999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Banach空間中的完備集

2017-06-10 08:09:41吳森林張新玲計東海
哈爾濱理工大學學報 2017年2期

吳森林+張新玲+計東海

摘要:針對Banach空間中完備集的相關問題, 回顧了完備集這一概念的來源:等寬集的一些基本性質, 介紹了完備集的一些性質以及與完備集相關的若干研究問題和相關結果。 結果表明, 圍繞Banach空間中的完備集及其相關問題還有很多待完成的工作。

關鍵詞:Banach空間; 等寬集; 完備集; 完備化集

DOI:10.15938/j.jhust.2017.02.016

中圖分類號: O177

文獻標志碼: A

文章編號: 1007-2683(2017)02-0083-05

Abstract:For the related problems of complete sets in Banach spaces, some fundamental properties of sets of constant width which is the origin of the concept of complete sets are reviewed, and properties of complete sets and research problems and corresponding results related to complete sets are also presented. It is shown that there are much research to be done concerning complete sets and related problems in Banach spaces.

Keywords:Banach spaces; sets of constant width; complete sets; completion of sets

6完備化集與其他特殊凸集類的關系

設A是有限維Banach空間中的一個凸體, 若任何一個真包含于A的凸體的最小寬度均嚴格小于A的最小寬度(A的平行的支撐超平面之間距離的下確界), 該凸體稱為不可縮的(reduced)。顯然的, 任意一個等寬集都是不可縮的。文[46]中聲稱有限維Banach空間中任何一個完備集均是不可縮的, 然而, Martini和吳森林已經給出一個反例說明該結論是不正確的(參見文[45])。因此, 在有限維Banach空間乃至無窮維Banach空間中考慮不可縮凸集與完備集的關系十分有必要。關于

瘙 綆 n和有限維Banach空間中不可縮凸體的更多內容請參見文[46]和[47]以及這兩篇綜述文章中所列文獻。

7結語

盡管很多數學家在一般的實Banach空間特別是有限維實Banach空間中圍繞著完備集及其相關性質, 集合的完備化映射以及與完備集有關的若干問題已經做了一系列重要的工作, 但是關于完備集仍然有很多未解決的問題, 希望本文對完備集相關問題的介紹能讓更多的人關注并嘗試解決這些問題。

參 考 文 獻:

[1]JIN Hailin, GUO Qi. Asymmetry of Convex Bodies of Constant Width[J]. Discrete Comput. Geom., 2012, 47:415-423.

[2]WEBSTER R J. Convexity[M]. New York: Oxford University Press, 1994.

[3]BRNY I, SCHNEIDER R. Typicalcurvature Behaviour of Bodies of Constant Width[J]. Adv. Math., 2015, 272:308-329.

[4]CHAKERIAN G D, GROEMER H. Convex Bodies of Constant Width[M]. Basel: Birkhuser, 1983:49-96.

[5]KAWOHL B, WEBER C.Meissners mysterious bodies[J]. Math. Intell., 2011(33):94-101.

[6]HEIL E, MARTINI H. Special Convex Bodies[C]. GRUBER P, WILLS J. Handbook of Convex Geometry. Amsterdam: NorthHolland, 1993:347-385.

[7]MARTINI H, SWANEPOEL K J. The Geometry of Minkowski Spaces—A Survey. Part II.[J]. Expo. Math., 2004(22):93-144.

[8]MORENO J, PAPINI P, PHELPS R.Diametrically Maximal and Constant Width Sets in Banach Spaces[J]. Canad. J. Math., 2006, 58(4):820 -842.

[9]PAY R, RODRGUEZPALACIOS A.Banach Spaces Which are SemiLsummands in Their Biduals[J]. Math. Ann., 1991, 289(3):529-542.

[10]YOST D. Irreducible Convex Sets[J]. Mathematika, 1991(38):134-155.

[11]MEISSNER E.ber Punktmengen konstanter Breite[J]. Vierteljahrsschrift der Naturforschenden Gesellschaft Zürich, 1911, 56:42-50.

[12]MORENO J P, SCHNEIDER R. Structure of the Space of Diametrically Complete Sets in a Minkowski Space[J]. Discrete Comput. Geom., 2012(48):467-486.

[13]EGGLESTON H G. Sets of Constant Width in Finite Dimensional Banach Spaces[J]. Isr. J. Math., 1965(3):163-172.

[14]MORENO J P, SCHNEIDER R. Diametrically Complete Sets in Minkowski Spaces[J]. Israel J. Math., 2012, 191:701-720.

[15]CASPANI L, PAPINI P L.On Constant Width Sets in Hilbert Spaces and Around [J]. J. Convex Anal., 2015, 22(3):889-900.

[16]MORENO J P, SCHNEIDER R. LocalLipschitz Continuity of the Diametric Completion Mapping[J]. Houston J. Math., 2012(38):1207-1223.

[17]MORENO J P, SCHNEIDER R.Lipschitz Selections of the Diametirc Completion Mapping in Minkowski Spaces[J]. Adv. Math., 2013(233):24 8-267.

[18]KARASЁV R N. On the Characterization of Generating Sets[J]. Model. iAnaliz Inform. Sistem, 2001, 8(2):3-9.

[19]BALASHOV M V, POLOVINKIN E S. Mstrongly Convex Subsets and Their Generating Sets [J]. Mat. Sb., 2000, 191(1):27-64.

[20]SALLEE G. Pairs of Sets of Constant Relative Width[J]. J. Geom., 1987, 29.

[21]MARTINI H, RICHTER C, SPIROVA M.Intersections of Balls and Sets of Constant Width in Finite Dimensional Normed Spaces[J]. Mathematika, 2013(59):477-492.

[22]GROEMER H. On Complete Convex Bodies[J]. Geom.Dedic., 1986(20):319-334.

[23]MORENO J P. Porosity and Diametrically Maximal Sets in c(K)[J]. Monatsh. Math., 2007, 152:255-263.

[24]MORENO J P. Porosity and Unique Completion in Strictly Convex Spaces[J].Math.Z., 2011, 267: 173-184.

[25]PL J.ber Ein Elementares Variationsproblem [J]. Danske Vid. Selskab. Mat.Fys. Medd., 1920, III(2):35.

[26]LEBESGUE H. Sur Quelques Questionsde Minimum, Relatives Aux Courbes Orbiformes,et Surleurs Rapports Avecle Calculdes Variations[J]. J. Math. Pures Appl. (8), 1921, 4:67-96.

[27]BONNESEN T, FENCHEL W.Theorie Der Konvexen 〖AKK¨〗orper[M]. Berlin: Springer, 1934.

[28]BCKNER H.ber Flchenvon Fester Breite [J]. Jahresber. Deutsch. Math.Verein., 1936(46):96-139.

[29]EGGLESTON H G. Convexity[M]. Cambridge: Cambridge University Press, 1958.

[30]SCOTT P R. Sets of Constant Width and Inequalities[J]. Quart. J. Math., 1981(32):345-348.

[31]VRE〖KG-1mm〗C〖DD(-1.2mm〗'〖DD)〗ICA S. A Noteon Sets of Constant Width [J]. Publ. Inst. Math., 1981(29): 289-291.

[32]GROEMER H.Extremal Convex Sets[J]. Monatsh. Math., 1983(96):29-39.

[33]MAEHARA H. Convex Bodies Forming Pairs of Constant Width[J]. J. Geom., 1984, 22:101-107.

[34]SALLEE G.Preassigning the Boundary of Diametricallycomplete Sets[J]. Monatsh. Math., 19 88, 105.

[35]LACHANDROBERT T, OUDET E. Bodies of Constant Width in Arbitrary Dimensions[J]. Math.Nachr., 2007(280):740-750.

[36]PAPINI P L, WU SENLIN. Constructions of complete sets[J]. Adv. Geom., 2015, 15(4):485- 498.

〖LL〗[37]BAVAUD F.Adjoint Transform, Overconvexity and Sets of Constant Width[J]. Trans. Amer. Math. Soc., 1992(333):315-324.

[38]MORENO J P, SCHNEIDER R. Some Geometry of Convex Bodies in C(K) Spaces[J]. J. Math. Pures Appl., 2015(103):352-373.

[39]MORENO J P. Convex Values andLipschitz Behavior of the Complete Hull Mapping[J]. Trans. Amer. Math. Soc., 2010(362):3377-3389.

[40]MALUTA E, PAPINI P L. Diametrically Complete Sets and Normal Structure[J]. J. Math. Anal. Appl., 2015(424):1335-1347.

[41]MARTINI H, PAPINI P L, SPIROVA M. Complete Sets and Completion of Sets in Banach Spaces[J]. Monatsh. Math., 2014, 174:587-597.

[42]MORENO J, PAPINI P, PHELPS R. New Families of Convex Sets Related to Diametral Maximality[J]. J. Convex. Anal., 2006(13):823-837.

[43]CASPANI L, PAPINI P L. Complete Sets, Radii, and Inner Radii[J].Beitr. Algebra Geom., 2011(52):163-170.

[44]PAPINI P L. Completions and Balls in Banach Spaces[J]. Ann. Funct. Anal., 2015, 6(1):24-33.

[45]MARTINI H, WU SENLIN. Complete Sets Need not be Reduced in Minkowski Spaces[J]. Beitr. Algebra Geom., 2015, 56(2):533-539.

[46]LASSAK M, MARTINI H. Reduced Convex Bodies in Finite Dimensional Normed Spaces: A Survey[J]. Results Math., 2014(66):405-426.

[47]LASSAK M, MARTINI H. Reduced Convex Bodies in Euclidean Space—A Survey[J]. Expo. Math., 2011(29):204-219.

(編輯:溫澤宇)

主站蜘蛛池模板: 天堂在线视频精品| 日本欧美一二三区色视频| 婷婷午夜影院| 国产极品粉嫩小泬免费看| 色综合国产| 国产凹凸一区在线观看视频| 在线观看无码a∨| 日韩久草视频| 伊人激情综合网| 日本精品中文字幕在线不卡 | 一级全黄毛片| 成人在线天堂| 国产成人1024精品| 成人无码一区二区三区视频在线观看| 精品福利视频导航| 亚洲视频二| 久久精品国产一区二区小说| 激情综合五月网| 国产精品第| 国内毛片视频| 亚洲人成影院午夜网站| 囯产av无码片毛片一级| 国产精品视频猛进猛出| 波多野结衣无码视频在线观看| 亚洲一级毛片免费看| 无码一区18禁| 亚洲av综合网| 国产无码高清视频不卡| 四虎永久在线| 亚洲资源在线视频| 国产一区二区网站| 日韩视频免费| 日韩国产综合精选| 国产尹人香蕉综合在线电影| 72种姿势欧美久久久久大黄蕉| 国产h视频免费观看| 免费毛片全部不收费的| 97视频在线精品国自产拍| 丁香五月亚洲综合在线 | 强奷白丝美女在线观看| 久久免费视频6| 国产精品福利导航| 麻豆精品久久久久久久99蜜桃| 国产精品不卡永久免费| 毛片免费观看视频| 最新日韩AV网址在线观看| 日韩a级片视频| 91精品小视频| 欧美性色综合网| 98超碰在线观看| 直接黄91麻豆网站| 国产成人高精品免费视频| 久久精品中文字幕少妇| аv天堂最新中文在线| 亚洲第一视频区| 欧美亚洲一区二区三区在线| 亚洲熟妇AV日韩熟妇在线| 国产欧美日韩另类精彩视频| 精品五夜婷香蕉国产线看观看| 97青草最新免费精品视频| 欧美另类第一页| 91精品久久久久久无码人妻| 久久黄色小视频| 欧美在线精品一区二区三区| 国产草草影院18成年视频| 99精品在线视频观看| 欧美国产综合色视频| 99久久性生片| 浮力影院国产第一页| 国产乱子伦精品视频| 久久精品电影| 午夜丁香婷婷| 国产精品九九视频| 国产91透明丝袜美腿在线| 日韩欧美国产区| 中国丰满人妻无码束缚啪啪| 天天躁日日躁狠狠躁中文字幕| 男人天堂亚洲天堂| 久草视频一区| 波多野结衣中文字幕久久| 第一区免费在线观看| 亚洲欧洲自拍拍偷午夜色无码|