999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

抗體依賴增強效應發生機制研究進展

2017-01-15 22:46:24袁偉壯楊逸成劉旭玲何曉恩劉雨菁
中國人獸共患病學報 2017年7期
關鍵詞:效應機制

袁偉壯,楊逸成,劉旭玲,何曉恩,惠 媛,劉雨菁,李 盈,趙 衛

?

抗體依賴增強效應發生機制研究進展

袁偉壯1,2,楊逸成1,2,劉旭玲1,何曉恩1,惠 媛1,劉雨菁1,李 盈1,趙 衛1

在各類病原體特別是病毒的感染中,抗體依賴增強效應(Antibody-dependent enhancement,ADE)可使原有的感染加重,引起嚴重疾病。研究發現多種病原體的感染過程中均有抗體依賴增強效應ADE現象,且可能存在不同的發生機制。隨著抗體依賴增強效應ADE現象產生機制研究的不斷深入,有助于相應病原體疫苗的改造,從而使疫苗效用最大化,對控制包括寨卡病毒在內的病原體的感染將提供巨大幫助。本文就近年來抗體依賴增強效應ADE發生機制的研究進展進行綜述,包括Fc段受體依賴、補體系統介導、非中和抗體介導、病毒表面蛋白介導及細胞活動介導的抗體依賴增強效應ADE機制,同時以登革病毒、人類免疫缺陷病毒、柯薩奇病毒、埃博拉病毒、寨卡病毒及其他病原體為例進行分類介紹。

抗體依賴性增強感染;機制;病原體

病原體感染產生的抗體依賴增強感染效應(antibody-dependent enhancement,ADE)是指機體中原存在的中和抗體不僅不能防止病毒侵入人體細胞,反而可與Fc受體或者補體相互作用侵入單核巨噬細胞、粒細胞等,增強病毒在體內的復制,引起嚴重疾病。許多病毒的感染存在此種效應,如登革病毒、人類免疫缺陷病毒、柯薩奇病毒、埃博拉病毒、丙肝病毒等[1]。ADE現象在1964年由Hawkes[2]首次提出,他指出將病毒置于高度稀釋的同源抗體中可能有利于多種蟲媒病毒在雞胚中的繁殖,包括日本腦炎病毒、墨累山谷腦炎病毒、格塔病毒。直至1977年,Halstead[3]將ADE現象與嚴重的登革病毒引起的疾病聯系起來。有證據表明細菌和寄生蟲也能產生抗體依賴增強效應[4-5]。本文對抗體依賴增強效應產生的機制進行綜述。

1 抗體依賴增強效應的主要機制

雖然ADE產生的機制至今仍未完全被闡明,但是普遍認為病毒對細胞感染率的增加大部分是通過 Fc受體介導途徑促進靶細胞對病毒抗體復合物的攝取,其次也有研究表明存在其他機制。了解ADE產生的各項機制,確定病毒中與ADE相關的抗原決定簇,并進行修飾處理,有助于研制出更安全有效的疫苗。

1.1 Fc段受體依賴的抗體依賴增強效應機制 目前普遍接受的是Halstead等人[6]提出來的Fc段受體依賴的抗體依賴增強效應機制,此外也有報道補體受體、β2微球蛋白和一些CD分子與ADE有關。Halstead等人[6]通過實驗首次發現病毒和IgG復合物與Fc段受體的相互作用是ADE的關鍵過程。Peiris等人[7]通過破壞Fc段的細胞與西尼羅病毒病毒抗體復合體混合,成功地阻礙了ADE的發生,從而說明Fc段受體與ADE的密切聯系。最近Moi等人通過高表達Fc段受體的幼倉鼠腎細胞進行實驗也證明了Fc段受體與ADE的密切聯系[8]。此外,口蹄疫病毒和奧耶斯基病病毒也通過類似的實驗證明了受體介導的抗體依賴增強效應過程。

人類有3種Fc段受體與IgG結合,包括FcγRⅠ、FcγRⅡ和FcγRⅢ。FcγRⅠ只存在于單核細胞和巨噬細胞,并且與IgG有較高的親和力,相比之下FcγRⅡ和FcγRⅢ則與IgG親和力較差。其中FcγRⅠ和FcγRⅡ均有報道證明和登革病毒的抗體依賴增強效應有關。當機體再次感染不同血清型的登革病毒時,由于體內抗體濃度低于中和濃度,且對異型病毒親和力較低,體內抗體不但無法中和病毒,反而可以形成感染性的免疫復合物與細胞表面的Fc區受體結合,如巨噬細胞、單核細胞、B細胞、中性粒細胞和粒細胞,從而導致病毒與細胞上受體結合而增加了病毒和細胞的接觸機會,有利于病毒的入侵[9-13]。通過以上可知,受體介導的抗體依賴增強效應的發生是由于病毒、Fc段和抗體的相互作用。

除了Fc段受體,細胞上的其他受體也與ADE的發生有關。Takeda等人[14]通過加入CD4分子的抗體發現HIV病毒的ADE現象消失,說明CD4分子在ADE的發生也有重要的作用。Mady等人[15]發現登革病毒ADE現象的發生與非Fc段受體如β2微球蛋白、CD15和CD33有關。

1.2 補體系統介導的抗體依賴增強效應機制 病毒表面蛋白可以結合不同血清型的抗體,激活補體系統的經典途徑。補體C1q與附著在病毒表面的蛋白質結合,從而通過結合存在于細胞表面的C1q受體使病毒與細胞相互靠近,導致病毒開始感染[16-17]。Cardosa等人[18]發現在加入對病毒特異性的IgM和補體后,西尼羅病毒對P388D1細胞的感染加重。但是進一步的實驗證明與IgG介導的抗體依賴增強效應相比,西尼羅病毒的感染增強并不明顯。此外,Takeda等人[14]發現HIV病毒的ADE現象也為補體系統介導,而且與抗體介導的ADE相比更加明顯。Robinson等人[19]在體外實驗中加入CD4分子抗體后,發現HIV的補體介導的ADE現象消失,這說明補體系統介導的ADE機制依賴于細胞上的CD4分子。

1.3 非中和抗體介導的抗體依賴增強效應機制 當針對一種病毒亞型的抗體與另一種不同病毒亞型結合時,抗體無法中和病毒,此時吞噬細胞不依賴表面Fc段作用而直接將病毒作為亞中和體吞噬進入細胞內,并在細胞內進行繁殖[20-23]。

登革病毒抗體介導的入侵細胞可以增加感染細胞和病毒顆粒的數量,其具體的機制尚不明確。但最近的細胞實驗研究發現,人的單克隆非中和抗體可以增強登革病毒對初級巨噬細胞的感染和病毒的轉錄、翻譯過程,其次初級巨噬細胞膜上的蛋白可能增加病毒和細胞之間的融合并且減少對病毒的攝取[24]。除了在登革病毒中發現非中和抗體介導的抗體依賴增強效應機制外,HIV[25]、柯薩奇病毒[26]等也可通過此機制產生ADE現象。

1.4 病毒表面蛋白介導的抗體依賴增強效應機制 病毒外殼表面的抗原與ADE的產生也有關系。Scott等人[27-28]通過針對核衣殼蛋白、基質蛋白和S蛋白的抗體和貓感染性腹膜炎病毒混合感染證實只有抗S蛋白抗體才能誘導ADE現象的出現,另外一實驗表明加入埃博拉病毒表面糖蛋白后能增強水泡性口炎病毒ADE的發生,說明表面糖蛋白參與了ADE的發生。類似的實驗[29-33]表明登革病毒E蛋白、HIV病毒gp120和gp41、漢坦病毒G1和G2蛋白以及豬繁殖與呼吸綜合征病毒F蛋白都參與了ADE的發生。

1.5 細胞活動介導的抗體依賴增強效應機制 病毒的感染過程除了依靠與細胞的結合外,還需要其他病毒和宿主細胞產生的蛋白質的共同作用,抗體不能阻止感染反而能促進感染[34]。通常在包膜病毒中,病毒并不是通過胞吞途徑實現其內化過程,在西尼羅河病毒中,抗體的存在并不能影響內化過程[35]。

病毒感染過程中出現的ADE現象能增強病毒產物的產生和增加病毒進入細胞的數量,然而隨著ADE現象的產生,在本來具有抗病毒內在微環境的細胞如巨噬細胞,卻成為了病毒增強復制的場所。一些研究顯示ADE產生時病毒入胞是通過調節被感染細胞的正常的免疫功能這一通路實現的,在登革病毒的研究中,當細胞注射含有預處理DV-2和DV-1的抗血清時,人們發現由外周血單核細胞產生的IL-4并沒有急劇升高,而是產生大量的PGE2[36]。PGE2是由巨噬細胞產生的脂性細胞因子,在人體中具有抗炎和增加IgG2產生的效應[37]。在牛體內,PGE2是I、II型免疫反應調節的重要因子,而且能調節牛白血病病毒在體內的表達和疾病的進展[38]。

有學者研究羅斯河病毒時發現,病毒ADE現象的產生與細胞內活動有關[39]。當羅斯河病毒通過與鼠中Fc段受體的相互作用,而不是與細胞表面的病毒受體直接結合作用途徑感染鼠巨噬細胞后,脂多糖的刺激并不能夠激發機體抗病毒的反應,反而使TNF基因和誘導型一氧化氮合酶基因這些抗病毒基因的轉錄因子NF-kB和IRF-1受到抑制,因此羅斯河病毒在體內的復制不受影響。

2 存在抗體依賴增強效應現象的病原體

2.1 登革病毒 存在ADE現象的最重要的病毒是登革病毒。登革病毒屬黃病毒科,是單股正鏈RNA病毒,能造成自限性疾病登革熱和危及生命的重癥登革。

登革病毒有4種不同的血清型(DENV-1-DENV-4)。登革病毒的感染會誘導IgG的產生,使得人體獲得針對這一血清型的終身免疫[40]。感染登革病毒在一定程度也獲得對其他3個血清型的交叉保護作用,可以持續數月到數年。4到20年后異型IgG滴度會下降,而再次感染后同型IgG滴度上升,這可能是因為生產同型IgG的記憶B細胞優先生存的作用[41-42]。

當一個人被一個血清型的登革病毒感染后數月或者數年后再次被不同血清型的登革病毒感染就可能會出現ADE現象。這種臨床病例比起沒有發生ADE的病人會有更嚴重的病毒血癥和臨床表現[23,43-44]。感染登革熱不僅僅能夠誘導產生中和抗體,還能產生非中和抗體,這意味著抗體只能部分結合病毒甚至不能中和,這可能是導致ADE的重要原因,當抗體和病毒結合后在白細胞大量復制,導致病毒滴度的增加[22,45-46]。

2.2 人類免疫缺陷病毒 人類免疫缺陷病毒(HIV)是一種嗜T4淋巴細胞和嗜神經細胞的逆轉錄病毒,病毒外膜是類脂包膜,來自宿主細胞,并嵌有病毒蛋白gp120與gp41;主要攻擊人體的輔助T淋巴細胞系統,一旦侵入機體細胞,病毒將會和細胞整合在一起終生難以消除[47]。

HIV可以通過補體介導和Fc受體介導途徑產生ADE現象[25]。研究表明補體介導途徑中,補體成分CR2、CR3和CR4共同參與介導此種效應,并能增強HIV對MT-2型T細胞的感染能力[48]。HIV-1的感染能激活補體碎片,促進病毒與宿主細胞的相互作用,表達相應的補體受體從而幫助HIV感染, Gras、GS等人[48-49]提出補體沉積促使病毒膜蛋白gp120靠近細胞表面CD4分子來促進病毒的感染。

有研究發現病毒提前暴露于非中和補體系統能增強對iDCs細胞的感染[50]。受過補體成分C3和C9調理作用的HIV-1病毒感染HT-29細胞的能力比單純HIV的感染能力增強近2倍[51]。Bouhlal等人[50]的實驗表明72%的HIV陽性個體的血清中含有增強病毒感染的補體成分,同時Robinson等人[19]也提出補體介導途徑促進HIV病毒蛋白合成和RNA的合成,同時能加速HIV逆轉酶和子代病毒的釋放,從而產生ADE現象。其中,抗艾滋病病毒抗體與非中和補體暴露的病毒之間的相互作用有助于HIV結合紅細胞,這將會使病毒更有效的播散到免疫功能下降的器官[52]。

2.3 柯薩奇病毒 柯薩奇病毒屬于腸道病毒,無包膜,基因組為單股正鏈RNA。柯薩奇病毒有A型和B型兩類,是常見的經呼吸道和消化道感染人體的病毒。其中B型病毒有6個血清型(B1-B6)。

對于柯薩奇B組病毒的ADE產生機制,Goffard等人[26]和Jarasch-Althof等人[16]分別在小鼠實驗中驗證了與異型性抗體和同型抗體有關,而在人體細胞實驗中發現與細胞受體CAR、FcgRII和FcgRIII有關,實驗中使用變異的CVB3感染小鼠可導致小鼠CD19+B細胞蛋白表達增強,這意味著CVB3病毒開始復制過程。柯薩奇病毒B4與IgG抗體和FcγRII and FcγRIII相互作用后可以誘導外周血單核細胞產生IFN-a,通過這一途徑產生ADE現象[53],其次抗CV-4抗體IgG能增強外周血中單核細胞的體外感染,其與細胞上的受體結合后,增加了病毒與靶細胞的接觸機會。

2.4 埃博拉病毒 埃博拉病毒(EBV)屬絲狀病毒科,呈長絲狀體,基因組為單股負鏈RNA,根據基因組的差異可分為5個亞型。EBV是引起人類和靈長類動物發生埃博拉出血熱的烈性病毒,埃博拉出血熱(EBHF)是當今世界上最致命的病毒性出血熱。

Takada和Ayato等人[17,54-55]的研究表明埃博拉病毒也能產生ADE現象。Takada等人發現埃博拉病毒ADE現象與補體介導的如C1q有關,在加入補體C1q的滅活劑和加熱到56 ℃之后發現ADE現象消失,隨后加入凈化的 C1r 和 C1s 后發現ADE現象增強,這些都表明ADE的產生與C1q有關并且C1q分裂出的 C1r 和C1s能夠促進C1q介導的ADE現象。具體的機制是由于C1q識別細胞表面的C1q表位后介導其與抗體IgG的結合,從而增強埃博拉病毒表面蛋白GP與宿主細胞的結合能力而引起[55]。此外,在另外一次實驗中[54]證明Zaire型產生ADE的能力與其他亞型相比最強。

2.5 寨卡病毒 寨卡病毒首次發現于寨卡森林中的一只猴子。生活在亞洲和非洲部分地區的26億人存在感染寨卡病毒的風險,受到寨卡病毒感染威脅的國家包括印度、中國、菲律賓、印度尼西亞、尼日利亞、越南、巴基斯坦和孟加拉國等多個國家。由于寨卡病毒和登革病毒在流行地區有重疊,所以同一區域同時有兩種病毒流行的概率大大增加。有報道稱體內有登革抗體的人,在感染了寨卡病毒之后出現了ADE現象,Castanha等人和Paul等人也通過實驗證實了這種情況[56-57]。Dejnirattisai等人[58]在含有抗登革病毒抗體的體液中加入寨卡病毒后有ADE現象的產生,進一步的研究發現這些抗體能夠結合寨卡病毒但是并不能中和病毒,進而產生ADE現象。Kawiecki等人[59]通過讓小鼠暴露于寨卡病毒而產生抗寨卡病毒抗體,然后抽取含有抗寨卡病毒抗體的體液對登革病毒進行實驗,發現登革病毒感染產生了ADE現象。但是目前還沒有實驗證明寨卡病毒不同亞型的感染能夠引起ADE。ADE現象的存在可能是寨卡病毒的肆虐的一個重要原因。

2.6 其它病原體 還有多種病毒在體外實驗中能產生ADE現象,包括不同的病毒種類和亞型,比如黃熱病毒[60]、呼吸道合胞體病毒[30]、漢坦病毒[61]、格塔病毒、辛德比斯病毒[62]、流感病毒[63]、西尼羅病毒、乙型腦炎病毒、兔痘病毒[2,64]、貓傳染性腹膜炎病毒[65]、呼吸道腸道病毒[66]、狂犬病病毒[67]、口蹄疫病毒[68]、豬繁殖與呼吸綜合征病毒[69]、猴出血熱病毒[70]、阿留特(氏)病病毒等[71]。其中一些病毒與人類健康關系密切,另一些能引起動物疾病。這些病毒都能在巨噬細胞內復制,誘發抗體降低中和病毒能力,造成持續性的感染并引起嚴重的病毒血癥[72]。

細菌和寄生蟲中也可能存在與ADE類似的現象[4-5]。Biryuko等人[4]發現抗瘧疾抗體在體外可以阻止瘧疾入侵紅細胞,但是卻無法在體內起作用。進一步的實驗表明,在瘧原蟲、紅細胞和IgG中加入細胞膜上的補體受體的拮抗劑之后發現可以阻止ADE的現象的出現,這表明瘧原蟲的侵入與補體介導的ADE現象有很大的關系。

Weiser等人[73]認為細菌感染也會誘導人體產生抗體,進而導致ADE,如肺炎雙球菌。肺炎雙球菌在體內能產生IgA1蛋白水解酶,阻止免疫球蛋白對人體的保護作用。因為蛋白水解酶對人體IgA1的特異性,有實驗研制出針對肺炎雙球菌表面抗原的人類單克隆抗體,采用細菌生物群落模型黏附于呼吸道上皮細胞的方式測試單克隆抗體的功能和效應。該實驗發現,特異性的IgA1被IgA1蛋白水解酶水解后不能抑制細菌與宿主細胞的融合,反而能大大增強細菌對宿主細胞的黏附能力,而對蛋白水解酶不敏感的免疫球蛋白亞型如IgA2和IgG或者是針對不同細菌莢膜的藥物均不能產生此種效應。細菌蛋白酶使能使細菌莢膜多糖的IgA1的結構發生改變,產生能與抗原結合的Fab片段,暴露的抗體可變區結構(VH, VL)的離子電荷與由肺炎雙球菌和IgA(Fab)的復合物介導的細菌和宿主上皮細胞的黏附力增強效應有關。通過采用基因敲除技術破壞產生IgA1蛋白水解酶的基因后,該突變的肺炎雙球菌并不能產生上述增強細菌對宿主細胞的黏附效應,從而證實IgA1水解酶在肺炎雙球菌ADE的產生發揮重要作用,這也為細菌ADE的機制作出了解釋:細菌能夠誘導生成抗體,而抗體并非傳統意義上的中和作用而是與某些酶發生相互作用使得細菌的粘附能力增強,從而導致ADE現象[5]。

3 展 望

登革病毒感染過程中存在的ADE現象對登革病毒防治提出了挑戰。盡管登革病毒的感染嚴重威脅人類的健康,截至今天仍未有特異的抗病毒藥物供臨床使用[74]。在實驗階段,針對登革病毒的減毒活疫苗、亞單位疫苗有一定的發展,目前多型疫苗正處于臨床前和臨床研究階段中,如四價減毒活疫苗YFV/DENV,隨著ADE產生機制的深入了解,加強對相應的疫苗的改造和研究,使疫苗最大化的發揮效用,保護機體免受登革病毒的感染[75-77]。近期寨卡病毒的流行也給人類健康帶來巨大威脅[78],而隨著寨卡病毒ADE現象產生機制的不斷深入研究,對我們今后控制包括寨卡病毒在內的病原體的感染將提供巨大幫助,目前已有相關研究提出根據ADE產生的機制研制出寨卡病毒疫苗[79-80]。

越來越多的病原體被證實能產生ADE現象,不僅同種不同亞型的病原體之間能誘導ADE現象的產生,而且不同種病原體之間也能誘導產生ADE現象,比如在含有抗寨卡病毒抗體的體液實驗中,發現加入登革病毒也能產生ADE現象[58]。同時有研究發現登革熱病毒的感染也能引起寨卡病毒ADE現象的產生[56-57]。目前學者們對ADE現象的研究主要集中于其產生的分子機制上,通過對分子機制的研究以求研制出控制病原體的有效方法[81]。有最新研究表明,通過對能產生ADE現象的病毒如登革熱病毒、流感病毒、HIV病毒等RNA病毒表面上的特異分子的研究[22,81-83],有學者已經研制出能治療這些病毒感染的免疫療法,該療法目前正處于臨床試驗階段[81]。

4 小 結

抗體依賴增強效應是指機體中存在的中和抗體不僅不能防止病毒侵入人體細胞,反而可以通過各種機制增強病毒在體內的復制,引起一系列嚴重的疾病。現在普遍認為病毒通過感染易感細胞使其大量復制是產生抗體依賴增強效應的主要機制。細胞感染率的增加大部分是通過 Fc受體介導途徑促進靶細胞對病毒抗體復合物的攝取,其次有其他研究也表明可通過其他機制造成病毒的大量復制。研究發現多種病毒及細菌和寄生蟲均能產生抗體依賴增強效應現象。

[1] Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications[J]. Rev Med Virol, 2003, 13(6): 387-398. DOI: 10.1002/rmv.405

[2] Hawkes RA. Enhancement of the infectivity of arboviruses by specific antisera produced in domestic fowls[J]. Aust J Exp Biol Med Sci, 1964, 42: 465-482.

[3] Halstead SB, O Rourke EJ. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody[J]. J Exper Med,1977, 146(1): 201-217.

[4] Biryukov S, Angov E, Landmesser ME, et al. Complement and antibody-mediated enhancement of red blood cell invasion and growth of malaria parasites[J]. EBioMedicine, 2016, 9: 207-216. DOI: 10.1016/j.ebiom.2016.05.015

[5] Mahalingam S, Lidbury BA. Antibody-dependent enhancement of infection: bacteria do it too[J]. Trends Immunol, 2003, 24(9): 465-467.

[6] Halstead SB, O Rourke EJ. Antibody-enhanced dengue virus infection in primate leukocytes[J]. Nature, 1977, 265(5596): 739-741.

[7] Peiris JS, Gordon S, Unkeless JC, et al. Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages[J]. Nature, 1981, 289(5794): 189-191.

[8] Moi ML, Kobayashi D, Isawa H, et al. Dengue virus isolation in mosquitoAedesalbopictuscaptured during an outbreak in Tokyo, 2014, by a method relying on antibody-dependent enhancement mechanism using FcγR-expressing BHK cells[J]. Vector Borne Zoonotic Dis, 2016, 16(12): 810-812. DOI: 10.1089/vbz.2016.1982

[9] Dent M, Hurtado J, Paul AM, et al. Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity[J]. J General Virol, 2016, 97(12): 3280-3290. DOI: 10.1099/jgv.0.000635

[10] Furuyama W, Marzi A, Carmody AB, et al. Fcγ-receptor IIa-mediated Src signaling pathway is essential for the antibody-dependent enhancement of Ebola virus infection[J]. PLoS Pathog, 2016, 12(12): e1006139. DOI: 10.1371/journal.ppat.1006139

[11] Gan ES, Ting DHR, Chan KR. The mechanistic role of antibodies to dengue virus in protection and disease pathogenesis[J]. Expert Rev Anti-infe, 2017, 15(2): 111-119. DOI: 10.1080/14787210.2017.1254550

[12] van Mechelen L, Luytjes W, de Haan CAM, et al. RSV neutralization by palivizumab, but not by monoclonal antibodies targeting other epitopes, is augmented by Fc gamma receptors[J]. Antivir Res, 2016, 132: 1-5. DOI: 10.1016/j.antiviral.2016.05.003

[13] Taylor A, Foo S, Bruzzone R, et al. Fc receptors in antibody-dependent enhancement of viral infections[J]. Immunol Rev, 2015, 268(1): 340-364. DOI: 10.1111/imr.12367

[14] Takeda A, Sweet RW, Ennis FA. Two receptors are required for antibody-dependent enhancement of human immunodeficiency virus type 1 infection: CD4 and Fc gamma R[J]. J Virol, 1990, 64(11): 5605-5610.

[15] Mady BJ, Erbe DV, Kurane I, et al. Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fc gamma receptors[J]. J Immunol, 1991, 147(9): 3139-3144.

[16] Jarasch-Althof N, Wiesener N, Schmidtke M, et al. Antibody-dependent enhancement of coxsackievirus B3 infection of primary CD19+B lymphocytes[J]. Viral Immunol, 2010, 23(4): 369-376. DOI: 10.1089/vim.2010.0018

[17] Takada A, Feldmann H, Ksiazek TG, et al. Antibody-dependent enhancement of Ebola virus infection[J]. J Virol, 2003, 77(13): 7539-7544. DOI: 10.1128/JVI.77.13.7539-7544.2003

[18] Cardosa MJ, Porterfield JS, Gordon S. Complement receptor mediates enhanced flavivirus replication in macrophages[J]. J Exper Med, 1983, 158(1): 258-263.

[19] Robinson WE, Montefiori DC, Mitchell WM. Complement-mediated antibody-dependent enhancement of HIV-1 infection requires CD4 and complement receptors[J]. Virology, 1990, 175(2): 600-604.

[20] Dejnirattisai W, Jumnainsong A, Onsirisakul N, et al. Cross-reacting antibodies enhance dengue virus infection in humans[J]. Science, 2010, 328(5979): 745-748. DOI: 10.1126/science.1185181

[21] Flipse J, Diosa-Toro MA, Hoornweg TE, et al. Antibody-dependent enhancement of dengue virus infection in primary human macrophages; balancing higher fusion against antiviral responses[J]. Sci Rep-UK, 2016, 6: 29201. DOI: 10.1038/srep29201

[22] Wang TT, Sewatanon J, Memoli MJ, et al. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity[J]. Science, 2017, 355(6323): 395-398. DOI: 10.1126/science.aai8128

[23] Wang Y, Si L, Guo X, et al. Substitution of the precursor peptide prevents anti-prM antibody-mediated antibody-dependent enhancement of dengue virus infection[J]. Virus Res, 2017, 229: 57-64. DOI: 10.1016/j.virusres.2016.12.003

[24] Schmid MA, Diamond MS, Harris E. Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity[J]. Front Immunol, 2014, 5: 647. DOI: 10.3389/fimmu.2014.00647

[25] Beck Z, Prohászka Z, Füst G. Traitors of the immune system—Enhancing antibodies in HIV infection: Their possible implication in HIV vaccine development[J]. Vaccine, 2008, 26(24): 3078-3085. DOI: 10.1016/j.vaccine.2007.12.028

[26] Goffard A, Alidjinou EK, Sané F, et al. Antibodies enhance the infection of phorbol-ester-differentiated human monocyte-like cells with coxsackievirus B4[J]. Microbes Infect, 2013, 15(1): 18-27. DOI: 10.1016/j.micinf.2012.10.005

[27] Corapi WV, Olsen CW, Scott FW. Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus[J]. J Virol, 1992, 66(11): 6695-6705.

[28] Olsen CW, Corapi WV, Ngichabe CK, et al. Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages[J]. J Virol, 1992, 66(2): 956-965.

[29] Debets JM, Van de Winkel JG, Ceuppens JL, et al. Cross-linking of both Fc gamma RI and Fc gamma RII induces secretion of tumor necrosis factor by human monocytes, requiring high affinity Fc-Fc gamma R interactions. Functional activation of Fc gamma RII by treatment with proteases or neuraminidase[J]. J Immunol, 1990, 144(4): 1304-1310.

[30] Gimenez HB, Keir HM, Cash P.Invitroenhancement of respiratory syncytial virus infection of U937 cells by human sera[J]. General Virol, 1989, 70(1): 89-96.

[31] Henchal EA, Mccown JM, Burke DS, et al. Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies[J]. Am J Trop Med Hyg,1985, 34(1): 162-169.

[32] Ochiai H, Kurokawa M, Matsui S, et al. Infection enhancement of influenza A NWS virus in primary murine macrophages by anti-hemagglutinin monoclonal antibody[J]. J Med Virol, 1992, 36(3): 217-221.

[33] Yao JS, Kariwa H, Takashima I, et al. Antibody-dependent enhancement of hantavirus infection in macrophage cell lines[J]. Arch Virol, 1992, 122(1-2): 107-118.

[34] Therrien D, St-Pierre Y, Dea S. Preliminary characterization of protein binding factor for porcine reproductive and respiratory syndrome virus on the surface of permissive and non-permissive cells[J]. Arch Virol, 2000, 145(6): 1099-1116.

[35] Gollins SW, Porterfield JS. Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry[J]. J Gen Virol, 1985, 66(9): 1969-1982. DOI: 10.1099/0022-1317-66-9-1969

[36] Chen RF, Yeh WT, Yang MY, et al. A model of the real-time correlation of viral titers with immune reactions in antibody-dependent enhancement of dengue-2 infections[J]. FEMS, 2001, 30(1): 1-7.

[37] Fadok VA, Bratton DL, Konowal A, et al. Macrophages that have ingested apoptotic cellsinvitroinhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF[J]. Clin Investat, 1998, 101(4): 890-898. DOI: 10.1172/JCI1112

[38] Pyeon D, Diaz FJ, Splitter GA. Prostaglandin E(2) increases bovine leukemia virus tax and pol mRNA levels via cyclooxygenase 2: regulation by interleukin-2, interleukin-10, and bovine leukemia virus[J]. J Virol, 2000, 74(12): 5740-5745.

[39] Lidbury BA, Mahalingam S. Specific ablation of antiviral gene expression in macrophages by antibody-dependent enhancement of Ross River virus infection[J]. J Virol, 2000, 74(18): 8376-8381.

[40] King CA, Anderson R, Marshall JS. Dengue virus selectively induces human mast cell chemokine production[J]. J Virol, 2002, 76(16): 8408-8419.

[41] Alvarez G, Pieros J, Tobón A, et al. Efficacy of three chloroquine-primaquine regimens for treatment ofPlasmodiumvivaxmalaria in Colombia[J]. Am J Trop Med Hyg, 2006, 75(4): 605-609.

[42] Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity[J]. Cellular Mol Life Sci, 2010, 67(16): 2773-2786. DOI: 10.1007/s00018-010-0357-z

[43] Boonnak K, Slike BM, Burgess TH, et al. Role of dendritic cells in antibody-dependent enhancement of dengue virus infection[J]. J Virol, 2008, 82(8): 3939-3951. DOI: 10.1128/JVI.02484-07

[44] Guzman MG, Vazquez S. The complexity of antibody-dependent enhancement of dengue virus infection[J]. Viruses, 2010, 2(12): 2649-2662. DOI: 10.3390/v2122649

[45] Goncalvez AP, Engle RE, St. Claire M, et al. Monoclonal antibody-mediated enhancement of dengue virus infectioninvitroandinvivoand strategies for prevention[J]. P Natl Acad Sci U S A, 2007, 104(22): 9422-9427. DOI: 10.1073/pnas.0703498104

[46] Peluso R, Haase A, Stowring L, et al. A Trojan Horse mechanism for the spread of visna virus in monocytes[J]. Virology, 1985, 147(1): 231-236.

[47] Choi SKY, Boyle E, Cairney J, et al. Prevalence, recurrence, and incidence of current depressive symptoms among people living with HIV in Ontario, Canada: results from the Ontario HIV treatment network cohort study[J]. PLoS One, 2016, 11(11): e165816. DOI: 10.1371/journal.pone.0165816

[48] Willey S, Aasa-Chapman MM, O Farrell S, et al. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection[J]. Retrovirology, 2011, 8(1): 16. DOI: 10.1186/1742-4690-8-16

[49] Gras GS, Dormont D. Antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus type 1 infection in a human, Epstein-Barr virus-transformed B-lymphocytic cell line[J]. J Virol, 1991, 65(1): 541-545.

[50] Bouhlal H, Chomont N, Réquena M, et al. Opsonization of HIV with complement enhances infection of dendritic cells and viral transfer to cd4 t cells in a cr3 and dc-sign-dependent manner[J]. J Immunol, 2007, 178(2): 1086-1095.

[51] Bouhlal H, Chomont N, Haeffner-Cavaillon N, et al. Opsonization of HIV-1 by semen complement enhances infection of human epithelial cells[J]. J Immunol, 2002, 169(6): 3301-3306. DOI: 10.4049/jimmunol.169.6.3301

[52] Yu Q, Yu R, Qin X. The good and evil of complement activation in HIV-1 infection[J]. Cell Mol Immunol, 2010, 7(5): 334-340. DOI: 10.1038/cmi.2010.8

[53] Hober D, Sane F, Ja?dane H, et al. Immunology in the clinic review series; focus on type 1 diabetes and viruses: role of antibodies enhancing the infection with Coxsackievirus-B in the pathogenesis of type 1 diabetes[J]. Clin Exp Immunol, 2012, 168(1): 47-51. DOI: 10.1111/j.1365-2249.2011.04559.x

[54] Takada A, Ebihara H, Feldmann H, et al. Epitopes required for antibody-dependent enhancement of Ebola virus infection[J]. J Infect Dis, 2007, 196(Suppl 2):S347-S356. DOI: 10.1086/520581

[55] Takada A, Watanabe S, Okazaki K, et al. Infectivity-enhancing antibodies to Ebola virus glycoprotein[J]. J Virol, 2001, 75(5): 2324-2330. DOI: 10.1128/JVI.75.5.2324-2330.2001

[56] Castanha PM, Nascimento EJM, Cynthia B, et al. Dengue virus (DENV)-specific antibodies enhance Brazilian Zika virus (ZIKV) infection[J]. J Infect Dis, 2016. DOI: 10.1093/infdis/jiw638

[57] Paul LM, Carlin ER, Jenkins MM, et al. Dengue virus antibodies enhance Zika virus infection[J]. Clinic Translational Immunol, 2016, 5(12): e117. DOI: 10.1038/cti.2016.72

[58] Dejnirattisai W, Supasa P, Wongwiwat W, et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus[J]. Nat Immunol, 2016, 17(9): 1102-1108. DOI: 10.1038/ni.3515

[59] Kawiecki AB, Christofferson RC. Zika-induced antibody response enhances dengue serotype 2 replicationinvitro[J]. J Infect Dis, 2016, 214(9): 1357-1360. DOI: 10.1093/infdis/jiw377

[60] Schlesinger JJ, Brandriss MW. Growth of 17D yellow fever virus in a macrophage-like cell line, U937: role of Fc and viral receptors in antibody-mediated infection[J]. J Immunol, 1981, 127(2): 659-665.

[61] Weiss RC, Scott FW. Pathogenesis of feline infectious peritonitis: nature and development of viremia[J]. Am J Vet Res, 1981, 42(3): 382-390.

[62] Chanas AC, Gould EA, Clegg JCS, et al. Monoclonal antibodies to sindbis virus glycoprotein e1 can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis[J]. J Gen Virol, 1982, 58(1): 37-46. DOI: 10.1099/0022-1317-58-1-37

[63] Ochiai H, Kurokawa M, Hayashi K, et al. Antibody-mediated growth of influenza A NWS virus in macrophage like cell line P388D1[J]. J Virol, 1988, 62(1): 20-26.

[64] Hawkes RA, Lafferty KJ. The enhancement of virus infectivity by antibody[J]. Virology, 1967, 33(2): 250-261.

[65] Weiss RC, Scott FW. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever[J]. Comparat Immunol Microbiol Infect Dis,1981, 4(2): 175-189.

[66] Burke DS, Nisalak A, Johnson DE, et al. A prospective study of dengue infections in Bangkok[J]. Am J Trop Med Hyg, 1988, 38(1): 172-180.

[67] King AA, Sands JJ, Porterfield JS. Antibody-mediated enhancement of rabies virus infection in a mouse macrophage cell line (P388D1)[J]. J General Virol, 1984, 65(6): 1091-1093. DOI: 10.1099/0022-1317-65-6-1091

[68] Baxt B, Mason PW. Foot-and-mouth mouth disease virus undergoes restricted replication in macrophage cell cultures following Fc receptor-mediated adsorption[J]. Virology, 1995, 207(2): 503-509. DOI: 10.1006/viro.1995.1110

[69] Yoon KJ, Wu LL, Zimmerman JJ, et al. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs[J]. Viral Immunol, 1996, 9(1): 51-63. DOI: 10.1089/vim.1996.9.51

[70] Plagemann PG, Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses[J]. Adv Virus Res, 1992, 41: 99-192.

[71] Kanno H, Wolfinbarger JB, Bloom ME. Aleutian mink disease parvovirus infection of mink macrophages and human macrophage cell line U937: demonstration of antibody-dependent enhancement of infection[J]. J Virol, 1993, 67(12): 7017-7024.

[72] Stueckemann JA, Ritzi DM, Holth M, et al. Replication of lactate dehydrogenase-elevating virus in macrophages: 1. Evidence for cytocidal replication[J]. J General Virol, 1982, 59(2): 245-262. DOI: 10.1099/0022-1317-59-2-245

[73] Weiser JN, Bae D, Fasching C, et al. Antibody-enhanced pneumococcal adherence requires IgA1 protease[J]. Proc Natl Acad Sci 2003, 100(7): 4215-4220. DOI: 10.1073/pnas.0637469100

[74] Yi FH, Li SP, Zhang JA, et al. Expression and its serological preliminary evaluation on multi-epitope recombinant antigens of 4 serotypes of dengue virus[J]. Chin J Zoonoses, 2017, 33(1): 32-37.DOI:10.3969/j.issn.1002-2694.2017.01.006 (in Chinese)

易方浩, 黎四平, 張俊愛,等. 4種血清型登革病毒多表位重組抗原的表達及血清學初步評價[J]. 中國人獸共患病學報, 2017, 33(1): 32-37.

[75] Moi ML, Takasaki T, Kurane I. Human antibody response to dengue virus: implications for dengue vaccine design[J]. Tropic Med Health, 2016, 44: 1. DOI: 10.1186/s41182-016-0004-y

[76] Shi X, Deng Y, Wang H, et al. A bispecific antibody effectively neutralizes all four serotypes of dengue virus by simultaneous blocking virus attachment and fusion[J]. Mabs-austin, 2016, 8(3): 574-584. DOI: 10.1080/19420862.2016.1148850

[77] Tang CT, Li PC, Liu IJ, et al. An epitope-substituted DNA vaccine improves safety and immunogenicity against dengue virus type 2[J]. PLoS Negl Trop Dis, 2015, 9(7): e0003903. DOI: 10.1371/journal.pntd.0003903

[78] Lin D, Yan YS. Zika virus disease[J]. Chin J Zoonoses, 2016, 32(3): 209-218.DOI:10.3969/j.issn.1002-2694.2016.03.001 (in Chinese)

林丹, 嚴延生. 寨卡病毒病[J]. 中國人獸共患病學報, 2016, 32(3): 209-218.

[79] Quanquin N, Wang L, Cheng G. Potential for treatment and a Zika virus vaccine[J]. Curr Opin Pediatr, 2017, 29(1): 114-121. DOI: 10.1097/MOP.0000000000000441

[80] Singh MV, Weber EA, Singh VB, et al. Preventive and therapeutic challenges in combating Zika virus infection: are we getting any closer?[J]. J Neurovirol, 2017,23(3):347-357. DOI: 10.1007/s13365-017-0513-4

[81] Ramakrishnan B, Viswanathan K, Tharakaraman K, et al. A structural and mathematical modeling analysis of the likelihood of antibody-dependent enhancement in influenza[J]. Trends Microbiol, 2016, 24(12): 933-943. DOI: 10.1016/j.tim.2016.09.003

[82] Elsterova J, Palus M, Sirmarova J, et al. Tick-borne encephalitis virus neutralization by high dose intravenous immunoglobulin[J]. Ticks Tick-Borne Dis, 2017, 8(2): 253-258. DOI: 10.1016/j.ttbdis.2016.11.007

[83] Halstead SB. Critique of World Health Organization recommendation of a dengue vaccine[J]. J Infect Dis, 2016, 214(12): 1793-1795. DOI: 10.1093/infdis/jiw340

Research progress on mechanism of antibody-dependent enhancement

YUAN Wei-zhuang1,2, YANG Yi-cheng1,2, LIU Xu-ling1, HE Xiao-en1, HUI Yuan1, LIU Yu-jing1, LI Ying1, ZHAO Wei1

(1.BSL-3LaboratoryofSchoolofPublicHealth,SouthernMedicalUniversity,Guangzhou510515,China;2.TheFirstClinicalMedicineCollege,SouthernMedicalUniversity,Guangzhou510515,China)

In many pathogens infection, especially virus, antibody-dependent enhancement(ADE) can aggravate the infection and lead to severe diseases. In this immunopathological phenomenon, virus-specific antibodies enhance the entry of virus into monocytes, macrophages and granulocytic cells and even the replication of virus through different mechanism. This phenomenon has been reported in numerous pathogens including virus, bacteria and parasite and the mechanisms of ADE vary from different species. Further study of ADE can promote the vaccine research and development to make the most use of vaccine and prevent human body from pathogens, which will be helpful to control the spread of pathogens including Zika virus. In the present review, we review the research progress of ADE mechanism in recent years, including antibodies mediating, receptors mediating, complement mediating, viral proteins mediating and cellular mediating ADE. In addition, dengue virus, human immunodeficiency virus, Coxsackie virus, Ebola virus, Zika virus and other pathogens will be illustrated respectively. This review provides insights on the different mechanism of ADE in different pathogens.

antibody-dependent enhancement; mechanism; pathogen

Zhao Wei, Email: zhaowei@smu.edu.cn

國家自然科學基金(No.31270974,No.31470271)和廣東省及廣州市防控登革熱應急科技攻關項目(No.2013A020229004,No.201508020263)聯合資助

趙衛,Email:zhaowei@smu.edu.cn

1.南方醫科大學公共衛生學院三級生物安全實驗室,廣州 510515; 2.南方醫科大學第一臨床醫學院,廣州 510515

10.3969/j.issn.1002-2694.2017.07.015

R373.9

A

1002-2694(2017)05-0650-08

2016-12-07 編輯:劉岱偉

Funded by the Natural Science Foundation of China (Nos. 31270974 & 31470271), the Technologies R & D Program of Guangdong Province (No. 2013A020229004), and the Technologies R & D Program of Guangzhou (No. 201508020263)

猜你喜歡
效應機制
構建“不敢腐、不能腐、不想腐”機制的思考
鈾對大型溞的急性毒性效應
懶馬效應
今日農業(2020年19期)2020-12-14 14:16:52
場景效應
自制力是一種很好的篩選機制
文苑(2018年21期)2018-11-09 01:23:06
應變效應及其應用
定向培養 還需完善安置機制
中國衛生(2016年9期)2016-11-12 13:28:08
破除舊機制要分步推進
中國衛生(2015年9期)2015-11-10 03:11:12
偶像效應
注重機制的相互配合
中國衛生(2014年3期)2014-11-12 13:18:12
主站蜘蛛池模板: 国产超碰一区二区三区| 又粗又硬又大又爽免费视频播放| 欧洲亚洲欧美国产日本高清| 毛片网站在线播放| 99久久性生片| 中文字幕资源站| 日本妇乱子伦视频| 欧美成人影院亚洲综合图| 国产成人无码播放| 搞黄网站免费观看| 久久人搡人人玩人妻精品| 99热最新网址| 国产成人高清亚洲一区久久| 日韩精品成人在线| 久久综合一个色综合网| 久久永久视频| 国产极品粉嫩小泬免费看| 成人精品免费视频| 欧美性爱精品一区二区三区 | 青青青草国产| 国产无码制服丝袜| 老司国产精品视频91| 亚洲精品久综合蜜| 亚洲综合色区在线播放2019| 久久青草免费91观看| 国产拍在线| 国产二级毛片| 国产免费怡红院视频| 亚洲国产成人精品青青草原| 国产精品美人久久久久久AV| 九九热精品视频在线| 一级成人欧美一区在线观看 | 亚洲无限乱码一二三四区| 超清无码一区二区三区| 精品国产成人av免费| 久久精品只有这里有| 欧美另类一区| 欧美在线免费| 久久综合伊人77777| AV天堂资源福利在线观看| 国产精品亚洲一区二区三区在线观看| 国产免费观看av大片的网站| 免费看的一级毛片| 日本手机在线视频| 亚洲无线观看| 青青草原国产av福利网站| 国产在线第二页| 欧美成人日韩| 毛片久久网站小视频| 亚洲一区二区三区麻豆| 国产资源免费观看| 91尤物国产尤物福利在线| 欧美精品一二三区| 亚洲AV无码久久精品色欲| 国产一区二区丝袜高跟鞋| 91精品啪在线观看国产60岁| 精品视频第一页| 97在线免费| 韩日免费小视频| 国产在线97| 天堂成人在线视频| 国产亚洲欧美在线视频| 亚洲午夜福利在线| 国产区免费精品视频| 波多野结衣一区二区三区88| 永久免费精品视频| 国内熟女少妇一线天| 国产第四页| 喷潮白浆直流在线播放| 亚洲狠狠婷婷综合久久久久| 久久国语对白| 99久久精品免费看国产免费软件 | 免费高清毛片| 91国内在线观看| 91福利在线观看视频| 国产免费网址| 性视频久久| 成人国产小视频| 国产91小视频在线观看| 国产不卡在线看| 高h视频在线| 欧美综合激情|