葛茸茸,沈 煒
·基礎醫學· ·論著·
雷帕霉素靶蛋白信號通路介導轉化生長因子-β2誘導的后發性白內障的分子機制研究
葛茸茸,沈 煒
目的 探討雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信號通路與轉化生長因子(transforming growth factor,TGF)-β2誘導的晶狀體上皮細胞間質化的相關機制。方法 顯微鏡觀察TGF-β2誘導的晶狀體上皮細胞的表型變化,Western blot進一步驗證TGF-β2誘導的HLEB-3上皮間質轉化模型。MTT檢測TGF-β2誘導上皮間質化后以及雷帕霉素對細胞增殖的影響。Western blot在分子水平檢測上皮間質化和mTOR信號通路之間的機制關聯。結果 加入TGF-β2誘導處理24 h后,用顯微鏡觀察HLEB-3的細胞形態由橢圓形變為星形或紡錘形,細胞連接減少。Western blot檢測發現TGF-β2誘導后的HLEB-3中上皮細胞標志蛋白E-cadherin表達水平明顯降低,而間質細胞標記蛋白α-SMA的表達水平顯著降低,差異有統計學意義(P<0.05)。MTT檢測發現雷帕霉素預處理可以抑制TGF-β2對上皮細胞增殖的促進作用。Western blot顯示當用雷帕霉素抑制mTOR信號通路的激活后,可以逆轉TGF-β2對α-SMA的表達的上調作用,促進上皮細胞標志蛋白E-cadherin的表達。結論 mTOR信號通路介導TGF-β2誘導的上皮細胞間質化作用,促進后發性白內障的發生。
轉化生長因子-β2;雷帕霉素靶蛋白信號通路;后發性白內障
后發性白內障(posterior capsular opacification,PCO)是白內障術后常見的主要并發癥之一,是目前白內障術后視力下降的主要原因,其分子病理基礎為手術殘留的晶狀體上皮細胞的異常遷移、增殖及上皮間質轉化[1]。雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信號通路是調控細胞生長與增殖、分化的關鍵通路,不僅可參與調節細胞周期的進程,調控細胞生長增殖[2],而且促進細胞的黏附和遷移,調節上皮間質轉化[3]。雖然晶狀體上皮細胞發生上皮間質轉化是后發性白內障的病理基礎,然而,mTOR信號通路在晶狀體上皮細胞上皮間質轉化過程中的作用及作用機制目前知之甚少。本研究擬通過轉化生長因子(transforming growth factor,TGF)-β2誘導晶狀體上皮細胞構建上皮間質轉化模型,檢測mTOR信號通路在上皮間質轉化過程中的表達,并利用mTOR 抑制劑雷帕霉素誘導晶狀體上皮細胞,探討其對晶狀體上皮細胞間質轉化的影響,明確mTOR信號通路在晶狀體上皮細胞上皮間質轉化過程中的作用及機制,從中尋找后發性白內障防治的新靶點。
1.1 材料和試劑 TGF-β2購買自PeproTech公司,人晶狀體上皮細胞HLEB-3購買自上海生命科學院細胞所。DMEM培養液和胎牛血清(AusGeneX)購買自上海銀海圣生物有限公司,青霉素、鏈霉素、胰酶、雷帕霉素購買自上海聚仕隆有限公司,E-cadherin抗體,α-SMA抗體、mTOR抗體、p-mTOR抗體、cyclinD1抗體、BAX抗體購買自上海煊翎有限公司。MTT試劑盒和Annexinv-FITC/PI雙染試劑盒購買自南京建成生物有限公司。
1.2 方法 細胞培養與處理人晶狀體上皮細胞HLEB-3進行常規傳代培養,DMEM培養液和10%胎牛血清在37 ℃ 5%二氧化碳的培養箱中培養。當細胞約80%融合時,換用無血清DMEM培養液,加入終濃度為1 ng/ml TGF-β2誘導處理24 h,模擬人晶狀體上皮細胞HLEB-3上皮間質轉化模型。為檢測mTOR信號通路對上皮間質化的影響,當人晶狀體上皮細胞HLEB-3約80%融合時,換用無血清DMEM培養液,先加入終濃度為100 μmol/L的雷帕霉素預處理2 h,然后用終濃度為1 μg/L TGF-β2誘導處理24 h,檢測mTOR信號通路抑制后對TGF-β2誘導的上皮間質轉化的影響。
1.3 觀察及檢測指標 (1)顯微鏡觀察細胞形態。在培養室的倒置顯微鏡下觀察人晶狀體上皮細胞HLEB-3的形態以及加入TGF-β2和雷帕霉素的形態變化,拍照并對比。(2)MTT檢測細胞增殖。人晶狀體上皮細胞HLEB-3進行常規傳代培養,收集對數生長期細胞制成單細胞懸液,接種于96孔板,細胞約80%融合時,換用無血清DMEM培養液,先加入終濃度為100 μmol/L的雷帕霉素預處理2 h,然后用終濃度為1 μg/L TGF-β2誘導處理24 h,加入MTT溶液,孵育4 h后酶標儀檢測570 nm處的光密度(OD值)。(3)Western blot檢測上皮間質轉化相關分子的表達以及mTOR信號通路的激活情況。先加入終濃度為100 μmol/L的雷帕霉素預處理2 h,然后用終濃度為1 μg/L TGF-β2誘導處理24 h, Western blot檢測HLEB-3細胞中檢測mTOR信號通路的激活水平以及上皮細胞標志蛋白E-cadherin以及間質細胞標志蛋白α-SMA的表達水平,探究mTOR信號通路的激活與上皮間質轉化的關系。
1.4 統計學處理 采用 SPSS 14.55統計軟件處理。實驗數據以均數±標準差(x±s)表示,各組間樣本均數比較采用One-way ANOVA分析,兩樣本間成對比較用t檢驗。P<0.05為差異具有統計學意義。
2.1 顯微鏡觀察TGF-β2誘導的晶狀體上皮細胞上皮間質轉化模型 顯微鏡觀察發現TGF-β2處理后細胞形態明顯變得細長,形態變為星形或紡錘形,細胞之間連接減少,具有成纖維細胞的雛形。這表明TGF-β2可能參與誘導的晶狀體上皮細胞上皮間質轉化。見圖1。
2.2 Western blot驗證TGF-β2誘導的晶狀體上皮細胞HLEB-3上皮間質轉化模型 利用Western blot檢測結果發現,與對照組比較,TGF-β2誘導的上皮細胞標志蛋白E-cadherin表達水平明顯降低,而間質細胞標記蛋白α-SMA的表達水平顯著升高,差異均有統計學意義(P<0.05)。見圖2。
2.3 MTT檢測TGF-β2和雷帕霉素對晶狀體上皮細胞HLEB-3增殖的影響 TGF-β2可以成功誘導HLEB-3細胞間質化,那么對細胞的增殖具有怎么樣的影響,當用雷帕霉素預處理抑制mTOR信號通路后增殖的變化如何,尚不明確。因此,筆者利用MTT方法檢測了細胞間質化后細胞增殖的變化,發現TGF-β2誘導細胞間質化后細胞數量明顯增加。見圖3。

注:A表示對照組(加入PBS),B表示TGF-β2處理組。TGF為轉化生長因子圖1 顯微鏡觀察TGF-β2誘導的人晶狀體上皮細胞HLEB-3形態變化(×200)

注:與對照組比較aP<0.05。TGF為轉化生長因子。A為2組蛋白電泳圖,B為2組蛋白的表達水平圖2 TGF-β2對人晶狀體上皮細胞HLEB-3中上皮細胞標志蛋白和間質細胞標志蛋白表達的影響

注:與TGF-β2處理組比較aP<0.05。TGF為轉化生長因子圖3 TGF-β2和雷帕霉素對晶狀體上皮細胞HLEB-3增殖的影響
2.5 TGF-β2和雷帕霉素對上皮間質化和mTOR信號通路的影響 為了探究mTOR信號通路和TGF-β2誘導的HLEB-3細胞間質化的關系,利用Western blot檢測了TGF-β2和雷帕霉素處理后,上皮間質化標志蛋白、間質化標志性蛋白和mTOR信號通路的激活情況,發現TGF-β2可以顯著激活mTOR信號通路,促進HLEB-3細胞中間質化標志性蛋白α-SMA的表達,促進上皮細胞間質化,當用雷帕霉素抑制mTOR信號通路的激活后,可以逆轉TGF-β2對α-SMA的表達的上調作用,逆轉TGF-β2對上皮細胞間質化的作用。見圖4。

注:與TGF-β2處理組比較aP<0.05。TGF為轉化生長因子。A為各組蛋白電泳圖,B為各組蛋白的表達水平圖4 TGF-β2和雷帕霉素對上皮間質化和mTOR信號通路的影響
白內障術后晶狀體后囊膜混濁又名PCO,是現代白內障術后最常見的主要并發癥之一[4],盡管手術技術和人工晶狀體材料的進步已經在很大程度上降低了后發性白內障的發生率,但后發性白內障仍是術后視力下降的主要原因[5],目前認為手術殘留的晶狀體上皮細胞的異常遷移、增殖及上皮間質轉化是后發性白內障的主要發病機制[6],積極預防后發性白內障的發生是保障白內障手術遠期療效的關鍵途徑[7]。因此,應積極探究PCO發病的調控機制,為PCO的治療尋找新的分子靶位點。
近年來,研究發現肝細胞生長因子,成纖維細胞生長因子[8]、轉化生長因子、表皮生長因子[9]等均參與后發性白內障的發生,其中,TGF-β2參與調節晶體狀上皮細胞的增殖、遷移、上皮間質轉化等多種活動,是公認的誘發PCO發生的重要因子[10]。目前TGF-β誘導晶狀體上皮細胞上皮間質轉化細胞模型已成為眾多學者認可的研究白內障形成的細胞模型[11]。
目前在PCO發生發展過程中研究比較明確的信號傳導途徑有TGF-β/Smad信號通路[12]、PI3K/AKT/mTOR信號通路[13]、Rho/ROCK信號通路[14]等。目前認為mTOR信號通路不僅在調節細胞周期進程和細胞生長增殖過程中發揮中心樞紐的作用[15],而促進細胞的黏附和遷移,并參與調節上皮間質轉化[16]。研究證實,mTOR信號通路介導TGF-β誘導的小鼠乳腺上皮細胞上皮間質轉化[17]。近期有研究[18]表明,在上皮細胞的上皮間質轉化過程中,TGF-β通過激活PI3K/Akt信號通路進而激活mTOR信號通路,然而,mTOR途徑在晶狀體上皮細胞上皮間質轉化過程中的作用目前研究甚少。
本課題擬通過TGF-β誘導的晶狀體上皮細胞上皮間質轉化模型,檢測mTOR途徑在此過程中的活化情況,并利用mTOR抑制劑誘導晶狀體上皮細胞,探討其對細胞形態、增殖、凋亡以及間質轉化的影響,初步明確mTOR途徑在晶狀體上皮細胞上皮間質轉化過程中的作用及機制,力求從中尋找PCO防治的新靶點。結果發現TGF-β能夠活化mTOR信號通路,促進人晶狀體上皮細胞的遷移能力以及上皮細胞向間質的轉化,表明TGF-β能夠通過mTOR信號通路調控PCO的發生發展。這提示了抑制mTOR信號通路的活化,可能會減弱TGF-β對人晶狀體上皮細胞增殖及遷移能力的增強作用,mTOR信號通路可能為改善上皮間質轉化的靶位點[19]。筆者利用mTOR 抑制劑雷帕霉素誘導晶狀體上皮細胞,發現雷帕霉素可以顯著抑制晶狀體上皮細胞間質轉化,進一步驗證了mTOR信號通路介導TGF-β2誘導的上皮細胞間質化作用,促進PCO的發生這一結論,為PCO的治療及藥物研發提供了一定的分子理論依據。
[1] Wormstone IM, Wang L, Liu CS. Posterior capsule opacification[J]. Exp Eye Res, 2009, 88(2): 257-269. DOI:10.1016/j.exer.2008.10.016.
[2] Chen YC, Chien LH, Huang BM, et al. Aqueous extracts of toona sinensis leaves inhibit renal carcinoma cell growth and migration through JAK2/stat3, Akt, MEK/ERK, and mTOR/HIF-2α pathways[J]. Nutr Cancer, 2016, 68(4): 654-666. DOI:10.1080/01635581.2016.1158292.
[3] Gao H, Zhong F, Xie J, et al. PTTG promotes invasion in human breast cancer cell line by upregulating EMMPRIN via FAK/Akt/mTOR signaling[J]. Am J Cancer Res, 2015, 6(2):425-39.
[4] Chan E, Mahroo OA, Spalton DJ. Complications of cataract surgery[J]. Clin Exp Optom, 2010, 93(6): 379-389. DOI:10.1111/j.1444-0938.2010.00516.x.
[5] Kramer GD, Werner L, MacLean K, et al. Evaluation of stability and capsular bag opacification with a foldable intraocular lens coupled with a protective membrane in the rabbit model[J]. J Cataract Refract Surg, 2015, 41(8): 1738-1744. DOI:10.1016/j.jcrs.2015.03.017.
[6] Luft N, Kreutzer TC, Dirisamer M, et al. Evaluation of laser capsule polishing for prevention of posterior capsule opacification in a human ex vivo model[J]. J Cataract Refract Surg, 2015, 41(12): 2739-2745. DOI:10.1016/j.jcrs.2015.06.039.
[7] Nibourg LM, Gelens E, Kuijer R, et al. Prevention of posterior capsular opacification[J]. Exp Eye Res, 2015, 136: 100-115. DOI:10.1016/j.exer.2015.03.011.
[8] Dawes LJ, Duncan G, Wormstone IM. Age-related differences in signaling efficiency of human lens cells underpin differential wound healing response rates following cataract surgery[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 333-342. DOI:10.1167/iovs.12-10425.
[9] Wertheimer C, Siedlecki J, Kook D, et al. EGFR inhibitor Gefitinib attenuates posterior capsule opacification in vitro and in the ex vivo human capsular bag model[J]. Albrecht Graefe Archiv klin Experim Ophthalmol, 2015, 253(3): 409-417. DOI:10.1007/s00417-014-2875-0.
[10] Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract[J]. Exp Eye Res, 2016, 142: 92-101. DOI:10.1016/j.exer.2015.02.004.
[11] Wormstone IM, Eldred JA. Experimental models for posterior capsule opacification research[J]. Exp Eye Res, 2016, 142: 2-12. DOI:10.1016/j.exer.2015.04.021.
[12] Li J, Tang X, Chen X. Comparative effects of TGF-β2/Smad2 and TGF-β2/Smad3 signaling pathways on proliferation, migration, and extracellular matrix production in a human lens cell line[J]. Exp Eye Res, 2011, 92(3): 173-179. DOI:10.1016/j.exer.2011.01.009.
[13] Yao K, Ye PP, Tan J, et al. Involvement of PI3K/Akt pathway in TGF-beta2-mediated epithelial mesenchymal transition in human lens epithelial cells[J]. Ophthalmic Res, 2008, 40(2): 69-76. DOI:10.1159/000113884.
[14] Cheng HL, Lin CW, Yang JS, et al. Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cells metastasis by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways[J]. Oncotarget, 2016,(9): 9742-9758. DOI:10.18632/oncotarget.7138.
[15] Albert V, Hall MN. mTOR signaling in cellular and organismal energetics[J]. Curr Opin Cell Biol, 2015, 33: 55-66. DOI:10.1016/j.ceb.2014.12.001.
[16] Kwasnicki A, Jeevan D, Braun A, et al. Involvement of mTOR signaling pathways in regulating growth and dissemination of metastatic brain tumors via EMT[J]. Anticancer Res, 2015, 35(2): 689-696.
[17] Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway[J]. J Cell Biol, 2007, 178(3): 437-451. DOI:10.1083/jcb.200611146.
[18] Singha PK, Pandeswara S, Geng H, et al. TGF-βinduced TMEPAI/PMEPA1 inhibits canonical Smad signaling through R-Smad sequestration and promotes non-canonical PI3K/Akt signaling by reducing PTEN in triple negative breast cancer[J]. Genes Cancer, 2014, 5(9-10): 320-336. DOI:10.18632/genesandcancer.30.
[19] Wertheimer C, Brandlhuber U, Kook D, et al. Erufosine, a phosphoinositide-3-kinase inhibitor, to mitigate posterior capsule opacification in the human capsular bag model[J]. J Cataract Refract Surg, 2015, 41(7): 1484-1489. DOI:10.1016/j.jcrs.2015.02.034.
(本文編輯:莫琳芳)
Study on the molecular mechanism of after-cataract induced by mTOR signal pathway and mediated by TGF-β2
Ge Rongrong, Shen Wei
(DepartmentofOphthalmology,ChanghaiHospital,SecondMilitaryMedicalUniversity,Shanghai200433,China)
Objective To investigate the mechanism of the association between mammalian target of rapamycin(mTOR) signal pathway and TGF-β2-induced lens epithelial mesenchymal transition.MethodsPhenotypic changes in lens epithelial cells induced by TGF-β2 were closely observed by microscopy. Western blotting was used to further verify the HLEB3 epithelial mesenchymal transition model induced by TGF-β2. MTT was applied to detect the effects of TGF-β2 after induction of epithelial mesenchymal and Rapamycin on cell proliferation. Western blotting was used to detect the mechanism of the relationship between epithelial mesenchymal transition and mTOR signal pathway at the molecular level.ResultsAfter TGF-β2 treatment for 24 hours, microscopic observation revealed that HLEB-3 cells were transformed from the oval shape into the star or fusiform shape, and cell connection was also reduced. Western blotting revealed that the expression levels of epithelial protein marker E-cadherin in HLEB-3, following induction of TGF-β2, was obviously decreased, while the expression levels of the stromal cell protein marker α-SMA were significantly decreased, and statistical significance could be noticed when comparisons were made between them(P<0.05). MTT test also indicated that Rapamycin pretreatment could inhibit the enhancing effect of TGF-β2 on epithelial cell proliferation. Western blotting showed that Rapamycin could reverse the up-regulation of α-SMA by TGF-β2 and promote the expression of epithelial protein marker E-cadherin, following the activation of mTOR signal pathway inhibited by Rapamycin.ConclusionEpithelial mesenchymal transition induced by mTOR signal pathway and mediated by TGF-β2 could promote the onset of after-cataract.
TGF -β2; mTOR signal pathway; Post capsular opacification
虹口區衛生和計劃生育委員會醫學科研課題(虹衛1603-27);上海市科學技術委員會科研計劃項目(15ZR1413200)
200433 上海,第二軍醫大學附屬長海醫院眼科[葛茸茸(現工作單位解放軍第四一一醫院眼科)、沈煒]
沈煒,電子信箱:shenwzz@163.com
R776.1
A
10.3969/j.issn.1009-0754.2016.06.006
2016-10-11)