劉東巖,葉開琴,王宏志,戴海明
(1中國科學院合肥物質科學研究院醫學物理與技術中心,2中國科學院合肥腫瘤醫院,安徽合肥230031)
·專家述評·
基于功能性試驗預測抗腫瘤藥物敏感性研究進展
劉東巖1,2,葉開琴1,2,王宏志1,2,戴海明1,2
(1中國科學院合肥物質科學研究院醫學物理與技術中心,2中國科學院合肥腫瘤醫院,安徽合肥230031)
隨著腫瘤發病率的逐年升高,其治療手段包括手術、放療、傳統化學治療及分子靶向治療等也逐步得到完善和發展.其中,抗腫瘤藥物在治療過程中發揮著重要作用.抗腫瘤藥物包括傳統的廣譜性的化療藥物及特異性的分子靶向藥物.然而,利用抗腫瘤藥物進行治療并不一定能達到預期的治療效果,某些腫瘤化療手段的響應率低于25%.因此,有必要對抗腫瘤藥物的敏感性進行準確地預測,以提高抗腫瘤藥物的響應率.腫瘤患者對藥物的敏感性差異主要是由基因表達水平、基因突變、表觀遺傳、機體微環境等眾多因素引起的.除了常用的腫瘤基因檢測方法外,目前針對腫瘤藥物的敏感性預測還包括利用功能性試驗進行預測的方法:包括體外的基于能量代謝和基于細胞增殖與生存等的傳統研究方法,基于動物模型的人源腫瘤組織異種移植的方法,也有最新發展的BH3 profiling等方法.本文將對這些基于功能性試驗進行抗腫瘤藥物敏感性預測的方法進行歸納,并總結這些檢測方法的優勢和不足,探索未來的抗腫瘤藥物敏感性預測的研究趨勢.
抗腫瘤藥物;精準醫療;功能性試驗;藥物敏感性
精準醫療是針對不同的患者,使用與疾病分子分型相對應的藥物或其它治療方法.換言之,就是用最適合的治療方案對患者進行治療[1].與傳統的腫瘤分型和治療相比,腫瘤的精準醫療就是通過分子生物學技術和手段對腫瘤作進一步的分子分型和細化,優化傳統粗放的分型方法,制定適合不同患者的有針對性的臨床治療方案.實現腫瘤精準醫療的關鍵點之一就是預測抗腫瘤藥物的敏感性.預測抗腫瘤藥物敏感性的手段不僅包括依賴于熒光原位雜交(FISH)等技術的染色體易位分析;依賴于二代測序技術和一代測序技術的腫瘤相關基因突變位點分析;依賴于熒光定量PCR、免疫組化等方法的腫瘤相關基因表達水平分析;也包括依賴于各種功能性試驗來檢測腫瘤藥物敏感性的方法等[1].
化療藥物是腫瘤治療的重要手段之一,但由于個體差異等問題,同一化療藥物對不同患者療效差異較大[2-3].此外,近來腫瘤靶向治療領域研究進展迅速,這種以特定信號通路蛋白質和亞細胞結構作為靶標的腫瘤治療方法,因其具有安全有效的特點,正得到越來越廣泛的應用[4-5].患者在使用抗腫瘤藥物時經常會產生療效不佳以及耐藥等問題.因此,在臨床治療中,對患者進行個體化藥物敏感性試驗則是盡可能減少上述問題發生的關鍵.各種功能性的腫瘤藥物敏感性試驗不僅包括早期的ATP含量測定[6]、四甲基偶氮唑鹽比色法[7]、極限耐藥分析(extreme drug resistance assay,EDRA)、人源器官培養(patient-derived organoids)和器官型培養(organotypic cultures),人源腫瘤組織異種移植(patient-derived tumor xenograft model,PDX)的方法等,也包括近年來逐步發展的一些新方法,比如動態BH3分析(dynamic BH3 profiling,DBP)等.這些方法,有些已進入臨床試驗階段.本研究將對腫瘤藥物敏感性實驗方法進行相關文獻綜述.
1.1 基于能量代謝的研究方法基于能量代謝分析抗腫瘤藥物敏感性的代表性方法是ATP含量分析方法(ATP assay).該方法是將腫瘤細胞經化療藥物干預后,加入熒光色素-熒光色素酶復合物,利用ATP與復合物結合后產生熒光,ATP含量與熒光強度成正比的特性,從而鑒定腫瘤細胞對藥物敏感性的方法.Cree等[8]隨機分配147例患者,分別接受經驗式治療和ATP含量分析治療.干預后,經驗組31.5%的患者部分或完全響應藥物,ATP含量分析組40.5%的患者部分或完全響應藥物,但組間比較,差異無統計學意義.Ugurel等[9]通過ATP含量分析將腫瘤患者分為化療敏感組和化療抵抗組,其總生存率分別為36.4%和14.6%(P=0.114),其生存周期分別為14.6個月和7.4個月(P=0.041).因此,ATP含量分析法能夠對化療藥物的選擇提供部分參考性,但該方法在臨床上的應用仍有待于進一步驗證.
1.2 基于細胞生存與增值的研究方法基于細胞生存與增值的研究方法常用的是四甲基偶氮唑鹽比色法,其原理是在活細胞線粒體內,琥珀酸在琥珀酸脫氫酶(Succinatedehydrogenase,SDH)作用下脫氫,將可溶性的黃色唑鹽還原為不可溶藍紫色結晶甲瓚,沉積于細胞內.甲瓚可溶于二甲基亞砜(DMSO),通過在490 nm或570 nm處波長測定吸光值來間接反映活細胞數量.Xu等[7]將156例乳腺癌患者分為經驗治療組(n=73)和MTT預測組(n=83),隨后對MTT組進行預測,剔除MTT組中化療抵抗的患者(n= 10),保留預測敏感患者(n=73).結果顯示,MTT組敏感者與經驗治療組對化療藥物總響應率分別為77%和44%(P<0.01),然而兩組3年內總生存率為24.7%和19.1%,差異無統計學意義(P>0.05).目前該方法仍在進行臨床測試.
1.3 EDRAEDRA通過高濃度化療藥物(可達血藥濃度100倍)刺激腫瘤細胞,以氖-胸腺嘧啶(3HTdR)摻入腫瘤細胞DNA,通過DNA含量來反應存活細胞數,并由此判斷腫瘤對何種藥物耐受.Loizzi等[10]研究顯示,EDRA指導組和經驗治療組的總響應率分別為65%和35%(P=0.02),預后1年生存率分別為68%和16%(P=0.0002).另一項研究[11]分析了EDRA檢測的173例卵巢癌患者,發現由EDRA得到的對紫杉和鉑類藥物高耐藥者5年生存率顯著低于中低耐藥者(30.9%VS 41.1%,P=0.014).EDRA在一定程度上能夠對患者耐藥性做出評價,但其局限于DNA和RNA合成旺盛的腫瘤,且由于使用放射性檢測方法,對實驗室要求較高.
1.4 人源類器官培養和器官型培養類器官培養是將患者來源的腫瘤細胞移植入含有大量生長因子的半固體細胞培養基中[12-13].該方法可以使腫瘤細胞在3D環境中生長,并能在理論上重構在組織中的三維生長結構.類器官法已經在胰腺癌[14]、直腸癌[13]、前列腺癌[15]中得到廣泛研究.該方法優勢在于腫瘤原代細胞的大多數突變得以保留[16].同時,類器官培養法能夠保留正常上皮細胞,增殖迅速,對特殊組織器官成模率較高.其劣勢在于多次培養后容易出現同質性細胞,這將造成腫瘤細胞構建主體3D環境以及基質細胞的丟失.
腫瘤細胞異質性是腫瘤預測和預后的重要影響因素[17],腫瘤微環境能夠影響治療效果[18].器官型培養是將腫瘤組織切片[19]、組織塊等進行微流體芯片培養[20](相較于2D培養,這些腫瘤細胞能夠產生內源性腫瘤微環境[21]),然后加入化療藥物進行藥物敏感性測定[22].研究者在采用器官培養法時,加入腫瘤內蛋白或腫瘤患者血清可以構建異質性腫瘤微環境[23].這種方法能夠更好地模擬腫瘤在體內的增殖、ATP利用率、通路活化等微環境,從而更好地預測抗腫瘤藥物的敏感性.Hirt等[24]的研究表明在進行3D培養時,加入免疫細胞能夠更精確地模擬腫瘤免疫系統互作的體內環境,預測結果中,陽性患者的臨床用藥反應率高達87%.
1.5 循環腫瘤細胞在過去的幾十年中,循環腫瘤細胞(circulating tumour cells,CTCs)得到了廣泛的研究[25-26].CTCs存在于患者的血液中,早期的研究通過將CTCs移植入小鼠體內,進行繁殖[27-28],但該方法成功率較低[29].目前經常采用的方法是利用微流體芯片對CTCs進行富集[30].CTCs只能進行懸浮培養而不能進行貼壁培養.這種懸浮培養特性,使得CTCs可以應用于微流體芯片進行不同藥物的連續給藥.對該方法進行適當比例的擴大,可以持續的利用CTCs進行藥物篩選[31].但這種方法的最大缺點是CTCs較難獲得,并且增殖較慢[32].鑒于腫瘤異質性,游離于體內的CTCs與原位腫瘤效果是否具有相同的藥物敏感性模式,尚無確切結論[33].
在當前的腫瘤研究中,腫瘤細胞系應用廣泛.但隨著傳代次數的增加,不僅會導致腫瘤細胞的生物學屬性、基因等發生改變[34],而且單獨培養的腫瘤細胞與體內復雜環境中的腫瘤細胞存在明顯差異.因此,僅僅依靠腫瘤細胞株來進行抗腫瘤藥物敏感性試驗是不可靠的.人源化腫瘤動物模型(patient-derived xenograft model,PDX)是指將患者來源的腫瘤細胞移植到其它動物(常用小鼠)體內生長,并用于藥物敏感性試驗或其它研究的一種方法.PDX模型未經體外傳代培養,保存了體內腫瘤的表征與特性,其腫瘤間質和干細胞成分構建的微環境可以一定程度繼續存在,相對更接近于臨床用藥的實際情況[35].
PDX模型常見的有皮下移植、腎包膜移植、原位移植[36].皮下移植是將病人源腫瘤移植到鼠一側肩胛背部皮下,其操作簡單,便于腫瘤觀察,但由于皮下移植環境與腫瘤生長微環境(諸如腫瘤相關基質,血液供應等)差異較大,且成瘤率相對較低,因此,該模型無法更為準確地表現腫瘤的真實病理情況[37].在腫瘤細胞移植到腎包膜后,可以利用腎包膜下基質進行增殖,浸潤和侵襲.PDX腎包膜移植模型成瘤率較高.但腎包膜內微環境與腫瘤微環境仍有不同,且腎包膜較為脆弱,對手術操作要求高,免疫缺陷鼠容易感染,無法直觀地對腫瘤大小進行觀察,這些問題都制約了腎包膜模型的應用[38].原位移植是將腫瘤移植到免疫缺陷鼠的相應靶器官.原位移植部位血液供應相對豐富,所提供的腫瘤微環境較上述兩種環境更為接近真實病理狀態,可以良好的展示腫瘤的近端浸潤和遠處轉移的特性.但其部位特殊,操作要求高,只適用于部分腫瘤[39].個性化移植模型是在移植腫瘤細胞的過程中將其同一部位的其他細胞共同移植,亦或導入人體相應疾病基因或相關基質成分,從而更為接近真實腫瘤的發生和轉移情況[40-42].
然而,PDX模型在臨床上大規模使用仍有一定的局限性.第一,PDX模型中,影響成瘤率因素很多,包括原發腫瘤的組織類型、病理分期、取材部位、移植部位、移植方法、取材方法及宿主的選擇等[36,43-44],使得某些腫瘤PDX的成瘤率不到10%;第二,建立PDX模型的成本相對較高;第三,PDX的時間滯后性.在臨床個性化治療中,PDX的實驗周期較長,其間患者的病情發展情況與模型是否一致,無法確定[45];第四,PDX模型因為建模周期長,也存在人源性腫瘤間質的丟失或基因排序改變等問題[46].
當前,生物標志物和活體成像技術[47-49]與PDX的聯合運用在臨床前研究中嶄露頭角.而鑒于原位移植和腎包膜移植的不易觀察性,活體成像則能夠良好展示腫瘤發展情況.PDX以其更為接近真實病理狀態的優勢,為腫瘤的個性化治療、臨床前研究和藥物篩選提供了良好的思路.盡管存在建模成本高等問題,但隨著技術的不斷完善,相信PDX模型擁有良好的應用前景.
除了上述常用的預測腫瘤藥物敏感性的方法外,近年來,隨著腫瘤分子生物學研究的不斷深入,利用各種新型的功能性試驗來預測腫瘤藥物敏感性的方法也在實驗室和臨床前期得到了廣泛的驗證.
3.1 單通路或多通路活化分析單通路活化分析主要是分析特定通路分子參與程度,其能夠在分子水平上將患者分類.研究者開發了能夠測定患者活細胞或活細胞裂解物中靶標參與情況的分析方法.相較于靜態測量藥物對通路的影響,該方法能夠直接預測患者對藥物的響應.比如,在BRAF突變的黑色素瘤患者中,MAPK通路大量激活,使用針對該通路的特異性抑制劑包括BRAF突變的抑制劑或MEK的抑制劑來檢測腫瘤細胞信號通路的改變,可以將腫瘤細胞的通路進行歸屬,從而預測抗腫瘤藥物的敏感性[50].研究者還采用激酶底物反應方法分析患者組織裂解物中通路活化情況.該方法可區分黑色素瘤的多數基因型(TP53、NRAS、CDKN2A、BRAF突變)[51],但只有在裂解物暴露于BRAF抑制劑進行分析時,才能區分上述基因型[52].
多通路分析較單通路分析能夠更好地預測腫瘤藥物敏感性.早期采用多參數熒光細胞分選研究急性粒細胞白血病(acute myelocytic leukemia,AML)患者信號通路的變化,由此對患者樣品中的亞群和患者進行分類[53].該方法已經在進行臨床試驗,用來識別成人和兒童AML患者對生長因子或化療調節通路的響應情況[54-55].
單通路或多通路分析法旨在通過不同亞群患者在腫瘤發生或給藥干預的情況下,體內響應通路不同,進行分類,以此達到個性化給藥的目的.
3.2 DBP分析大多數化療藥物可以引起腫瘤細胞凋亡,其中很大一部分是通過線粒體細胞凋亡途徑來實現的[56].細胞凋亡有死亡受體途徑和線粒體途徑[57-58].其中,線粒體途徑是由Bcl-2蛋白質家族調控的[58-59].Bcl-2家族分為三類:促凋亡多結構域蛋白質Bak、Bax和Bok,這類蛋白質活化后可以直接引起線粒體外膜的通透[60];抗凋亡蛋白質包括Bcl-2、Bcl-xL、Mcl-1等;以及僅含BH3結構域(BH3-only)蛋白質包括Bim、Bid、Bad和Puma等[61-64].其中,BH3-only蛋白質不僅可以直接激活Bak,Bax,引發細胞凋亡[65-66];也可以與Bcl-2等抗凋亡蛋白質結合,從而抑制Bcl-2等抗凋亡蛋白質與Bak、Bax結合,間接激活線粒體凋亡通路.
Bcl-2、Bcl-xL和Mcl-1等抗凋亡蛋白質是抗腫瘤藥物的重要靶點.目前,BCL-2抑制劑Venetoclax[67]已經通過FDA批準用于治療含染色體17p缺失的慢性淋巴細胞性白血病,其它的BH3類似物也正在進行臨床試驗.Letai等在研究細胞凋亡機制的基礎上,創建了用于預測抗腫瘤藥物敏感性的BH3分析方法[68-69].該方法在臨床前的多項試驗中顯示了良好的結果,包括針對卵巢癌、多發性骨髓瘤、白血病等的多種化療藥物的敏感性預測[70-72].基于該方法的研究說明了該方法在臨床上的潛在應用前景:對伊馬替尼敏感的慢性粒細胞白血病腫瘤細胞,臨床中與之相對應的患者同樣對伊馬替尼敏感;類似地,對順鉑類敏感的卵巢癌患者在應用順鉑化療時,其生存率也相對于不敏感的患者有所提高[70].
研究人員還在此基礎上研發出一種在體外快速檢測藥物響應的DBP分析方法[73-74].這種方法縮短了檢測時間,并且能夠在一定程度上彌補第一代體外檢測的不足.該方法通過不同藥物與腫瘤細胞共孵育使線粒體發生凋亡前的響應,隨后加入不同BH3小肽誘發線粒體去極化.通過檢測線粒體去極化過程,來預測藥物誘導細胞凋亡效果.因為Bad BH3和Hrk BH3與不同的抗凋亡蛋白質的結合能力不同,其中Bad可以與Bcl-2及Bcl-xL有強結合力,而Hrk只與Bcl-xL有強結合力.利用這個特點,基于Bad BH3小肽和Hrk BH3小肽所引起的細胞色素C釋放的差可以用于預測Venetoclax的敏感性[75].該方法在一項臨床前的急性白血病藥物敏感性研究中可以預測Venetoclax的敏感性[76].然而,在后來的一項Venetoclax單藥治療急性髓細胞性白血病的II期臨床試驗中,該方法所得到的BH3分析的結果與患者生存時間的相關性并不十分顯著[77].因此,臨床上抗腫瘤藥物的敏感性預測的復雜程度遠比預想的要復雜,該方法在臨床上的推廣還有待進一步考察.
3.3 Bak細胞內狀態分析因為線粒體細胞凋亡在抗腫瘤藥物引起細胞死亡過程中發揮著重要作用,而Bak又是線粒體凋亡途徑中關鍵的凋亡效應分子,Bak在細胞內的活化狀態也與BH3類似物的敏感性密切相關.研究[78]發現,當細胞內Bak處于與Bcl-2或者Bcl-xL的結合狀態時,腫瘤細胞對Bcl-2/Bcl-xL抑制劑Navitoclax敏感,當細胞內Bak處于與Mcl-1的結合狀態時,腫瘤細胞對Mcl-1抑制劑A-1210477敏感.該方法也為BH3分析方法提供了一種新的可能的機制,即BH3小肽除了可以通過直接置換直接激活分子來起作用,也可以通過替換已經在細胞內自活化的Bak來引起腫瘤細胞的凋亡[78].由于A-1210477對Mcl-1較弱的抑制能力及對Mcl-1的半衰期的影響[79],A-1210477并不足以在臨床上推廣.然而,隨著新一代Mcl-1抑制劑S63845的發現[80],其大大增強了對Mcl-1的抑制效率,該方法是否能預測新型Mcl-1抑制劑的敏感性還有待進一步考察.更重要的是,該方法能否推廣到更多的抗腫瘤藥物敏感性預測中還有待進一步研究.
隨著腫瘤分子生物學的深入研究,腫瘤的精準醫療也是勢在必行.需要指出的是,目前的腫瘤精準醫療研究過分側重測序在腫瘤精準醫學中的地位,而忽視了利用功能性試驗來預測抗腫瘤藥物的敏感性.一方面,目前多種預測抗腫瘤藥物敏感性的功能性方法正在進行臨床測試,有些已經取得了非常好的效果,所以在今后的臨床應用上將有十分廣闊的前景;另一方面,因為影響腫瘤藥物敏感性的因素較多,腫瘤藥物敏感性研究方法眾多,若能將多種方式結合,針對不同類型的腫瘤或者抗腫瘤藥物選擇更適合的預測方法,相信會找到最佳的腫瘤治療方案.同時需要指出的是,作為后期將服務于臨床的檢測方法,不應該追求檢測了多少個項目,而應該考慮如何能用最少的檢測成本獲取最佳的治療方案.
[1]Friedman AA,Letai A,Fisher DE,et al.Precision medicine for cancer with next-generation functional diagnostics[J].Nat Rev Cancer,2015,15(12):747-756.
[2]Burstein HJ,Mangu PB,Somerfield MR,et al.American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays[J].J Clin Oncol,2011,29(24):3328-3330.
[3]Samson DJ,Seidenfeld J,Ziegler K,et al.Chemotherapy sensitivity and resistance assays:a systematic review[J].J Clin Oncol,2004,22(17):3618-3630.
[4]Kreiter S,Vormehr M,van de Roemer N,et al.Mutant MHC class II epitopes drive therapeutic immune responses to cancer[J].Nature,2015,520(7549):692-696.
[5]Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation[J].Cell,2011,144(5):646-674.
[6]Kurbacher CM,Cree IA,Bruckner HW,et al.Use of an ex vivo ATP luminescence assay to direct chemotherapy for recurrent ovarian cancer[J].Anticancer Drugs,1998,9(1):51-57.
[7]Xu JM,Song ST,Tang ZM,et al.Predictive chemotherapy of advanced breast cancer directed by MTT assay in vitro[J].Breast Cancer Res Treat,1999,53(1):77-85.
[8]Cree IA,Kurbacher CM,Lamont A,et al.A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapyversus physician's choice in patients with recurrent platinum-resistant ovarian cancer[J].Anticancer Drugs,2007,18(9):1093-1101.
[9]Ugurel S,Schadendorf D,Pf?hler C,et al.In vitro drug sensitivity predicts response and survival after individualized sensitivity-directed chemotherapy in metastatic melanoma:a multicenter phase II trial of the Dermatologic Cooperative Oncology Group[J].Clin Cancer Res,2006,12(18):5454-5463.
[10]Loizzi V,Chan JK,Osann K,et al.Survival outcomes in patients with recurrent ovarian cancer who were treated with chemoresistance assay-guided chemotherapy[J].Am J Obstet Gynecol,2003,189(5): 1301-1307.
[11]Matsuo K,Bond VK,Eno ML,et al.Low drug resistance to both platinum and taxane chemotherapy on an in vitro drug resistance assay predicts improved survival in patients with advanced epithelial ovarian,fallopian and peritoneal cancer[J].Int J Cancer,2009,125(11):2721-2727.
[12]Sato T,Vries RG,Snippert HJ,et al.Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J].Nature,2009,459(7244):262-265.
[13]Sato T,Stange DE,Ferrante M,et al.Long-term expansion of epithelial organoids from human colon,adenoma,adenocarcinoma,and Barrett's epithelium[J].Gastroenterology,2011,141(5):1762-1772.
[14]Boj SF,Hwang CI,Baker LA,et al.Organoid models of human and mouse ductal pancreatic cancer[J].Cell,2015,160(1-2):324-338.
[15]Gao D,Vela I,Sboner A,et al.Organoid cultures derived from patients with advanced prostate cancer[J].Cell,2014,159(1):176-187.
[16]van de Wetering M,Francies HE,Francis JM,et al.Prospective derivation of a living organoid biobank of colorectal cancer patients[J].Cell,2015,161(4):933-945.
[17]Mengelbier LH,Karlsson J,Lindgren D,et al.Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer[J].Nat Commun,2015,6:6125.
[18]Junttila MR,de Sauvage FJ.Influence of tumour micro-environment heterogeneity on therapeutic response[J].Nature,2013,501(7467): 346-354.
[19]Kenny HA,Lal-Nag M,White EA,et al.Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy[J].Nat Commun,2015,6:6220.
[20]Vaira V,Fedele G,Pyne S,et al.Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors[J].Proc Natl Acad Sci U S A,2010,107(18):8352-8356.
[21]Ridky TW,Chow JM,Wong DJ,et al.Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia[J].Nat Med,2010,16(12):1450-1455.
[22]Nagourney RA,Blitzer JB,Shuman RL,et al.Functional profiling to select chemotherapy in untreated,advanced or metastatic non-small cell lung cancer[J].Anticancer Res,2012,32(10):4453-4460.
[23]Majumder B,Baraneedharan U,Thiyagarajan S,et al.Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity[J].Nat Commun,2015,6:6169.
[24]Hirt C,Papadimitropoulos A,Mele V,et al.“In vitro”3D models of tumor-immune system interaction[J].Adv Drug Deliv Rev,2014,79-80:145-154.
[25]Smerage JB,Barlow WE,Hortobagyi GN,et al.Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500[J].J Clin Oncol,2014,32(31):3483-3489.
[26]Cristofanilli M,Budd GT,Ellis MJ,et al.Circulating tumor cells, disease progression,and survival in metastatic breast cancer[J].N Engl J Med,2004,351(8):781-791.
[27]Baccelli I,Schneeweiss A,Riethdorf S,et al.Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay[J].Nat Biotechnol,2013,31(6):539-544.
[28]Hodgkinson CL,Morrow CJ,Li Y,et al.Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer[J].Nat Med,2014,20(8):897-903.
[29]Zhang L,Ridgway LD,Wetzel MD,et al.The identification and characterization of breast cancer CTCs competent for brain metastasis[J].Sci Transl Med,2013,5(180):180ra48.
[30]Yu M,Bardia A,Aceto N,et al.Cancer therapy.Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility[J].Science,2014,345(6193):216-220.
[31]Brouzes E,Medkova M,Savenelli N,et al.Droplet microfluidic technology for single-cell high-throughput screening[J].Proc Natl Acad Sci U S A,2009,106(34):14195-14200.
[32]Yu M,Stott S,Toner M,et al.Circulating tumor cells:approaches to isolation and characterization[J].J Cell Biol,2011,192(3): 373-382.
[33]Tannock IF,Hickman JA.Limits to Personalized Cancer Medicine[J].N Engl J Med,2016,375(13):1289-1294.
[34]Daniel VC,Marchionni L,Hierman JS,et al.A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro[J].Cancer Res,2009,69(8):3364-3373.
[35]Tentler JJ,Tan AC,Weekes CD,et al.Patient-derived tumour xenografts as models for oncology drug development[J].Nat Rev Clin Oncol,2012,9(6):338-350.
[36]Hidalgo M,Amant F,Biankin AV,et al.Patient-derived xenograft models:an emerging platform for translational cancer research[J].Cancer Discov,2014,4(9):998-1013.
[37]Morton CL,Houghton PJ.Establishment of human tumor xenografts in immunodeficient mice[J].Nat Protoc,2007,2(2):247-250.
[38]Mohseni MJ,Amanpour S,Muhammadnejad S,et al.Establishment of a patient-derived Wilms'tumor xenograft model:a promising tool for individualized cancer therapy[J].J Pediatr Urol,2014,10(1): 123-129.
[39]Hoffman RM.Patient-derived orthotopic xenografts:better mimic of metastasis than subcutaneous xenografts[J].Nat Rev Cancer,2015,15(8):451-452.
[40]Thibaudeau L,Taubenberger AV,Holzapfel BM,et al.A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone[J].Dis Model Mech,2014,7(2):299-309.
[41]Wu M,Jung L,Cooper AB,et al.Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice[J].Proc Natl Acad Sci U S A,2009,106(17): 7022-7027.
[42]Melkus MW,Estes JD,Padgett-Thomas A,et al.Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1[J].Nat Med,2006,12(11):1316-1322.
[43]Weroha SJ,Becker MA,Enderica-Gonzalez S,et al.Tumorgrafts as in vivo surrogates for women with ovarian cancer[J].Clin Cancer Res,2014,20(5):1288-1297.
[44]Siolas D,Hannon GJ.Patient-derived tumor xenografts:transforming clinical samples into mouse models[J].Cancer Res,2013,73(17):5315-5319.
[45]Orsulic S,Li Y,Soslow RA,et al.Induction of ovarian cancer by defined multiple genetic changes in a mouse model system[J].Cancer Cell,2002,1(1):53-62.
[46]Kresse SH,Meza-Zepeda LA,Machado I,et al.Preclinical xenograft models of human sarcoma show nonrandom loss of aberrations[J].Cancer,2012,118(2):558-570.
[47]Wu JB,Shao C,Li X,et al.Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis[J].Biomaterials,2014,35(28):8175-8185.
[48]Luo S,Zhang E,Su Y,et al.A review of NIR dyes in cancer targeting and imaging[J].Biomaterials,2011,32(29):7127-7138.
[49]Yang X,Shi C,Tong R,et al.Near IR heptamethine cyanine dye-mediated cancer imaging[J].Clin Cancer Res,2010,16(10):2833-2844.
[50]Hilhorst R,Houkes L,Mommersteeg M,et al.Peptide microarrays for profiling of serine/threonine kinase activity of recombinant kinases and lysates of cells and tissue samples[J].Methods Mol Biol,2013,977:259-271.
[51]Tahiri A,R?e K,Ree AH,et al.Differential inhibition of ex-vivo tumor kinase activity by vemurafenib in BRAF(V600E)and BRAF wild-type metastatic malignant melanoma[J].PLoS One,2013,8(8):e72692.
[52]Schayowitz A,Bertenshaw G,Jeffries E,et al.Functional profiling of live melanoma samples using a novel automated platform[J].PLoS One,2012,7(12):e52760.
[53]Irish JM,Hovland R,Krutzik PO,et al.Single cell profiling of potentiated phospho-protein networks in cancer cells[J].Cell,2004,118(2):217-228.
[54]Kornblau SM,Minden MD,Rosen DB,et al.Dynamic single-cell network profiles in acute myelogenous leukemia are associated with patient response to standard induction therapy[J].Clin Cancer Res,2010,16(14):3721-3733.
[55]Lacayo NJ,Alonzo TA,Gayko U,et al.Development and validation of a single-cell network profiling assay-based classifier to predict response to induction therapy in paediatric patients with de novo acute myeloid leukaemia:a report from the Children's Oncology Group[J].Br J Haematol,2013,162(2):250-262.
[56]Hata AN,Engelman JA,Faber AC.The BCL2 Family:Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics[J].Cancer Discov,2015,5(5):475-487.
[57]van Delft MF,Huang DC.How the Bcl-2 family of proteins interact to regulate apoptosis[J].Cell Res,2006,16(2):203-213.
[58]Dai H,Meng WX,Kaufmann SH.BCL2 Family,Mitochondrial Apoptosis,and Beyond[J].Cancer Transl Med,2016,2(1):7-20.
[59]Wang C,Youle RJ.The role of mitochondria in apoptosis[J].Annu Rev Genet,2009,43:95-118.
[60]Llambi F,Wang YM,Victor B,et al.BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation[J].Cell,2016,165(2):421-433.
[61]Strasser A,Cory S,Adams JM.Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases[J].EMBO J,2011,30(18):3667-3683.
[62]Czabotar PE,Lessene G,Strasser A,et al.Control of apoptosis by the BCL-2 protein family:implications for physiology and therapy[J].Nat Rev Mol Cell Biol,2014,15(1):49-63.
[63]Moldoveanu T,Follis AV,Kriwacki RW,et al.Many players in BCL-2 family affairs[J].Trends Biochem Sci,2014,39(3):101-111.
[64]Renault T,Chipuk J.Death upon a kiss:mitochondrial outer membrane composition and organelle communication govern sensitivity to BAK/BAX-dependent apoptosis[J].Chem Biol,2014,21(1):114-123.
[65]Dai H,Smith A,Meng XW,et al.Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization[J].J Cell Biol,2011,194(1):39-48.
[66]Dai H,Pang YP,Ramirez-Alvarado M,et al.Evaluation of the BH3-only protein Puma as a direct Bak activator[J].J Biol Chem,2014,289(1):89-99.
[67]Khaled S,Al Malki M,Marcucci G.Acute Myeloid Leukemia: Biologic,Prognostic,and Therapeutic Insights[J].Oncology(Williston Park),2016,30(4):318-329.
[68]Letai A,Bassik MC,Walensky LD,et al.Distinct BH3 domains either sensitize or activate mitochondrial apoptosis,serving as prototype cancer therapeutics[J].Cancer Cell,2002,2(3):183-192.
[69]Certo M,Del Gaizo Moore V,Nishino M,et al.Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members[J].Cancer Cell,2006,9(5):351-365.
[70]Ni Chonghaile T,Sarosiek KA,Vo TT,et al.Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy[J].Science,2011,334(6059):1129-1133.
[71]Vo TT,Ryan J,Carrasco R,et al.Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML[J].Cell,2012,151(2):344-355.
[72]Touzeau C,Ryan J,Guerriero J,et al.BH3-profiling identifies heterogeneous dependency on Bcl-2 family members in Multiple myeloma and predicts sensitivity to BH3 mimetics[J].Leukemia,2016,30(3):761-764.
[73]Del Gaizo Moore V,Letai A.BH3 profiling--measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions[J].Cancer Lett,2012,332(2):202-205.
[74]Montero J,Sarosiek KA,DeAngelo JD,et al.Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy[J].Cell,2015,160(5):977-989.
[75]Chonghaile TN,Roderick JE,Glenfield C,et al.Maturation stage of T-cell acutelymphoblasticleukemiadeterminesBCL-2versus BCL-XL dependence and sensitivity to ABT-199[J].Cancer Discov,2014,4(9):1074-1087.
[76]Pan R,Hogdal LJ,Benito JM,et al.Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia[J].Cancer Discov,2014,4(3):362-375.
[77]Konopleva M,Pollyea DA,Potluri J,et al.Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia[J].Cancer Discov,2016,6(10):1106-1117.
[78]Dai H,Ding H,Meng XW,et al.Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells[J].Genes Dev,2015,29(20):2140-2152.
[79]Leverson JD,Zhang H,Chen J,et al.Potent and selective smallmolecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263(navitoclax)[J].Cell Death Dis,2015,6:e1590.
[80]Kotschy A,Szlavik Z,Murray J,et al.The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models[J].Nature,2016,538(7626):477-482.
Research progress on the prediction of sensitivity of anti-cancer agents based on functional assays
LIU Dong-Yan1,2,YE Kai-Qin1,2,WANG Hong-Zhi1,2,DAI Hai-Ming1,2
1Center of Medical Physics and Technology,Hefei Institutes of Physical Science,Chinese Academy of Sciences,2Cancer Hospital,Chinese Academy of Sciences,Hefei 230031,China
With increasing rate of tumor incidence,its treatments including surgery,radiotherapy,traditional chemotherapy and molecular targeted therapy also have been gradually improved and perfected,in which anti-cancer agents are playing a particularly important role.Anti-cancer agents include traditional chemotherapy agents and molecular-targeted drugs,etc.However,anti-cancer agents are not always effective,and the response rate of chemotherapeutic strategy of certain tumours is less than 25%.Therefore,it is necessary to predict the sensitivity of anti-cancer agents accurately.Whether a cancer cell is sensitive or not to a certain anti-cancer agent is mainly determined by many aspects,including gene expression levels,gene mutations,epigenetics,microenvironments of body,and so on.Besides usually adopted methods for detection of cancer genes,some functional tests are taken now for predicting sensitivities of anti-cancer agents,including ATP-assays,MTT assays,patient-derived tumor xenograft(PDX)mouse models,newly developed of BH3 profiling assays,and so on.In this paper,we will review recent advances in these functional assays,discuss the strengths and disadvantages of theses assays,and explore the trends of research on sensitivities of anti-cancer agents.
anti-cancer agents;precision medicine;functional assays;drug sensitivity
R96
A
2095-6894(2017)01-01-06
2016-11-19;接受日期:2016-12-06
中國科學院百人計劃項目及國家自然基金面上項目(81572948)
劉東巖.碩士.研究方向:抗腫瘤藥物敏感性.
E-mail:liudy209@163.com
戴海明.博士,教授.研究方向:腫瘤細胞凋亡基礎及應用.
E-mail:daih@cmpt.ac.cn