李錦成

直線l1:A1x+B1y+C1=0,關于直線l0:A0x+B0y+C0=0的對稱直線l2的方程:(A1A20-A1B20+2B1B0A0)x+(B1B20-B1A20+2A1A0B0)y+(2A1A0C0+2B1B0C0-C1A20-C1B20)=0.
證明:在直線l1上任取一點(x1,y1),設它關于直線l0的對稱點為(x,y),由中點公式可知:
A0x1+A0x+B0y1+B0y+2C0=0.(1)
1.當直線l0與y軸平行時,即B0=0,A0≠0時,
則過點(x1,y1),(x,y)的直線方程為y=y1.(2)
解方程(1)(2)得x1=-A0x-2C0〖〗A0,y1=y,
并代入l1:A1x+B1y+C1=0,得它的對稱直線方程:
A1A0x-B1A0y+2C0A1-C1A0=0.
2.當直線l0斜率等于0時,即A0=0,B0≠0時,
則過點(x1,y1)(x,y)的直線方程為x=x1.(3)
解(1)和(3),同理可得對稱直線方程:
A1B0x-B1B0y-2B1C0+B0C1=0.
3.當直線l0斜率存在且不為0時,有y-y1x-x1=B0A0.(4)
解方程(1)(4)并將x1和y1代入l1:A1x+B1y+C1=0得它的對稱直線方程:
(A1A20-A1B20+2B1B0A0)x+(B1B20-B1A20+2A1A0B0)y+(2A1A0C0+2B1B0C0-C1A20-C1B20)=0.
最后統一1、2、3,所求對稱直線l2:
(A1A20-A1B20+2B1B0A0)x+(B1B20-B1A20+2A1A0B0)y+(2A1A0C0+2B1B0C0-C1A20-C1B20)=0.
例求直線l1:3x+2y-1=0關于直線l2:y=-2〖〗3x+1的對稱直線的方程.
解把已知方程標準化:
l1:3x+2y-1=0,l2:2〖〗3x+y-1=0.
應用公式得9x+46y-59=0.
【參考文獻】
[1]王志和.點關于直線對稱點的一種求法[J].數學教學,2010(5):31-32.