr)、鋅(Zn)、鎳(Ni)采用火焰原子吸收分光光度法,汞(Hg)采用冷原子吸收法,砷(As)采用二乙基二硫代氨基甲酸銀分光光度法測定[31]。分析過程均加入國家土壤標準物質(GSS-1)用于質量控制,分析中Cd回收率為87%~104%(國標為85%~110%)、Hg回收率為80%~105%(國標為75%~110%)、As回收率為89%~101%(國標為85%~105%)、Cu回收率為92%~103%(國標為90%~105%)、Pb回收率為90%~102%(國標為85%~110%)、Cr回收率為87%~104%(國標為85%~110%)、Zn回收率為92%~103%(國標為85%~110%)、Ni回收率為86%~104%(國標為85%~110%)[31]。

表1 采樣區土壤基本化學性質Table 1 Basic chemical properties of sampling area
數據統計分析采用SPSS19.0和Excel2010,采樣點分布圖采用ArcGis10.2軟件完成。
1.2 土壤環境質量評價標準與方法
為便于與前人研究結果進行對照分析,本文調查評價分析采用《土壤環境質量標準》進行。該標準把土壤環境質量分為3個等級。其中一級標準是保護區域自然生態,維持自然背景的土壤環境質量限制值;二級標準是保障農業生產,維護人體健康的土壤限制值;三級標準為保障農林業生產和植物正常生長的土壤臨界值[14]。超出二級標準就意味著已經對農業生產和人類健康構成潛在威脅[32]。
重金屬污染既可能是單一因素作用的結果,也可能是多因素共同作用的結果,故采用單項污染指數法和綜合污染指數法相結合進行評價[19,33]。
單項污染指數評價采用以下公式

式中Pi為第i種污染物的單因子指數;Ci為第i種污染物的測定值:C1、C2、C3分別為國家土壤環境質量標準中一級、二級和三級標準值[14]。
綜合土壤環境質量評價采用內梅羅綜合指數法

式中P綜為綜合評價指數;Pi為第i種污染物的單因子指數;avePi為土壤中各污染指數的平均值;(Pi)max為土壤中最大污染物的單因子指數。采樣區菜地土壤污染等級采用《土壤環境監測技術規范》進行評定[31]。
同時,為了對比分析不同種植類型(裸露和設施)對于菜地土壤環境質量的影響,本文還采用《食用農產品產地環境質量評價標準》以及《溫室蔬菜產地環境質量評價標準》作為另一評價依據[29-30]?!稖厥沂卟水a地環境質量評價標準》中根據污染指標的毒理學特性和蔬菜吸收、富集能力將評價指標分為嚴格控制指標(Cd、Hg、As、Pb、Cr、Cu)和一般控制指標(Zn、Ni、全鹽量)兩類。嚴格控制指標依據各單項質量指數進行評價,一般控制指標依據環境要素綜合質量指數評定。

2.1 菜地土壤中重金屬質量分數統計分析
土壤重金屬質量分數統計分析結果如表2所示。除Pb、Ni以外,采樣區菜地土壤中Cd、Cr、As、Hg、Cu、Zn的質量分數均高于土壤背景值。所調查的8種金屬質量分數的變異系數差異較大,其中Cu和Ni變異系數均小于20%,屬于較低程度變異;Zn和Pb變異系數介于21%~50%之間,屬于中等程度變異;Cr、As和Hg變異系數介于51%~100%之間,屬于高度變異;而Cd的變異系數則超過100%,呈現極高程度的變異[34]。由此可見,北京市菜地土壤中重金屬Cr、As、Hg受到外源因子干擾影響較大,而Cd則受到外源因子的影響非常大[35]。

表2 菜地土壤重金屬基本參數統計描述Table 2 Descriptive statistics parameters of heavy metals for farmland of vegetables production
由圖2中各區菜地土壤重金屬統計分析結果可知,5種環境毒性及生理毒性較強的重金屬中除Cr外,Cd、As、Hg和Pb在不同區菜地土壤中的質量分數存在差異性,各區5種有毒重金屬的質量分數均未超過《土壤環境質量標準》中二級標準限量值。順義區菜地土壤中Cd的質量分數為0.39 mg/kg,顯著高于除密云、房山外的其他各區,房山區菜地土壤Cd的質量分數為0.34 mg/kg,也較高,且均接近于《食用農產品產地環境質量評價標準》和《溫室蔬菜產地環境質量評價標準》中蔬菜產地土壤Cd限量值(0.40 mg/kg),豐臺區菜地土壤Cd質量分數最低(0.14 mg/kg)接近于土壤背景值(0.12 mg/kg)。Cr質量分數在各區間無顯著性差異,各區菜地土壤中Cr質量分數均超過背景值2 倍以上,但均未超過食用農產品和溫室蔬菜標準中的限量值。各區中除豐臺和昌平兩區外,其他區菜地土壤As質量分數接近于背景值(7.09 mg/kg),豐臺區菜地土壤As的質量分數為19.94 mg/kg,顯著高于其他區,超過背景值近兩倍,且接近于食用農產品和溫室蔬菜標準中的限量值(20.00 mg/kg);各區中除豐臺、昌平和大興三區外,其他五個被調查區菜地土壤中Hg質量分數均低于或等于背景值(0.07 mg/kg),豐臺區菜地土壤Hg的質量分數為0.33 mg/kg,顯著高于其他區,超過背景值近4倍,且接近于食用農產品和溫室蔬菜標準中的限量值(0.35 mg/kg);各區中除昌平和密云外,其他被調查區菜地土壤中Pb質量分數均低于背景值(24.60 mg/kg),且所有被調查區菜地土壤中Pb質量分數均遠低于食用農產品和溫室蔬菜標準中的限量值(50.00 mg/kg)。
各區均存在土壤Cr或Cd累積現象。王斌武等對1985-2006年間北京市耕地土壤重金屬時空變化特征研究表明,北京市土壤中Cr質量分數年際變化不大,分布較均勻,一般在40~70 mg/kg,此時期土壤Cr受人為活動控制程度較小,其變化主要受巖石風化和侵蝕的影響;高于70 mg/kg的區域主要在密云、通州和平谷,特別是密云水庫周圍是北京市土壤Cr積累最嚴重的地區,應控制人類活動,避免其質量分數繼續增加[36]。本研究中,各區菜地土壤Cr質量分數均高于60 mg/kg,通州、密云、房山三區土壤Cr質量分數超過80 mg/kg,較2006年呈現較大程度的累積現象。農業土壤Cr主要來自于化肥尤其是磷肥的施用和污水灌溉,而作為有機肥主要原料之一的雞糞中也含有較高含量的Cr[37-39],這一點在菜地土壤有機肥施用時也應給予特別關注。

圖2 各區菜地土壤重金屬質量分數統計分析Fig.2 Descriptive statistics for heavy metal mass fraction in agricultural soil of vegetable field in Beijing
順義區菜地土壤重金屬Cd還存在較嚴重的污染風險,韓平等[33]對順義區農業土壤重金屬的調查評價與風險評估也表明,該區菜地土壤中Cd質量分數高于其他利用方式土壤,且已成為該區土壤重金屬生態風險主要來源之一。研究表明農田土壤中的Cd主要來源于肥料和畜禽養殖廢水、糞便污染,54%~58%來自于磷肥施用,30%來自于有機肥料,11%來自于畜禽糞便[12,33]。統計數據表明,大興、通州、順義為北京市蔬菜主產區,三區蔬菜播種面積占全市蔬菜總播種面積的67.07%,因此順義區菜地土壤Cd污染的現狀應特別給予關注。
2.2 菜地土壤環境質量評價
依《土壤環境質量標準》和《土壤環境監測技術規范》,對菜地土壤重金屬質量分數評價結果表明,所調查的重金屬單項污染指數平均值由高到低依次為:Cd>Cu>Zn>Cr>Pb>Ni>As>Hg,且均<1.0,處于I和II級水平,屬于“清潔(安全)”和“尚清潔(警戒限)”的等級[31,33](表3)。
Cd、Cu、Zn、Cr四種重金屬單項污染指數平均值介于>0.7~1.0之間,屬于“尚清潔(警戒限)”,存在污染風險(表3)[31,33]。調查區菜地土壤內梅羅污染指數為0.65,處于I級水平(≤0.7),屬于“清潔(安全)”等級。存在III級(>1.0~2.0)“輕度污染”水平位點的重金屬中占比最高的是Cd為39.35%,其次為Zn(19.14%)和Cr(17.04%)。另外As和Cd還存在個別(2.20%和1.61%)處于IV級(>2.0~3.0)“中度污染”水平的點位,有必要進行跟蹤調查。

表3 菜地土壤環境質量評價Table 3 Assessment of soil environmental quality of vegetable field in Beijing
分別依《食用農產品產地環境質量評價標準》和《溫室蔬菜產地環境質量評價標準》對調查區內露地和設施菜地土壤進行評價,結果如表4所示。裸露和設施菜地各評價指標單項質量指數以及兩種種植類型菜地土壤綜合質量指數均≤0.7,環境質量等級均處于“I級,清潔”水平。各項評價指標中,兩種種植類型菜地土壤Cd和Pb的單項質量指數和分擔率均高于其他指標,單項質量指數高說明北京市菜地土壤中這兩種重金屬存在積累風險,而單項分擔率越大則該指標影響越大,可以為土壤環境修復治理決策提供一定的參考依據。嚴格控制指標中設施菜地重金屬Cd的單項質量指數(0.64)臨近于1級界線值(≤0.7),應特別注意該重金屬的污染風險。兩種種植類型之間,除Hg和全鹽量外,其他評價指標單項質量指數以及綜合質量指數在設施菜地中均略高于或等于裸露菜地,說明設施菜地的土壤環境污染風險略高于裸露菜地。

表4 不同種植類型菜地土壤環境質量評價Table 4 Assessment of soil environmental quality of different types of vegetable field in Beijing
通過對北京市8個行政區內蔬菜集中產地土壤樣品進行較大規模的調查統計分析和土壤環境質量評價,結果表明:
1)調查區菜地土壤Cd、Cr、As、Hg質量分數均處于高或極高的變異程度,平均質量分數均高于背景值,但均未超過《土壤環境質量標準》中二級限量值。從采樣各區來看,菜地土壤Cd、As、Hg和Pb質量分數存在顯著的差異性;與21世紀初北京市農業土壤重金屬質量分數時空變化相比,順義區、房山區存在明顯Cd積累現象,所有采樣區存在Cr積累現象。合理施肥特別是有機肥的合理施用是有效防止菜田土壤Cd、Cr積累的重要措施。
2)依據《土壤環境質量標準》和《土壤環境監測技術規范》,對菜地樣點Cd、Cu、Zn、Cr、Pb、Ni、As、Hg質量分數應用單項和綜合污染指數法評價結果來看,屬于“清潔”和“尚清潔”的等級,但Cd、Cu、Zn、Cr單項污染指數平均值介于>0.7~1.0之間,屬于“警戒級”,存在污染風險,重金屬Cd存在III級(>1.0~2.0)“輕度污染”和IV級(>2.0~3.0)“中度污染”水平的樣點百分比為40.96%。
3)依據《食用農產品產地環境質量評價標準》和《溫室蔬菜產地環境質量評價標準》,對“裸露”和“設施”兩種種植類型菜地土壤進行環境質量評價,雖然綜合來看北京市菜地土壤當前處于“I級,清潔”水平,但是應該特別注意重金屬Cd和Pb可能存在的累積風險,尤其是重金屬Cd當前已經臨近“警戒限”,應特別給予關注。
隨著北京市農業發展方式的轉變,采用動態監測和檢測技術手段分析不同種植模式下土壤重金屬含量的時空變化規律,對于研究有效的重金屬污染防治措施、保障農產品質量安全、提升農業土壤環境質量以及促進北京都市生態休閑農業的健康發展都具有十分重要的現實意義。
[1] 環境保護部. 環境保護部和國土資源部發布全國土壤污染狀況調查公報[R/OL]. 2014-04-07[2016-03-10]. http://www.mep.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.
[2] 陳同斌,鄭袁明,陳煌,等. 北京市土壤重金屬含量背景值的系統研究[J]. 環境科學,2004,25(1):117-122. Chen Tongbin, Zheng Yuanming, Chen Huang, et al. Background concentrations of soil heavy metals in Beijing[J]. Enviromental Science, 2004, 25(1): 117-122. (in Chinese with English abstract)
[3] 付華,吳雁華,魏立華. 北京南部地區農業土壤重金屬分布特征與評價[J]. 農業環境科學學報,2006,25(1):182-185. Fu Hua, Wu Yanhua, Wei Lihua. Distribution and evaluation of heavy metals in agricultural soil in southern area of Beijing[J]. Journal of Agro-Environment Science, 2006, 25(1): 182-185. (in Chinese with English abstract)
[4] 叢源,鄭萍,陳岳龍,等. 北京農田生態系統土壤重金屬元素的生態風險評價[J]. 地質通報,2008,27(5):681-688. Cong Yuan, Zheng Ping, Chen Yuelong, et al. Ecological risk assessments of heavy metals in soils of the farmland ecosystem of Beijing, China[J]. Geological Bulletin of China, 2008, 27(5): 681-688. (in Chinese with English abstract)
[5] 檀滿枝,陳杰,張學雷,等. 北京市邊緣區土壤重金屬污染的初步研究[J]. 土壤通報,2005,36(1):96-100. Tan Manzhi, Chen Jie, Zhang Xuelei, et al. Pilot study on heavy metal pollution in soils of periurban zone of Beijing[J]. Chinese Journal of Soil Science, 2005, 36(1): 96-100. (in Chinese with English abstract)
[6] 鄭袁明,陳同斌,鄭國砥,等. 北京市不同土地利用方式下土壤鉻和鎳的積累[J]. 資源科學,2005,27(6):162-166. Zheng Yuanming, Chen Tongbin, Zheng Guodi, et al. Chromium and nickel accumulations in soils under different land uses in Beijing municipality[J]. Resources Science, 2005, 27(6): 162-166. (in Chinese with English abstract)
[7] 鄭袁明,陳同斌,陳煌,等. 北京市不同土地利用方式下土壤鉛的積累[J]. 地理學報,2005,60(5):791-797. Zheng Yuanming, Chen Tongbin, Chen Huang, et al. Lead accumulation in soils under different land use types in Beijing city[J]. Acta Geographica Sinica, 2005, 60(5): 791-797. (in Chinese with English abstract)
[8] 鄭袁明,宋波,陳同斌,等. 北京市不同土地利用方式下土壤鋅的積累及其污染風險[J]. 自然資源學報,2006,21(1):64-72. Zheng Yuanming, Song Bo, Chen Tongbin, et al. Zinc accumulation and pollution risk in soils under different land use types in Beijing[J]. Journal of Natural Resources, 2006, 21(1): 64-72. (in Chinese with English abstract)
[9] 鄭袁明,羅金發,陳同斌,等. 北京市不同土地利用類型的土壤鎘含量特征[J]. 地理研究,2005,24(4):542-548. Zheng Yuanming, Luo Jinfa, Chen Tongbin, et al. Cadmium accumulation in soils for different land uses in Beijing [J]. Geographical Research, 2005, 24(4): 542-548. (in Chinese with English abstract)
[10] 陳同斌,鄭袁明,陳煌,等. 北京市不同土地利用類型的土壤砷含量特征[J]. 地理研究,2005,24(2):229-235. Chen Tongbin, Zheng Yuanming, Chen Huang, et al. Arsenic accumulation in soils for different land use types in Beijing[J]. Geographical Research, 2005, 24(2): 229-235. (in Chinese with English abstract)
[11] 楊軍,陳同斌,鄭袁明,等. 北京市涼鳳灌區小麥重金屬含量的動態變化及健康風險分析——兼論土壤重金屬有效性測定指標的可靠性[J]. 環境科學學報,2005,25(12):89-96. Yang Jun, Chen Tongbin, Zheng Yuanming, et al. Dynamic of heavy metals in wheat grains collected from the Liangfeng Irrigated Area, Beijing and a discussion of availability and human health risks[J]. Acta Scientiae Circumstantiae, 2005, 25(12): 89-96. (in Chinese with English abstract)
[12] 霍霄妮,李紅,孫丹峰,等. 北京市農業土壤重金屬狀態評價[J]. 農業環境科學學報,2009,28(1):66-71. Huo Xiaoni, Li Hong, Sun Danfeng, et al. Status assessment of heavy metals in Beijing agricultural soils[J]. Journal of Agro-Environment Science, 2009, 28(1): 66-71. (in Chinese with English abstract)
[13] 鄭袁明,陳同斌,鄭國砥,等. 不同土地利用方式對土壤銅積累的影響-以北京市為例[J]. 自然資源學報,2005,20(5):690-696. Zheng Yuanming, Chen Tongbin, Zheng Guodi, et al. Soil copper accumulation under different land use types-the case of Beijing[J]. Journal of Natural Resources, 2005, 20(5): 690-696. (in Chinese with English abstract)
[14] 國家環境保護局,國家技術監督局. 土壤環境質量標準:GB 15618-1995[S]. 北京:中國標準出版社,1995:1-2.
[15] 馮紹元,馬素英,楊華鋒. 北京地區3種污灌土壤鎘最大吸附容量的推求[J]. 生態毒理學報,2006,1(4):343-349. Feng Shaoyuan, Ma Suying, Yang Huafeng. Maximum cadmium adsorption capacities of three sewage-irrigating soil types in Beijing[J]. Asian Journal of Ecotoxicology, 2006, 1(4): 343-349. (in Chinese with English abstract)
[16] 孟濤,周非,聶慶華,等. 污灌條件下農田土壤重金屬的空間變異與模擬[J]. 農業環境科學學報,2008,27(3):867-872. Meng Tao, Zhou Fei, Nie Qinghua, et al. Spatial variation of heavy metal contents in farmland soils under permanent irrigation from polluted river water[J]. Journal of Agro-Environment Science, 2008, 27(3): 867-872. (in Chinese with English abstract)
[17] 何江濤,金愛芳,陳素暖,等. 北京東南郊污灌區PAHs垂向分布規律[J]. 環境科學,2009,30(5):1260-1266. He Jiangtao, Jin Aifang, Chen Sunuan, et al. Distribution of polycyclic aromatic hydrocarbons in soil profiles in southeast suburb of Beijing wastewater irrigation area[J]. Environmental Science, 2009, 30(5): 1260-1266. (in Chinese with English abstract)
[18] 李曉秀,陸安祥,王紀華,等. 北京地區基本農田土壤環境質量分析與評價[J]. 農業工程學報,2006,22(2):60-63. Li Xiaoxiu, Lu Anxiang, Wang Jihua, et al. Analysis and assessment of soil environmental quality of some farmlands in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(2): 60-63. (in Chinese with English abstract)
[19] 黃紹文,金繼運,和愛玲,等. 農田不同利用方式下土壤重金屬區域分異與評價[J]. 農業環境科學學報,2007,26(S):540-548. Huang Shaowen, Jin Jiyun, He Ailing, et al. Regional differentiation and status of heavy metals in rural soils under different patterns of land use[J]. Journal of Agro-Environment Science 2007, 26(S): 540-548. (in Chinese with English abstract)
[20] 霍霄妮,李紅,孫丹峰,等. 北京耕地土壤重金屬空間自回歸模型及影響因素[J]. 農業工程學報,2010,26(5):78-82. Huo Xiaoni, Li Hong, Sun Danfeng, et al. Spatial autogression model for heavy metals in cultivated soils of Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(5): 78-82. (in Chinese with English abstract)
[21] 王鐵宇,呂永龍,羅維,等. 北京官廳水庫周邊土壤重金屬與農藥殘留及風險分析[J]. 生態與農村環境學報,2006,22(4):57-61. Wang Tieyu, Lu Yonglong, Luo Wei, et al. Heavy metal and pesticide residues in soils around the Guanting reservoir and environmental risk assessment[J]. Journal of Ecology and Rural Environment, 2006, 22(4): 57-61. (in Chinese with English abstract)
[22] 岳子明,李曉秀,高曉晶. 北京通州區土壤環境質量模糊綜合評價[J]. 農業環境科學學報,2007,26(4):1402-1405. Yue Ziming, Li Xiaoxiu, Gao Xiaojing. Fuzzy comprehensive assessment on soil environment of Tongzhou in Beijing[J]. Journal of Agro-Environment Science, 2007, 26(4): 1402-1405. (in Chinese with English abstract)
[23] 賈成霞,張清靖,劉盼,等. 北京地區養殖池塘底泥中重金屬的分布及污染特征[J]. 水產科學,2011,30(1):17-21. Jia Chengxia, Zhang Qingjing, Liu Pan, et al. Heavy metal distribution and pollution characteristics in sediments of aquaculture ponds in Beijing area[J]. Fisheries Science, 2011, 30(1): 17-21. (in Chinese with English abstract)
[24] 姜菲菲,孫丹峰,李紅,等. 北京市農業土壤重金屬污染環境風險等級評價[J]. 農業工程學報,2011,27(8):330-337. Jiang Feifei, Sun Danfeng, Li Hong, et al. Risk grade assessment for farmland pollution of heavy metals in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(8): 330-337. (in Chinese with English abstract)
[25] 陸安祥,孫江,王紀華,等. 北京農田土壤重金屬年際變化及其特征分析[J]. 中國農業科學,2011,44(18):3778-3789. Lu Anxiang, Sun Jiang, Wang Jihua, et al. Annual variability and characteristics analysis of heavy metals in agricultural soil of Beijing[J]. Scientia Agricultura Sinica, 2011, 44(18): 3778-3789. (in Chinese with English abstract)
[26] 孫江,張國光,董文光,等. 北京市農田土壤重金屬年際差異分析與評價[J]. 農業環境科學學報,2011,30(5):899-903. Sun Jiang, Zhang Guoguang, Dong Wenguang, et al. Annual variability analysis and evaluation of heavy metals in Beijing agricultural soil, China[J]. Journal of Agro-Environment Science, 2011, 30(5): 899-903. (in Chinese with English abstract)
[27] 胡艷霞,周連第,魏長山,等. 北京水源保護地土壤重金屬空間變異及污染特征[J]. 土壤通報,2013,44(6):1483-1490. Hu Yanxia, Zhou Liandi, Wei Zhangshan, et al. Study on spatial variability of soil heavy metals environments and its pollution characteristics in Beijing water protective area[J]. Chinese Journal of Soil Science, 2013, 44(6): 1483-1490. (in Chinese with English abstract)
[28] 鄒建美,孫江,戴偉,等. 北京近郊耕作土壤重金屬狀況評價分析[J]. 北京林業大學學報,2013,35(1):132-138. Zou Jianmei, Sun Jiang, Dai Wei, et al. Evaluation and analysis of heavy metals in cultivated soils in the suburbs of Beijing[J]. Journal of Beijing Forestry University, 2013, 35(1): 132-138. (in Chinese with English abstract)
[29] 國家環境保護總局. 食用農產品產地環境質量評價標準:HJ/T 332-2006[S]. 北京:中國環境科學出版社,2007:1-7.
[30] 國家環境保護總局. 溫室蔬菜產地環境質量評價標準:HJ/T 333-2006[S]. 北京:中國環境科學出版社,2007:1-7.
[31] 國家環境保護總局. 土壤環境監測技術規范:HJ/T 166-2004[S]. 北京:中國環境科學出版社,2004:8-27.
[32] 夏家淇. 土壤環境質量標準詳解[M]. 北京:中國環境科學出版社,1996:66-69.
[33] 韓平,王紀華,陸安祥,等. 北京順義區土壤重金屬分布與環境質量評價[J]. 農業環境科學學報,2012,31(1):106-112. Han Ping, Wang Jihua, Lu Anxiang, et al. Distribution and environment quality evaluation of heavy metals in soil in Shunyi of Beijing, China[J]. Journal of Agro-Environment Science, 2012, 31(1): 106-112. (in Chinese with English abstract)
[34] Phil-Eze P O. Variability of soil properties related to vegetation cover in a tropical rainforest landscape[J]. Journal of Geography and Regional Planning, 2010, 3(7): 177-184.
[35] 中國環境監測總站. 中國土壤元素背景值[M]. 北京:中國環境科學出版社,1990:336-392.
[36] 王彬武,李紅,蔣紅群,等. 北京市耕地土壤重金屬時空變化特征初步研究[J]. 農業環境科學學報,2014,33(7):1335-1344. Wang Binwu, Li Hong, Jiang Hongqun, et al. Spatio-temporal variation of soil heavy metals in agricultural land in Beijing, China[J]. Journal of Agro-Environment Science, 2014, 33(7): 1335-1344. (in Chinese with English abstract)
[37] 王飛,邱凌,沈玉君,等. 華北地區飼料和畜禽糞便中重金屬質量分數調查分析[J]. 農業工程學報,2015,31(5):261-267. Wang Fei, Qiu Ling, Shen Yujun, et al. Investigation and analysis of heavy metal contents from livestock feed and manure in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 261-267. (in Chinese with English abstract)
[38] 王美,李書田. 肥料重金屬含量狀況及施肥對土壤和作物重金屬富集的影響[J]. 植物營養與肥料學報,2014,20(2):466-480. Wang Mei, Li Shutian. Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 466-480. (in Chinese with English abstract)
[39] 韓平,王紀華,馮曉元,等. 北京順義區土壤重金屬污染生態風險評估研究[J]. 農業環境科學學報,2015,34(1):103-109. Han Ping, Wang Jihua, Feng Xiaoyuan, et al. Ecological risk assessment of heavy metals in soils in Shunyi, Beijing[J]. Journal of Agro-Environment Science, 2015, 34(1): 103-109. (in Chinese with English abstract)
Evaluation and analysis of heavy metals in vegetable field of Beijing
Suo Linna, Liu Baocun, Zhao Tongke, Wu Qiong, An Zhizhuang※
(Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)
Over the last decades, large-scale greenhouse vegetable production has been widely developed in the suburban areas of Beijing. However, a lot of agricultural production materials (such as fertilizers, organic fertilizers, pesticides, and agricultural films) are always input into greenhouse conditions to achieve high vegetable production. Therefore, soil contamination problem especially heavy metal pollution has emerged gradually. Due to the direct or indirect threat to food safety, human health, and its detrimental effects on ecosystem, heavy metal pollution in fields has become an important frontier in environmental research and drawn more and more attentions. There have been several studies on the quality of the agricultural soils, concerning about soil fertility, soil enzyme activities, and available microelements. However, there is little discussion on the present heavy metal condition of vegetable field in Beijing. A survey was conducted to analyze and assess the soil heavy metals’ environmental quality of vegetable field in Beijing. During 2011-2013, a total of 319 topsoil (0-20 cm depth) samples were collected from the main vegetable planting areas in Beijing, which included 8 districts. The sampling sites were randomly collected based on the distribution of local agricultural land use. Soil pH value ranged from 6.11 to 9.03. Most of the soil samples were alkaline, and 80.50% of the samples had the pH value of above 7.50. The mean values of the heavy metal concentrations were (0.24±0.28), (75.71±47.21), (7.71±4.50), (0.08±0.06), (23.80±6.09), (23.48±3.91), (24.96±4.68), and (89.92±27.96) mg/kg for cadmium (Cd), chromium (Cr), arsenic (As), mercury (Hg), lead (Pb), nickel (Ni), copper (Cu), and zinc (Zn), respectively. In addition, the background values of heavy metals in Beijing were also listed for reference (0.12, 29.80, 7.09, 0.07, 24.60, 26.80, 18.70 and 57.50 mg/kg for Cd, Cr, As, Hg, Pb, Ni, Cu and Zn). The concentrations of Zn, Cu, As and Pb, especially those of Cr and Cd in the study area exceeded the background values in Beijing. The coefficient of variation (CV) was calculated by standard deviation divided by mean of each kind of heavy metal. A modified version of the ranking for CV suggested by Phil-Eze (2010) was used in this study: CV≤20%, low variability; 21%≤CV≤50%, moderate variability; 51%≤CV≤100%, high variability; CV≥100%, exceptionally high variability. The CV values varied from 16.75% (for Ni) to 114.11% (for Cd), which decreased in the order of Cd > Hg > Cr > As > Zn > Pb > Cu > Ni. The CV values of Cd, Hg, Cr and As (from 114.11% to 58.37%) were extremely higher than the other elements, suggesting that they had the greatest variation among the studied metals and showed a higher possibility of being influenced by extrinsic factors, such as human activities, agronomic practices, automobile exhaust, and deposition of aerosol particle. Among the studied districts, soil Cd and Cr were enriched in Daxing, Changping, Miyun, Yanqing, Fangshan, Shunyi and Tongzhou. According to Environmental quality standard for soils and Farmland environmental quality evaluation standards for edible agricultural products, the data were analyzed with the single factor index and Nemerow index for the soil environmental quality assessments. Single factor analysis indicated that in some areas (such as Shunyi and Fangshan District), the soil Cd concentrations reached the limited value (0.40 mg/kg) of Farmland environmental quality evaluation standards for edible agricultural products, but below the Ⅱ grade standard (0.60 mg/kg) of soil environmental quality assessment classification. Average single pollution index of Cd, Cr, Cu and Zn in the investigation area was between 0.7 and 1.0, which was at the “relatively clean (alert)” level. Average Nemerow index of the investigation area was 0.65, which reached the I grade standard(≤0.7) of soil environmental quality assessment classification. It is concluded that the soil heavy metals’ environment quality of vegetable field in Beijing is relatively safe, but the potential ecological risk of soil Cd accumulated in greenhouse vegetable field should be paid more attentions.
soils; heavy metal; pollution; Beijing; vegetable field; assessment
10.11975/j.issn.1002-6819.2016.09.025
X825
A
1002-6819(2016)-09-0179-08
索琳娜,劉寶存,趙同科,吳 瓊,安志裝. 北京市菜地土壤重金屬現狀分析與評價[J]. 農業工程學報,2016,32(9):179-186.
10.11975/j.issn.1002-6819.2016.09.025 http://www.tcsae.org
Suo Linna, Liu Baocun, Zhao Tongke, Wu Qiong, An Zhizhuang. Evaluation and analysis of heavy metals in vegetable field of Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 179-186. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.025 http://www.tcsae.org
2016-01-14
2016-03-11
“十二五”國家科技支撐計劃項目(2012BAD15B01);北京市農林科學院科技創新能力建設專項(KJCX20150704)。
索琳娜,女,河北省石家莊市人,助理研究員,博士,主要從事農業土壤重金屬污染修復治理等方面的研究。北京 北京市農林科學院植物營養與資源研究所,100097。Email:suolinna@163.com
※通信作者:安志裝,男,副研究員,博士,主要研究方向:農業面源污染及土壤重金屬修復治理。北京 北京市農林科學院植物營養與資源研究所,100097。Email:baafsyzs@163.com