陳淼 許秩 范學明 劉德銘 盧健東 黃詩惠
摘要:
為求解平面裂紋問題的應力強度因子,提出基于Muskhelishvili基本解和樣條虛邊界元法的樣條虛邊界元交替法.該方法將平面內帶裂紋有限域問題分解成帶裂紋無限域問題與不帶裂紋有限域問題的疊加.帶裂紋無限域問題利用Muskhelishvili基本解法直接得出,不帶裂紋有限域問題采用樣條虛邊界元法求解.利用該方法對復合型中心裂紋方板和I型偏心裂紋矩形板進行分析.數值結果表明該方法精度高且適用性強.
關鍵詞:
平面裂紋; 樣條虛邊界元法; 交替法; 斷裂力學; Muskhelishvili基本解; 應力強度因子
中圖分類號: O302
文獻標志碼: A
Abstract:
To solve the stress intensity factor of plane crack problem, a spline fictitious boundary element alternating method is proposed based on Muskhelishvili fundamental solution and spline fictitious boundary element method. A finite field crack problem is transformed into the superposition of a simple finite field problem without crack and an infinite problem with crack. The Muskhelishvili fundamental solution method is used to solve the infinite problem with crack and the spline fictitious boundary element method is implemented to solve the simple finite field problem without crack. A square plate with a slant center crack and a Itype rectangular plate with an eccentric crack are solved using the method. The numerical results show that the method is of high accuracy and strong applicability.
Key words:
plane crack; spline fictitious boundary element method; alternating method; fracture mechanics; Muskhelishvili fundamental solution; stress intensity factor
0引言
任何材料和工程結構都會不同程度地存在裂紋缺陷,其產生和擴展對構件的承載能力會造成很大程度的破壞,因此斷裂力學在現代強度理論中的地位越來越重要.應力強度因子是表征裂紋特性的重要參量,所以對其計算是斷裂力學研究的重要環節.
在現階段,求解應力強度因子的方法主要為改進的有限元法,包括奇異有限元法和擴展有限元法.[12]奇異有限元法通過移動節點使奇異點出現在1/4處而不是中點處,使得邊界節點處出現奇異的應力場,但是該方法存在單元直接協調性和計算收斂性的問題.擴展有限元法改進單元的形函數,使之包含不連續性的基本成分,從而放松對網格密度的劃分要求,但是其剛度矩陣存在病態問題并增加許多額外的未知量.
為更加高效精確地分析裂紋問題,有學者提出求解裂紋問題應力強度因子的SchwartzNeumann交替法.該方法將帶裂紋的復雜結構分解成為一個不含裂紋的復雜結構與一個含裂紋的無限大域,運用迭代方法或者線性方程對分解后的結構進行求解.含裂紋無限域采用Muskhelishvili基本解[3]求解,能夠直接利用表達式求解出平面內任意一點的響應和裂紋尖端的應力強度因子,因此具有精度高和計算量小的優點.不含裂紋的復雜結構可以采用數值方法求解,有限元法是最為常見的數值方法[410],將交替法與有限元法相結合的方法稱為有限元交替法.然而,有限元法的應力結果相較于位移結果來說精度較低,在循環迭代的過程中會造成誤差的進一步增大.
樣條虛邊界元法是一種高效的間接邊界元法,其只需要對邊界進行劃分,可降低問題求解的維度,使得計算效率大大提高,目前已經在工程實踐中應用.[1114]Muskhelishvili基本解和樣條虛邊界元法都是基于無限域推導出來的,所以在全平面內都可以運用疊加原理.本文在利用交替法將原結構分解之后,采用以上2種方法分別對分解后的結構進行求解.
本文首先對Muskhelishvili基本解進行詳細介紹,得出其應力、位移和應力強度因子的表達式,然后闡述樣條虛邊界元法分析平面有限域問題的基本過程,在此基礎上,結合交替法提出求解平面問題應力強度因子的樣條虛邊界元交替法.最后,對復合型中心裂紋方板和I型偏心裂紋矩形板進行數值分析,考察本文方法的準確性和實用性.
1Muskhelishvili基本解
假設在無限大域中的實軸上存在一條裂紋ab,裂紋左尖端和右尖端x軸坐標分別是a和b.假設裂紋上表面的應力為f+y和f+xy,下表面的應力為f-y和f-xy,所求點的坐標為z=x+iy,見圖1[13].
由表1可發現當虛實邊界距離d減小到20.0的時候結果即收斂,并且與解析解保持較高程度的吻合.為保證結果的穩定性,本算例取d=2.0進行計算.在利用奇異有限元法計算時,裂紋尖端附近采用1/4奇異性單元,其他部分采用四邊形單元,根據不同的裂紋長度和角度分別采用不同的單元數和自由度,各種情況自由度見表2.將2種數值方法的計算結果與解析解進行比較,見表2和表3.
從表2和3中可以看出:采用樣條虛邊界元交替法計算的數值和解析解之間的誤差不超過2%,達到較高的精度;而采用奇異有限元法算出的結果與解析解的誤差普遍大于本方法,最大誤差達5.6%,可知本文方法的精度有明顯的提升.另外需要注意的是,裂紋越長,無限大板的假定所帶來的差別也越大,因此長裂紋誤差變大的現象是可以預見的.
5結論
本文在交替法的基礎上,結合Muskhelishvili基本解和樣條虛邊界元法,提出求解裂紋問題的樣條虛邊界元交替法.利用該方法對復合型中心裂紋方板和I型偏心裂紋矩形板進行分析后發現,相對于奇異有限元法來說,該方法具有更高精度的應力強度因子計算能力,并且其還能適應各種不同的裂紋分布情況,是一種有效且實用的求解裂紋問題的新型數值分析方法.通過復合型中心裂紋方形板算例分析,發現以下規律:(1) 裂紋長度越大,應力強度因子越大;(2) 隨著裂紋與受載荷方向夾角的增大,I類應力強度因子隨之增大,II類應力強度因子先增大后減小.
參考文獻:
[1]段靜波, 李道奎, 雷勇軍. 斷裂力學分析的奇異有限元法研究綜述[J]. 機械強度, 2012, 34(2): 262269. DOI: 10.16579/j.issn.1001.9669.2012.02.005.
DUAN J B, LI D K, LEI Y J. Advances in singular finite element method for fracture mechanics analysis[J]. Journal of Mechanical Strength, 2012, 34(2): 262269. DOI: 10.16579/j.issn.1001.9669.2012.02.005.
[2]茹忠亮, 朱傳銳, 張友良, 等. 斷裂問題的擴展有限元法研究[J]. 巖土力學, 2011, 32(7): 21712186. DOI: 10.3969/j.issn.10007598.2011.07.042.
RU Z L, ZHU C R, ZHANG Y L, et al. Study of fracture problem with extended finite element method[J]. Rock and Soil Mechanics, 2011, 32(7): 21712176. DOI: 10.3969/j.issn.10007598.2011.07.042.
[3]WANG L, ATLURI S N. Recent advances in the alternating method for elastic and inelastic fracture analyses[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 137(1): 158. DOI: 10.1016/00457825(96)010547.
[4]WANG H K, HAYNES R,HUANG H Z, et al. The use of highperformance fatigue mechanics and the extended kalman/particle filters, for diagnostics and prognostics of aircraft structures[J]. Computer Modeling in Engineering & Sciences, 2015, 105(1): 124. DOI: 10.1201/b180092.
[5]NIKISHKOV G P, PARK J H, ATLURI S N. SGBEMFEM Alternating method for analyzing 3D nonplanar cracks and their growth in structural components[J]. CMES, 2001, 2(3): 401422. DOI: 10.3970/cmes.2001.002.401.
[6]TIAN L, DONG L, BHAVANAM S, et al. Mixedmode fracture & nonplanar analyses of cracked Ibeams, using a 3D SGBEMFEM Alternating Method[J]. Theoretical and Applied Fracture Mechanics, 2014, 74: 188199. DOI: 10.1016/j.tafmec.2014.10.002.
[7]TIAN L, DONG L, PHAN N, et al. Threedimensional SGBEMFEM alternating method for analyzing fatiguecrack growth in and the life of attachment lugs[J]. Journal of Engineering Mechanics, 2015, 141(4): 04014142. DOI: 10.1061/(ASCE)EM.19437889.0000870.
[8]KAMAYA M, NISHIOKA T. Analysis of surface crack in cylinder by finite element alternating method[J]. Journal of Pressure Vessel Technology, 2005, 127(2): 165172. DOI: 10.1115/1.1903003.
[9]張建宇, 費斌軍. 疲勞多裂紋問題研究進展[J]. 力學與實踐, 2003, 25(1): 610. DOI: 10.6052/100009922001051.
ZHANG J Y, FEI B J. Progress of studies on multiple fatigue cracks[J]. Mechanics in Engineering, 2003, 25(1): 610. DOI: 10.3969/j.issn.10000879.2003.01.002.
[10]NISHIOKA T, ATLURI S N. Analytical solution for embedded elliptical cracks, and finite element alternating method for elliptical surface cracks, subjected to arbitrary loadings[J]. Engineering Fracture Mechanics, 1983, 17(3): 247268. DOI: 10.1016/00137944(83)900322.
[11]SU C, HAN D J. Elastic analysis of orthotropic plane problems by the spline fictitious boundary element method[J]. Applied Mathematics and Mechanics, 2002, 23(4): 446453. DOI: 10.1007/BF02436213.
[12]SU C, ZHAO S W, MA H T. Reliability analysis of plane elasticity problems by stochastic spline fictitious boundary element method[J]. Engineering Analysis with Boundary Elements, 2012, 36(2): 118124. DOI: 10.1016/j.enganabound.2011.07.015.
[13]SU C, XU J. Reliability analysis of Reissner plate bending problems by stochastic spline fictitious boundary element method[J]. Engineering Analysis with Boundary Elements, 2015, 51: 3743. DOI: 10.1016/j.enganabound.2014.10.006.
[14]SU C, XU J. Stochastic spline fictitious boundary element method for analysis of thin plate bending problems with random fields[J]. Engineering Analysis with Boundary Elements, 2015, 58: 8698. DOI: 10.1016/j.enganabound.2015.03.014.
[15]徐芝綸. 彈性力學簡明教程[M]. 北京: 高等教育出版社, 2013.
[16]蘇成. 分域樣條虛邊界元法及其在高層建筑結構分析中的應用[D]. 廣州: 華南理工大學, 1997.
[17]蘇成, 鄭淳. 應力強度因子計算的樣條虛邊界元法[J]. 工程力學, 2007, 24(8): 4953. DOI: 10.3969/j.issn.10004750.2007.08.009.
SU C, ZHENG C. Calculation of stress intensity factors by spline fictitious boundary element method[J]. Engineering Mechanics, 2007, 24(8): 4953. DOI: 10.3969/j.issn.10004750.2007.08.009.
[18]陳芳, 王生楠. III復合型裂紋的應力強度因子有限元計算分析[J]. 機械設計與制造, 2009(8): 2021. DOI: 10.3969/j.issn.10013997.2009.08.008.
CHEN F, WANG S N. III mixedmode crack stress intensity factor of the finite element calculation and analysis[J]. Machinery Design and Manufacture, 2009(8): 2021. DOI: 10.3969/j.issn.10013997.2009.08.008.
[19]中國航空研究院.應力強度因子手冊[M]. 北京: 科學出版社, 1981.
(編輯武曉英)