金志龍

【摘要】數學基本活動經驗主要是指學習者在參與數學學習活動中所形成的感性認識,情緒體驗,和應用意識等。“操作與表達”“推理與歸納”“遷移與轉化”“歸納與調整”等可以為學生活動經驗的積累提供路徑與線索,機會與平臺,因此,教師可以以此為培育點,幫助學生積累數學活動經驗,提升學生數學素養。
【關鍵詞】小學數學 課堂教學 基本活動經驗積累
由“雙基”走向“四基”是數學課程標準修訂中的一項重大變化。“基本活動經驗”是“四基”之一,在小數課堂教學過程中,幫助學生找準基本活動經驗的培育點,幫助學生積累基本的數學活動經驗對于學生今后的學習與工作具有重要意義。因此,教師在教學的時候,要根據教學需要,時刻把幫助學生積累基本活動經驗作為自己重要的教學目標之一,然后,在課堂教學中進行實踐以落實,從而為真正提升學生數學活動經驗奠定基礎。下面筆者主要結合教學實踐就學生基本活動經驗的積累談談自己的教學體會。
一、以“操作與表達”為培育點,積累基本的數學活動經驗
兒童的智慧大都在其手指尖上。在學生數學學習活動中,操作與表達之間的關系是密不可分的,如果只注重操作,不注重表達,那么,學生的操作也只是機械的操作,很難在學生心中得到內化。因此,在課堂教學過程中,教師要找準培育點,從而使學生的操作與表達經驗得到有效提升。
如在教學《平均分》這部分內容的時候,教師如果只是硬性地要求學生按照平均分的概念規則去學習,而不注重讓學生親自去操作、去表達的話,即使學生掌握了這些知識,那么,由于學生對所學知識缺乏具體的直觀地感受,學生對所學知識也只不過是停留在淺層,為了深化學生的學習效果,筆者是這樣教學的:“同學們,有6顆糖果,如果讓你把它分成兩份的話,你有幾種分法?請你們用手中的學具分一分。”在學生分完以后,教師再讓學生說說自己是怎么分的。有學生說自己分的一份是1個,一份是5個;有學生說自己分的1份是2個,一份是4個。當學生說到自己分的每份都是3個的時候,教師再把鏡頭的目光對準這里,讓學生進一步說說自己從這種分法中明白了什么,在此基礎上,再把學生引入“平均分”的概念學習之中。這樣教學,符合學生接受認知事物的習慣,教學效果也更顯著。
在上述教學案例中,在“平均分”這一概念定義的學習上,教師主要采用了“動手操作——探究思考——語言表達”的教學方法,從而使學生明白了操作與表達是密不可分的,只有它們互相依存,才可以使學生所學知識及時得到內化,并使學生積累到操作與表達的學習經驗,為提升學生學習能力奠定基礎。
二、以“推理與歸納”為培育點,積累基本的數學活動經驗
所謂“推理與歸納”的活動經驗就是指根據已有知識之間的內在聯系,從而做出合情推理與判斷的過程,進而推理出具有一般意義的方法與策略等。在課堂教學過程中,教師要善于借助已有知識的特點,幫助學生積累一些推理與歸納的活動經驗,從而使學生的學習能力得到明顯提升。
如《3的倍數特征》這部分知識的教學。本來這部分是需要學生經過具體的計算,操作,觀察等才能總結出3的倍數特征的,但是,在學這部分知識之前,學生已經學過了2與5的倍數,知道了2與5的倍數特征是什么,并且能夠根據這些特征解決問題。鑒于學生所學知識比較接近的特點,在這一課的教學上,教師沒有采取傳統的教學方法,而是讓學生猜想一下3的倍數特征是什么。然后,再鼓勵學生在猜想的基礎上去推理,去歸納,去驗證。在教師的鼓勵下,有學生認為“3的倍數特征就是個位上數字能夠被3整除”,有學生認為“3的倍數特征是個位或者任意位上數字是3”……針對學生的猜想,教師沒有評論,而是讓學生自己去驗證,自己去總結3的倍數特征是什么。就這樣,在教師的點撥與指引下,學生也就自然積累了一些推理與歸納的活動經驗,為學生今后的數學學習奠定了基礎。
在上述教學案例中,在“3的倍數特征”的教學上,教師沒有采取讓學生死記硬背概念公式的教學方法,而是從學生的已有知識介入,讓學生真正經歷了猜想、推理、歸納等過程。這樣教學,由于學生所學知識都是學生自己通過推導得來的,因此,他們的感受更深刻,并且成功地積累了推理與歸納的活動經驗,起到了良好的教學效果。
三、以“遷移與轉化”為培育點,積累基本的數學活動經驗。
在小學數學教學過程中,如果學生積累了遷移與轉化的活動經驗,那么,學生在遇到此類問題時,就會不由自主地展開回憶,啟動聯想,并借助自己的經驗,順利實現“新知向舊知”的遷移以及“舊知向新知”的轉化過程,從而達到順利幫助學生解決數學問題的目的。
如在教學《多邊形的面積》這部分知識的時候,由于學生在學習平行四邊形的時候,已經具有了割、補、拼、移、轉等學習經驗,因此,在學習三角形的面積時,教師就可以從平行四邊形的面積入手,引導學生對所學知識進行遷移與轉化,從而讓學生自主推導出三角形面積公式;同樣的,在學生具有了三角形、平行四邊形面積公式推導的基礎上,在學習梯形面積的時候,教師就可以讓學生借助遷移與轉化來解決梯形面積的問題;以此類推,同理可得,這種遷移與轉化的方法同樣適用于圓面積、圓環的面積計算。因此,在課堂教學中,教師要根據教學需要幫助學生積累一些遷移與轉化的活動經驗,從而使學生能夠舉一反三,提高教學效果。
在上述教學案例中,在教學“多邊形的面積”時,由于學生在學習平行四邊形面積的時候,已經具有了一定的數學活動經驗,并且學生已經具備了自行推導面積公式的能力,因此,在課堂教學時,教師就是以學生所學知識為媒介,幫助學生積累了遷移與轉化的學習經驗,取得了良好的教學效果。
四、以“規劃與調整”為培育點,積累基本的數學活動經驗
所謂“規劃與調整”的活動經驗就是指學生在解決某個具體問題時,能夠自主進行思路規劃,并且嘗試提出解決方案,在活動進程中根據需要隨時調整解決問題的路徑方法等。因此,在小學數學課堂教學過程中,教師要根據需要找準培育點,從而幫助學生積累一些“規劃與調整”的活動經驗。
如《分類與整理》這部分知識的教學。對于低年級學生來說,在家里已經具備了自己整理房間、玩具等生活經驗,因此,在教學這部分內容的時候,對于如何分類、如何整理以及怎樣進行更合適等活動,教師完全可以充分放手,讓學生親自動手去嘗試,對于學生在分類或者整理過程中出現的錯誤現象不加干預,只是適當地進行點撥與提醒,以使學生能夠主動發現問題,然后在此基礎上,自己試著調整分類方法,總結分類經驗。這樣教學,比起教師強硬地要求學生如何分類效果要好得多,并成功地幫助學生積累了一些基本的數學活動經驗。
在上述教學案例中,在“分類與整理”的教學中,對于如何分類、如何調整、如何規劃等,教師完全放手,不加干預,讓學生自行完成這個數學知識的建構過程,這樣一來,學生可以有充分的時間自己摸索、探求、總結、調整等,在這個學習的過程中,學生們自然也就積累到了規劃與調整的活動經驗,取得了良好的教學效果。
綜上所述,在小學數學教學中,在學生數學活動經驗的積累方面,也正如史寧中教授所說的那樣——“我們必須清楚,世界上有許多東西是不可傳遞的,只能靠親身經歷。”因此,作為一名數學教師,要根據教學需要,找準數學活動經驗的培育點,用心指導、點撥,從而使學生真正有所得、有所獲,為全面提升學生的基本活動經驗奠定基礎。