吳 濤 馮歌林 曾 珍 陳俊輝徐秋芳 梁辰飛
(浙江農林大學環境與資源學院,浙江省森林生態系統碳循環與固碳減排重點實驗室,浙江臨安 311300)
生物質炭對盆栽黑麥草生長的影響及機理*
吳 濤 馮歌林 曾 珍 陳俊輝?徐秋芳 梁辰飛
(浙江農林大學環境與資源學院,浙江省森林生態系統碳循環與固碳減排重點實驗室,浙江臨安 311300)
通過盆栽試驗,采用實時定量PCR和微孔板熒光法,分別研究了生物質炭添加對太湖地區農田土壤黑麥草生長、微生物群落豐度和酶活性的影響。結果表明:生物質炭添加量為4%(炭/土質量比)處理顯著提高了土壤pH、有機碳、全氮、碳氮比、速效鉀含量及黑麥草生物量;提高了土壤細菌、古菌和固氮菌nifH基因拷貝數,而對真菌無影響;提高了β-葡萄糖苷酶、纖維二糖水解酶、木糖苷酶、β-N-乙酰氨基葡萄糖苷酶和酸性磷酸酶的活性。微生物豐度(除真菌外)與多數土壤酶活性(除亮氨酸氨基肽酶)均成顯著正相關。因此,生物質炭可增加土壤礦質養分,提高主要微生物類群和功能菌的豐度及土壤碳、氮和磷轉化酶活性,這可能是施用生物質炭提升農田土壤養分轉化功能和生產力的主要原因。
生物質炭;定量PCR;土壤酶;微孔板熒光法;土壤微生物
大氣溫室氣體濃度升高導致的全球變暖日益威脅人類社會。農田土壤固碳減排是應對全球變化的重要措施之一。在促進土壤固碳的同時,如何有效保持和提升土壤功能,尤其是提高土壤生產力和生物活性,是農業可持續發展的關鍵,也是固碳土壤學研究的新問題[1]。將生物質廢棄物熱解成生物質炭應用于土壤較好地解決了上述問題,盡管還存在一些爭議[2]。
國內外較多研究表明,生物質炭施用土壤后增加了土壤碳庫,一定程度上提高了作物的生產力(產量和生物量)。據Kimetu和Lehmann[3]報道,在貧瘠土壤中添加7 t hm-2生物質炭,2年內連續施用3次后玉米產量翻倍增長。施用氮肥的同時添加生物質炭可使小白菜產量較單獨施氮肥時增加70%以上[4]。Major等[5]在熱帶草原氧化土中連續4年施加生物質炭,發現施用生物質炭第一年未增加玉米產量,而后續3年分別增產8%、30%和 140%。然而,在作物增產方面還存在一些不同的觀點:將生物質炭施加到酸性土壤中能夠顯著增加小麥和蘿卜產量,而在堿性土壤中卻降低了其產量[6]。黃超等[7]研究發現生物質炭有效改善了低肥力酸性紅壤,促進黑麥草的生長,但在高肥力土壤上出現抑制作用。劉園等[8]報道低用量生物質炭對潮土作物產量無影響,中、高用量處理可以提高小麥、玉米和四季總產量4.54%~4.92%。學者認為出現相反結果可能與不同植物對生物質炭引起的pH敏感性不同,抑或高水平生物質炭可能引發氮固定,導致作物減產[6]。由此可見,生物質炭對促進植物生長效果還存在分歧,這種分歧取決于土壤肥力和性質、作物類型以及生物炭的特性和施用量等因素[9],有待于進一步驗證。
生物質炭對植物生長促進作用主要歸結為其改善了土壤結構和養分供應能力[5,9]。例如,生物質炭施用增加了土壤有機質含量,提高了土壤肥力,提高土壤pH,直接促進磷(P)、鉀(K)、鎂(Mg)和鈣(Ca)的生物有效性[7];改善了土壤質地,提高土壤持水性能和養分截留[8-9]。土壤微生物和土壤酶調控土壤物質轉化和養分循環,是土壤質量的重要生物指標[10]。研究發現,生物質炭增加了土壤中菌根真菌侵染,使得作物對養分和水分的吸收加強[11];有利于促進植物根際促生菌,提高辣椒病害抵抗力[12];提高紅壤性水稻土微生物數量[13]和濱海鹽堿土固氮功能微生物的豐度[14];提高蔗糖酶、脲酶和堿性磷酸酶等活性,促進糜子產量提高[15]。由此,推測生物質炭促進作物增產的潛在動力可能是土壤微生物與酶活性介導下的土壤養分供應能力的提高。生物質炭施用一方面增加土壤養分含量和生物有效性,另一方面可能通過提高土壤微生物數量和土壤酶活性改善土壤養分供給能力,從而間接促進植物生長。
為驗證以上科學假設,本研究通過采集太湖地區典型稻/麥輪作農田土壤,以小麥秸稈生物質炭為材料,通過盆栽試驗,采用定量PCR技術和微孔板熒光法,研究生物質炭添加對黑麥草生長和土壤微生物數量及相關土壤酶活性的影響,探討潛在的微生物學機理,以期為太湖地區農田土壤增匯減排和稻/麥輪作系統地力提升提供理論參考。
1.1 供試材料
供試土壤采自江蘇省宜興市宜豐鎮鯨塘村(31°24′10″ N,119°41′28″ E),土壤類型屬于太湖地區第四紀湖積物發育的脫潛型水稻土。該地區屬亞熱帶季風氣候,為典型的稻麥輪作區,年平均氣溫15.7℃,年平均降水量1177 mm。0~20cm土壤基本理化性質為:pH(H2O)6.80,有機碳23.5 g kg-1,全氮2.33 g kg-1,有效磷12.36 mg kg-1,速效鉀71.62 mg kg-1。于小麥季采集土壤樣品,風干后過2mm篩備用。
1.2 盆栽試驗
試驗設3個處理,分別為C0(不添加生物質炭)、C1(生物質炭添加量2%,炭/土質量比)和C2(生物質炭添加量4%,炭/土質量比),每處理3個重復。將土壤樣品與生物質炭充分混合后裝盆,每盆重量500 g。每盆播種20粒大小均勻飽滿的種子,等黑麥草種子萌發一周后,每盆間苗至10株,整個培養期間均保持無雜草生長。調節土壤含水量至田間最大持水量的65%。試驗在溫室內進行,培養期間不添加肥料,盆的位置隨機擺放,定期補充去離子水。盆栽90 d后剪取黑麥草地上部分,置于60℃烘箱中烘干至恒重,稱重。
盆栽結束后進行破壞性取樣,土壤過2 mm篩,混勻,分成2份。一份自然風干,用于土壤基本性質測定;另一份冷凍干燥后保存至-70℃冰箱,備用。
1.3 土壤化學分析
土壤化學性質分析參照文獻[16]進行。土壤pH用無CO2蒸餾水浸提(土水比為1∶2.5),pH計測定。有機碳和全氮(土壤過0.25 mm篩)分別采用重鉻酸鉀容量法和凱氏定氮法測定。堿解氮采用堿解擴散法測定;有效磷采用鹽酸-氟化銨溶液浸提,鉬銻抗比色法測定;速效鉀采用醋酸銨提取,火焰光度計(FP6410,上海)測定。
1.4 土壤總DNA提取
采用MATLAB對本文算法進行了仿真和驗證,并與ADM+CGA算法結果進行比較。兩個錨節點布置在鉆井井筒中固定位置,傳感器節點隨機散布在裂縫中,裂縫內部沒有錨節點。如前所述水力壓裂工藝產生的裂縫寬度很小,混在攜砂液(起支撐裂縫作用)進入裂縫內部的傳感器節點定位問題等效為平面內節點定位問題。為了研究噪聲引起的磁場測量誤差對定位的影響,利用距離測量誤差取代磁場測量誤差,觀察相對定位誤差隨距離測量誤差的變化。引入噪聲因子nf∈[0,1]反映距離測量噪聲方差大小,包含測量誤差的距離估計可表示為
稱取0.25 g冷凍干燥后的土壤樣品,采用MOBIO公司生產的土壤DNA提取試劑盒(Power-Soil DNA Isolation Kit,美國),按試劑盒說明書進行土壤總DNA提取。提取后的DNA經 1.0%的瓊脂糖凝膠電泳檢測,并用微量分光光度計(ND-1000,NanoDrop Technologies,美國)測定其濃度和純度。提取后的DNA 樣品保存于-20℃。
1.5 熒光定量PCR
本試驗選用細菌和古菌的16S rRNA基因、真菌18S rRNA基因和固氮微生物nifH基因進行定量分析。質粒及標準曲線的制作參照文獻[17]進行。以10倍梯度將獲得的質粒進行梯度稀釋,得到10-2~10-76個梯度備用。反應在實時定量PCR 儀CFX96TMReal-Time System (Bio-Rad,美國)上進行,反應體系組成如下:2 × 預混反應液SYBR Premix Ex Taq 10 μl(TaKaRa,日本),10 μmolL-1上游和下游引物各0.5 μl,模板DNA1.0 μl,無菌雙蒸水8 μl。標準曲線及每個樣品3次重復,同時設置空白。熒光定量PCR反應所用的引物和反應條件見表1。

表1 定量PCR擴增引物和反應條件Table 1 Primers for quantitative real time PCR and reaction conditions
1.6 土壤酶活性測定方法
土壤酶活性分析采用微孔板熒光法,其原理為利用底物與酶水解釋放4-甲基傘形酮酰(4-MUB)或7-氨基-4-甲基香豆素(MUC)進行熒光檢測,通過熒光強度的變化反映酶活性。選取的6種胞外酶分別為:β-葡萄糖苷酶(3.2.1.21,4-MUB-β-D-葡萄糖苷)、纖維二糖水解酶(3.2.1.91,4-MUB-纖維二糖苷)、木糖苷酶(3.2.1.37,4-MUB-β-D-木糖苷)、β-N-乙酰基氨基葡萄糖苷酶(3.2.1.30,4-MUB-β-D-乙酰基氨基葡萄糖苷)、酸性磷酸酶(3.1.3.2,4-MUB-磷酸酯)和亮氨酸氨基肽酶(3.4.11.1,L-亮氨酸-7-氨基-4-甲基香豆素鹽酸)。括號中的文字分別表示酶學委員會編碼和底物。微孔板熒光法分析參考文獻[22],并作了少量修改:稱取2 g冷凍干燥后的土壤樣品加入盛有40 ml 50 mmol L-1醋酸緩沖液(pH 5.0)的100 ml離心管中,置于搖床上25℃,200 r min-1震蕩 20 min,使土壤樣品充分破碎。用60 ml的50 mmol L-1醋酸緩沖液少量多次地將土壤懸液全部洗入1 L的燒杯中,制成土壤均質懸濁液。試驗每個樣品測定3次重復,同時設置不加標準物質的對照。用多功能酶標儀(SynergyTMH1,Biotek,美國)在熒光激發光365 nm和檢測光波長450 nm下測定反應液熒光值。根據標準曲線濃度梯度,本試驗所有樣品的標準曲線R2值均大于0.98。
1.7 數據處理
試驗數據使用SPSS 18.0(IBM Co.,Armonk,NY,美國)進行統計分析,采用單因素方差分析(one-way ANOVA)和鄧肯(Duncan)法多重比較檢驗各處理間的差異顯著性(p< 0.05)。相關性分析采用皮爾遜(Pearson)相關分析法進行雙尾檢驗確定顯著性。
2.1 生物質炭對土壤化學性質和黑麥草生物量的影響
如表2所示,與對照土壤相比,添加2% (C1)生物質炭的土壤,pH、有機碳(SOC)、全氮(TN)、碳氮比(C/N)和速效鉀分別提高了9%、45%、19%、20%和104%(均達顯著水平);添加4%(C2)生物質炭的土壤,上述指標分別提高了13%、99%、32%、50%和187%;但2%和4%生物質炭處理下堿解氮分別減少了17%和18%,而對有效磷含量無影響。添加低量生物質炭對黑麥草生物量無影響,而添加高量生物質炭(4%),黑麥草生物量提高了68%。

表2 培養結束后不同處理的土壤性質和黑麥草生物量Table 2 Properties of the soils after incubation relative to treatment and biomass of ryegrass
2.2 生物質炭對土壤微生物豐度的影響
與對照相比,C1處理使細菌、古菌和固氮菌基因豐度分別提高了30%、36%和72%,而對真菌基因豐度無影響(圖1);C2處理使上述指標分別提高了50%、83%和116%。生物質炭處理顯著降低了真菌/細菌比(F/B),提高了古菌/細菌比(A/B)。C2處理對細菌、古菌和固氮菌基因豐度的影響較C1更大。
2.3 生物質炭對土壤酶活性的影響
由圖2可知,C1處理下β-葡萄糖苷酶、纖維二糖水解酶、木糖苷酶、β-N-乙酰基氨基葡萄糖苷酶和酸性磷酸酶的活性分別較對照提高了25%、118%、123%、112%和14%。C2處理下上述指標分別較對照提高了61%、215%、148%、114%和20%。生物質炭處理對亮氨酸氨基肽酶無影響。C2處理下的β-葡萄糖苷酶和纖維二糖水解酶活性顯著高于C1,而其他酶活性在C1和C2處理之間均無顯著差異。
2.4 微生物豐度與土壤化學性質、酶活性間的相關性
依據變量之間的內在聯系,選擇性地提取了若干變量進行了相關性分析。土壤微生物豐度與土壤化學性質(pH、SOC、TN和C/N)及6種酶活性的相關性表明,細菌和固氮菌豐度均與pH、SOC、TN、C/N、β-葡萄糖苷酶、纖維二糖水解酶、木糖苷酶、β-N-乙酰基氨基葡萄糖苷酶和酸性磷酸酶呈顯著正相關,而與亮氨酸氨基肽酶無相關性(表3)。古菌除了與木糖苷酶和亮氨酸氨基肽酶無相關性外,其余相關性均與細菌一致。真菌豐度與土壤化學性質和所測酶均無相關性。

圖1 生物質炭添加處理下土壤微生物豐度Fig. 1 Soil microbial abundances relative to treatment of biochar addition
本試驗結果表明,高用量(4%)的小麥秸稈生物質炭添加至太湖地區農田土壤中可以顯著提高黑麥草生物量,與Zhang等[23]報道的田間試驗下生物質炭提高該地區水稻產量相一致。無疑,黑麥草生物量提高與土壤pH、有機碳、全氮和速效鉀含量提高有密切關系。如前所述,特別是在酸性土壤中,pH的提高可以直接促進P、K、Mg和Ca等養分的生物有效性,降低活性鋁和重金屬元素對植物生長的抑制作用[7]。盡管本研究所用土壤為中性土,生物質炭添加仍然提高了土壤pH 0.62~0.89個單位,土壤有機碳和全氮含量也得到了成倍提高。這主要是因為本研究所用生物質炭具有較高的pH(10.4)、有機碳、全氮和灰分含量,與土壤充分混勻后能短期內迅速中和土壤酸性物質,提高土壤pH和碳氮含量。生物質炭添加顯著提高了土壤速效鉀含量,與黃超等[7]和李松昊等[24]報道的結果相似。顯然,速效鉀含量的提高對促進植物光合作用、多糖合成和增加植物抗逆性等均有積極作用。堿解氮含量降低可能與生物質炭具有較強的有機物和礦質態氮吸附能力有關[25]。Taghizadeh-Toosi等[25]研究表明,生物質炭能吸附土壤中的銨態氮和硝態氮,且吸附的這些氮素是生物可利用的。低用量(2%)的生物質炭添加未顯著提高黑麥草生物量,可能是因為生物質炭對土壤養分等的改善作用還不夠充分。

圖2 生物質炭添加處理下的土壤酶活性Fig. 2 Soil enzyme activities relative to treatment of biochar addition

表3 微生物豐度與土壤化學性質、酶活性的相關性Table 3 Correlations between soil microbial abundances,soil properties and enzyme activities
土壤養分含量和生物有效性提高對促進植物生長有著重要作用。保持土壤具有較高的養分水平有賴于微生物和土壤酶介導的有機質礦化過程,在土壤環境適宜的條件下,土壤微生物群落數量、活性和土壤酶功能的提高可以調控養分轉化和釋放,促進有機質礦質化。本研究表明,生物質炭添加可以不同程度地提高細菌和古菌豐度,與Chen等[17]報道的生物質炭施用提高稻田土壤細菌16S rRNA基因豐度較為一致。細菌在土壤中數量最大,類群最多,參與土壤有機質轉化和養分循環等多種重要功能。古菌也是土壤中一類重要的類群,且其數量和活性受土壤可利用有機質影響[26]。生物質炭對土壤細菌豐度的提高可能與土壤微生物可利用碳增加有關,生物質炭為土壤微生物的繁殖創造了有利的生境[27]。Luo等[27]運用13C穩定同位素技術表明草本植物生物質炭較大一部分可以作為底物被微生物利用,從而促進微生物生長。生物質炭巨大比表面積和多孔特性有利于減少微生物被天敵(如食細菌線蟲)捕食的機會,為土壤微生物生存提供了充足的水分和養分[28]。因此,生物質炭添加所營造的優良微環境,有利于細菌和古菌豐度的提高,從而促進土壤有機質和生物質炭礦化、養分釋放,促進植物生長。本研究中細菌和古菌豐度與土壤有機碳和全氮均呈顯著正相關,也說明土壤細菌和古菌與土壤養分之間具有密切聯系。添加生物質炭未改變真菌群落豐度,降低了真菌/細菌比,這可能由于真菌具有較大的土壤pH變異耐性,能適應較大的酸堿變化范圍[17]。固氮菌通過自身固氮酶系統將空氣中的氮氣轉化為氨,對土壤生物固氮具有重要貢獻,也是農田土壤中重要的功能微生物類群[29]。本研究結果與宋延靜等[14]報道的添加生物質炭顯著促進濱海鹽堿土固氮菌豐度較為一致。固氮菌豐度的顯著提高暗示著土壤生物固氮作用的增強,可能是生物質炭極高的C/N和土壤中較低的堿解氮含量促進了土壤依靠固氮菌來補償氮素供應的不足。因此,作為土壤中物質轉化和養分循環的核心驅動力,土壤微生物在生物質炭的促進作用下,對增進土壤養分轉化和物質循環具有積極意義。
土壤酶源于植物、動物和微生物及其分泌物,但主要來源于微生物,一定程度上反映了微生物的活性及其在土壤養分循環過程中的作用[30]。本研究土壤微生物豐度與多數土壤酶活性具有較好的正相關性印證了兩者之間的聯系。多數研究發現,土壤酶活性與作物產量具有密切的相關性,是衡量土壤生產力的良好指標[31]。本研究中所檢測的6種酶與土壤C、N、P循環密切相關,其活性隨著生物質炭添加量的提高而提高(除了亮氨酸氨基肽酶),表明生物質炭促進了有機質的礦化和養分轉化的周轉速率。因此,生物質炭提高土壤相關酶活性可能是促進黑麥草生長的另一個重要因素。盡管如此,生物質炭添加對酶活性影響變異較大,既可增加也可抑制相關土壤酶活性。Wang等[32]通過微孔板熒光法發現低濃度(0.5%質量比)的生物質炭添加量可以促進β-葡萄糖苷酶、α-葡萄糖苷酶和纖維二糖水解酶活性,而高濃度(2.5%和5%質量比)反而抑制其活性。尚杰等[15]發現低用量生物質炭可以提高蔗糖酶、脲酶和堿性磷酸酶等活性,促進糜子產量,而高用量生物質炭卻降低了其活性。Chen等[17]研究發現秸稈生物質炭可以提高土壤脫氫酶和堿性磷酸酶活性,但降低了β-葡萄糖苷酶活性。Bailey等[33]認為酶活性變異取決于生物質炭的孔隙結構和活性表面對酶和底物的吸附能力,并受土壤和生物質炭顆粒類型影響,酶活性測定方法差異也會導致截然不同的結果。因此,在以后的研究中有必要綜合考慮生物質炭特征、土壤類型和測定方法,開展更多此類研究。
盆栽實驗中,短期的小麥秸稈生物質炭添加提高了黑麥草生物量,主要歸因于生物質炭改善了土壤養分水平,并顯著增加了細菌、古菌和固氮菌等土壤主要類群功能菌的豐度,增強了與土壤C、N 和P轉化相關的酶活性。然而,這種改善效果的持續性和土壤微生物變化的機制還不明確,在開展大規模生物質炭農田施用之前迫切需要開展更多長期定位試驗。
致 謝感謝浙江農林大學動物與科技學院楊夢華教授和南京農業大學農業資源與生態環境研究所李子川博士生對微孔板熒光分析法的技術指導。
[1]潘根興,陸海飛,李戀卿,等. 土壤碳固定與生物活性:面向可持續土壤管理的新前沿. 地球科學進展,2015,30(8):940—951
Pan G X,Lu H F,Li L Q,et al. Soil carbon sequestration with bioactivity:A new emerging frontier forsustainable soil management(In Chinese). Advances in Earth Science,2015,30(8):940—951
[2]Sohi S P. Carbon storage with benefits. Science,2012,338(6110):1034—1035
[3]Kimetu J M,Lehmann J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Australian Journal of Soil Research,2010,48(7):577—585
[4]俞映倞,薛利紅,楊林章,等. 生物炭添加對酸化土壤中小白菜氮素利用的影響. 土壤學報,2015,52 (4):759—767
Yu Y L,Xue L H,Yang L Z,et al. Effect of biochar application on pakchoi(Brassica chinensis L.)utilizing nitrogen in acid soil(In Chinese). Acta Pedologica Sinica,2015,52(4):759—767
[5]Major J,Rondon M,Molina D,et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil,2010,333 (1):117—128
[6]van Zwieten L,Kimber S,Morris S,et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil,2010,327(1):235—246
[7]黃超,劉麗君,章明奎. 生物質炭對紅壤性質和黑麥草生長的影響. 浙江大學學報(農業與生命科學版),2011,37(4):439—445
Huang C,Liu L J,Zhang M K. Effects of biochar on properties of red soil and ryegrass growth(In Chinese). Journal of Zhejiang University(Agriculture&Life Science),2011,37(4):439—445
[8]劉園,Khan M J,靳海洋,等. 秸稈生物炭對潮土作物產量和土壤性狀的影響. 土壤學報,2015,52(4):849—858
Liu Y,Khan M J,Jin H Y,et al. Effects of successive application of rice crop-straw biochar on crop yield and soil properties in Cambosols(In Chinese).Acta Pedologica Sinica,2015,52(4):849—858
[9]Liu X,Zhang A,Ji C,et al. Biochar’s effect on crop productivity and the dependence on experimental conditions—Ameta-analysis of literature data. Plant and Soil,2013,373(1):583—594
[10]林先貴,胡君利. 土壤微生物多樣性的科學內涵及其生態服務功能. 土壤學報,2008,45(5):892—900
Lin X G,Hu J L. Science connotation and ecological service function of soil microbial diversity(In Chinese). Acta Pedologica Sinica,2008,45(5):892—900
[11]Blackwell P,Krull E,Butler G,et al. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia:An agronomic and economic perspective. Australian Journal of Soil Research,2010,48(7):531—545
[12]Graber E R,Harel Y M,Kolton M,et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil,2010,337(1):481—496
[13]李明,李忠佩,劉明,等. 不同秸稈生物炭對紅壤性水稻土養分及微生物群落結構的影響. 中國農業科學,2015,48(7):1361—1369
Li M,Li Z P,Liu M,et al. Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil(In Chinese). Scientia Agricultura Sinica,2015,48(7):1361—1369
[14]宋延靜,張曉黎,龔駿. 添加生物質炭對濱海鹽堿土固氮菌豐度及群落結構的影響. 生態學雜志,2014,33 (8):2168—2175
Song Y J,Zhang X L,Gong J. Effects of biochar amendment on the abundance and community structure of nitrogen-fixing microbes in a coastal alkaline soil (In Chinese).Chinese Journal of Ecology,2014,33 (8):2168—2175
[15]尚杰,耿增超,王月玲,等. 施用生物炭對塿土微生物量碳、氮及酶活性的影響. 中國農業科學,2016,49 (6):1142—1151
Shang J,Geng Z C,Wang Y L,et al. Effect of biochar amendment on soil microbial biomass carbon and nitrogen and enzyme activity in tier soils(In Chinese). Scientia Agricultura Sinica,2016,49(6):1142—1151
[16]魯如坤. 土壤農業化學分析方法. 北京:中國農業科技出版社,2000
Lu R K. Analytical methods for soil and agro-chemistry (In Chinese). Beijing:China Agricultural Science and Technology Press,2000
[17]Chen J,Liu X,Zheng J,et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from southwest China. Applied Soil Ecology,2013,71:33—44
[18]Fierer N,Jackson J A,Vilgalys R,et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology,2005,71(7):4117—4120
[19]May L A,Smiley B,Schmidt M G. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Canadian Journal of Microbiology,2001,47 (9):829—841
[20]Bano N,Ruffin S,Ransom B,et al. Phylogenetic composition of arctic ocean archaeal assemblages and comparison with Antarctic assemblages. Applied and Environmental Microbiology,2004,70(2):781—789
[21]Reardon C L,Gollany H T,Wuest S B. Diazotroph community structure and abundance in wheatfallow and wheat-pea crop rotations. Soil Biology & Biochemistry,2014,69:406—412
[22]Bell C W,Fricks B E,Rocca J D,et al. Highthroughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments,2013(81):e50961
[23]Zhang A,Cui L,Pan G,et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain,China. Agriculture,Ecosystems & Environment,2010,139(4):469—475
[24]李松昊,何冬華,沈秋蘭,等. 竹炭對三葉草生長及土壤細菌群落的影響. 應用生態學報,2014,25(8):2334—2340
Li S H,He D H,Shen Q L,et al. Effects of bamboocharcoal on the growth of Trifolium repens and soil bacterial communitystructure(In Chinese). Chinese Journal of Applied Ecology,2014,25(8):2334—2340
[25]Taghizadeh-Toosi A,Clough T,Sherlock R,et al. Biochar adsorbed ammonia is bioavailable. Plant and Soil,2012,350(1):57—69
[26]Marschner P,Kandeler E,Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology & Biochemistry,2003,35(3):453—461
[27]Luo Y,Durenkamp M,De Nobili M,et al. Microbial biomass growth,following incorporation of biochars produced at 350℃ or 700℃,in a silty-clay loam soil of high and low pH. Soil Biology & Biochemistry,2013,57:513—523
[28]Lehmann J,Rillig M C,Thies J,et al. Biochar effects on soil biota-Areview. Soil Biology & Biochemistry,2011,43(9):1812—1836
[29]Ueda T,Suga Y,Yahiro N,et al. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. Journal of Bacteriology,1995,177(5):1414—1417
[30]Burns R G,DeForest J L,Marxsen J,et al. Soil enzymes in a changing environment:Current knowledge and future directions. Soil Biology & Biochemistry,2013,58:216—234
[31]Edmeades D C. The long-term effects of manures and fertilisers on soil productivity and quality:A review. Nutrient Cycling in Agroecosystems,2003,66(2):165—180
[32]Wang X,Song D,Liang G,et al. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Applied Soil Ecology,2015,96:265—272
[33]Bailey V L,Fansler S J,Smith J L,et al. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology & Biochemistry,2011,43(2):296—301
Effect of Biochar Addition on Ryegrass Growth in a Pot Experiment and Its Mechanism
WU Tao FENG Gelin ZENG Zhen CHEN Junhui?XU Qiufang LIANG Chenfei
(Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration,School of Environmental and Resources,Zhejiang Agriculture and Forestry University,Lin’an,Zhejiang 311300,China)
【Objective】Biochar amendment to soil has recently been considered as a promising strategy to improve soil carbon sequestration and soil fertility. The aim of this work was to investigate effect of biochar on plant growth and its potential mechanism behind,so as to provide a theoretical reference for the use of biochar as a soil amendment in agricultural soils to improve soil fertility and enhance soil carbon sequestration. 【Method】For this study a pot experiment was performed to investigate changes in ryegrass growth,soil microbial community abundance and soil enzyme activities involved in C,N and P recycling as affected by biochar addition. The biochar used in the pot experiment was prepared out of wheat straw through pyrolysis at 350~550℃ with limited oxygen,and the soil in the pots was collected from farmlands in the Tai Lake Region. Biochar was amended into the pots,separately,at a rate of 0% for Treatment C0 or control(biochar / soil in weight),2% for Treatment C1(low rate)and 4% for Treatment C2(high rate)and each treatment had 3 replicates. Ryegrass(Loliump erenne)was planted in each pot and let grow for 90 days. At the end of the period of growth,ryegrass was analyzed for biomass and soils for properties,microbial community abundances and soil enzyme activities with the quantitative real-time PCR and microplate fluorimetric assay,respectively. 【Result】Results show that biochar at a low rate did not increase ryegrass biomass,but at a high rate it did significantly or by 68%. Biochar addition,low and high significantly increased soil pH,soil organic carbon(SOC),total nitrogen(TN),C/N ratio and available K content by 9%,45% ,19%,20%,and 104% and by 13%,99%,32%,50%,and 187%,respectively,as compared with the control,whereas it decreased available N content by 17% and 18%,respectively.Besides,biochar addition,low and high also increased bacterial and archaeal 16S rRNAand nifH gene copies by 30%,36%,and 72%,and by 50%,83%,and 116%,respectively,and also significantly increased β-glucosidase(BG),β-D-cellobiosidase(CB),β-xylosidase(XYL),N-acetyl-β-glucosaminidase(NAG)andphosphatase (PHOS)by 25%,118%,123%,112% and 14%,andby 61%,215%,148%,114%,and 20%,respectively,but had no effect on leucine aminopeptidase. In most cases,no significant differences were observed in chemical and biological properties between the treatments high and low in addition rate. Correlation analysis demonstrates that abundances of all soil microbes(except for fungi)were positively related to pH,SOC,TN,C/N and activities of most soil enzyme(except for leucine aminopeptidase). 【Conclusion】In summary,all the findings in this study suggest that biochar addition can improve soil fertility,key microbial communities in abundances and enzymes in activity,which may be the major causes of biochar enhancing soil nutrient transformation functions and plant productivity.
Biochar;Quantitative PCR;Soil enzyme;Microplate fluorimetric assay;Soil microorganisms
S154
A
10.11766/trxb201606030204
(責任編輯:陳榮府)
* 國家自然科學基金項目(41401318)、浙江農林大學學生科研訓練項目(112-2013200018)和浙江農林大學環境與資源學院大學生科研訓練項目(20150117)資助 Supported by the National Natural Science Foundation of China(No. 41401318),Students Research Trainingsof Zhejiang A&F University(No. 112-2013200018)and of School of Environmental and Resource Sciences of Zhejiang A&F University(No. 20150117)
? 通訊作者 Corresponding author,E-mail:junhui5@126.com
吳 濤(1997—),男,安徽歙縣人,農業資源與環境專業。E-mail:17816897546@163.com
2016-06-03;
2016-09-28;優先數字出版日期(www.cnki.net):2016-10-27