王玉瑩,張 囡,李秀麗,王雅萌,李少恒,閆宇輝,宋 捷,楊靜嫻,聞慶平
(1.遼寧中醫(yī)藥大學(xué)藥學(xué)院藥理學(xué)教研室,遼寧 大連 116600;2.大連醫(yī)科大學(xué),遼寧 大連 116044)
CXCR4基因轉(zhuǎn)染對骨髓間充質(zhì)干細胞體外生物學(xué)行為的影響
王玉瑩1,張 囡1,李秀麗1,王雅萌1,李少恒1,閆宇輝1,宋 捷1,楊靜嫻1,聞慶平2
(1.遼寧中醫(yī)藥大學(xué)藥學(xué)院藥理學(xué)教研室,遼寧 大連 116600;2.大連醫(yī)科大學(xué),遼寧 大連 116044)
目的 觀察對轉(zhuǎn)染CXCR4基因的骨髓間充質(zhì)干細胞體外生物學(xué)行為的影響。方法 將培養(yǎng)的骨髓間充質(zhì)干細胞分為3組,GFP組、CXCR4+組、CXCR4-組,轉(zhuǎn)染趨化因子受體CXCR4,并用免疫熒光細胞化學(xué)法、流式細胞儀法及Transwell小室細胞趨化實驗,體外研究了CXCR4高表達及低表達對MSCs增殖、分化與遷移能力的影響。結(jié)果 CXCR4高表達及低表達均不影響MSCs的增殖能力,對其向肺組織分化的能力也沒有影響。與GFP-MSCs組相比,CXCR4+-MSCs組遷移的細胞數(shù)量明顯升高,而CXCR4--MSCs組遷移細胞數(shù)量差異無顯著性。結(jié)論 CXCR4高表達及低表達不改變MSCs的增殖、分化能力,然而CXCR4高表達明顯增強MSCs向炎癥病灶的遷移能力。說明CXCR4高表達的MSCs移植入體后將會更快速、更大量地到達病變區(qū)域參與組織修復(fù),明顯增強療效。
骨髓間充質(zhì)干細胞;趨化因子受體CXCR4;基因轉(zhuǎn)染;增殖;分化;遷移
間充質(zhì)干細胞(mesenchemal stem cell,MSCs)是一種取材廣泛的成體干細胞,可取自骨髓、脂肪組織、骨骼肌、滑膜、臍帶血等組織[1-2],具有多向分化潛能,可分化為成骨細胞、脂肪細胞、肌肉細胞、神經(jīng)系細胞等[3-5],其中骨髓來源的MSCs有取材簡單、來源豐富的特點。骨髓來源的MSCs可以減輕系統(tǒng)炎癥、減輕肺組織受損情況、促進模型動物存活,對脂多糖(lipopolysaccharides,LPS)誘導(dǎo)的小鼠急性肺損傷有明顯的治療作用[6]。此外,其在體外與肺組織細胞或肺組織條件培養(yǎng)基共培養(yǎng)可以分化成肺組織相關(guān)細胞[7-8],從組織再生的角度為臨床上治療急性肺損傷(acute lung injury,ALI)提供新的思路。然而,體外擴增的MSC表面缺乏特定的趨化因子受體,不能很快地向病變區(qū)域遷移,從而限制了它的療效。
趨化因子是一組低分子量蛋白家族,在炎癥病變區(qū)域大量表達,能夠吸引白細胞向感染部位遷移,在炎癥反應(yīng)中有重要作用。李濟元等[9]發(fā)現(xiàn)白藜蘆醇可以抑制肺癌細胞A549的增殖及CXCR4在其中的表達。小鼠急性肺損傷的炎癥區(qū)域發(fā)現(xiàn)大量表達趨化因子CXCL-1、CXCL-2、CXCL-12和CXCL-15[10],其中CXCL-12又稱基質(zhì)細胞衍生因子-1(stromal-derived factor-1,SDF-1)屬于趨化因子蛋白家族,首先在淋巴組織和骨髓中被發(fā)現(xiàn),對CXCR4受體介導(dǎo)的造血干細胞和淋巴細胞的歸巢起至關(guān)重要的作用[11-12]。此后,SDF-1在更多組織中被發(fā)現(xiàn),尤其是在急性肺損傷和肺纖維癥的肺泡中高表達[13]。MSC的表面表達與SDF-1對應(yīng)的受體CXCR4,然而,隨著其在體外擴增該受體的表達逐漸減少,限制了細胞移植后的療效[14-15]。
為了增強MSCs體內(nèi)移植后的治療效果,本研究采用已構(gòu)建了的CXCR4過表達和低表達載體,經(jīng)過轉(zhuǎn)染使MSCs高表達或低表達趨化因子受體CXCR4,體外研究CXCR4高表達及低表達對MSCs增殖、分化、遷移能力的影響,為其體內(nèi)移植和臨床應(yīng)用提供實驗依據(jù)。
1.1 動物 清潔級Sprague-Dawley(SD)大鼠(4周齡,120~150 g)購自大連醫(yī)科大學(xué)實驗動物中心[SCXK(遼)2008-0002]。
1.2 試劑 CXCR4質(zhì)粒、293T細胞(天津醫(yī)科大學(xué)閆亞平教授惠贈),青-鏈霉素(penicillin-strepotomycin,P/S,Thermo公司),DMEM高糖培養(yǎng)基(Gibco公司),胎牛血清(FBS,Gibco公司),大鼠骨髓間充質(zhì)干細胞專用胎牛血清(FBS,Cyagen公司),L-谷氨酰胺(L-Glutamine,Cyagen公司),0.25%胰蛋白酶(0.25% Trypsin,Cyagen公司),CD29-PE抗體、CD34-FITC抗體、CD44-FITC抗體、CD45-FITC抗體、CD90-FITC抗體(美國BD),一抗分別為兔抗CXCR4、vWF、SP-C(北京博奧森),二抗為Cy3標記驢抗兔IgG(Jackson)、FITC標記羊抗兔IgG(Jackson),結(jié)晶紫粉末(Amresco公司),大鼠重組SDF-1α(PeproTech公司)。
1.3 儀器 Ti-S型熒光顯微鏡(日本尼康),超低溫冰箱(青島海爾,DIV-86L386),CO2培養(yǎng)箱(NU-AIRE,BPN),流式細胞儀(美國BD公司),雙人超凈工作臺(美國Agilent公司,ZHJH-C1112B),臺式高速冷凍離心機(湖南湘儀,TGL-20M)。
1.4 實驗分組 將細胞隨機分為3組,每組3個復(fù)孔,重復(fù)3次。分別為:① GFP組;② CXCR4+組;③ CXCR4-組。
1.5 大鼠骨髓間充質(zhì)干細胞(MSCs)的培養(yǎng)和鑒定 取120~150 g ♂ SD大鼠1只,10%烏拉坦麻醉10 min。75%酒精消毒肚皮,剪開腹股溝,剝離皮膚,分離兩后肢長骨(股骨和脛骨),去除骨膜及殘留肌肉,浸泡在含2% P/S的PBS緩沖液中,轉(zhuǎn)移至超凈臺。減去長骨兩端,暴露髓腔,用針頭以無血清DMEM/LOW反復(fù)沖洗骨髓腔,過70 μm孔徑的細胞篩網(wǎng),收集濾液。離心1 000 r·min-1×6 min,棄上清。全骨髓貼壁分離法重懸細胞,計數(shù),5×105個細胞接種于25 cm2培養(yǎng)瓶,鏡下觀察細胞情況,置37℃、5% CO2培養(yǎng)箱中培養(yǎng)。取P3代細胞,待細胞90%融合時進行鑒定。抗體標記,將單細胞懸液離心洗滌,重懸計數(shù)后進行抗體標記,所標記細胞每份不少于5×106個細胞,用CD29-PE、CD34-FITC、CD44-FITC、CD45-FITC、CD90-FITC,按1 μg抗體/106細胞分別標記細胞,將處理好的樣本用流式細胞儀檢測細胞表面CD29、CD34、CD44、CD45、CD90的表達[4-5,16-17]。
1.6 構(gòu)建CXCR4高表達質(zhì)粒、低表達質(zhì)粒、轉(zhuǎn)染MSCs和CXCR4表達的檢測 ① GFP、CXCR4表達及CXCR4低表達質(zhì)粒:由天津醫(yī)科大學(xué)閆亞平教授前期構(gòu)建提供。② CXCR4基因轉(zhuǎn)染BM-MSCs及CXCR4表達的檢測:轉(zhuǎn)染293T包裝細胞,對照組轉(zhuǎn)染L.v.-GFP。培養(yǎng)293T細胞,24 h后熒光顯微鏡下觀察兩組細胞都呈現(xiàn)綠色熒光。分別收集72 h內(nèi)上述293T細胞培養(yǎng)液上清(含病毒),離心、濃縮并檢測病毒滴度;用濃縮的病毒上清轉(zhuǎn)染第3代BM-MSCs;轉(zhuǎn)染后3 d的GFP-MSCs和CXCR4+-MSCs、CXCR4--MSCs用4%多聚甲醛固定30 min,PBS洗滌3次,用0.1% Triton X-100透化20 min,5%山羊血清封閉1 h后,加入兔抗大鼠CXCR4一抗,4 ℃孵育過夜,次日用PBS洗滌3次,加入山羊抗兔Cy3熒光二抗,室溫孵育1 h,用PBS洗滌3次,0.5 mg·L-1的DAPI室溫孵育5 min后用抗熒光淬滅封片劑封片,熒光顯微鏡下觀察攝片[18-19]。
1.7 CXCR4基因轉(zhuǎn)染對MSCs增殖能力的影響檢測 將基因轉(zhuǎn)染5 d后的CXCR4-MSCs 和對照組 GFP-MSCs 以及未轉(zhuǎn)染細胞Mock-MSCs分別以6×106個/孔接種于96孔板中,每隔2 d換液一次。每天取6個復(fù)孔的細胞,消化計數(shù),計算平均值,連續(xù)觀察9 d[20-21]。以細胞培養(yǎng)時間為橫軸,細胞數(shù)為縱軸,繪制細胞生長曲線。
1.8 CXCR4基因轉(zhuǎn)染對MSCs向肺組織分化能力的影響檢測 脂多糖(LPS)誘導(dǎo)的肺組織損傷條件培養(yǎng)基(condition medium,CM)的制備:取120~150 g ♂ SD大鼠,10%烏拉坦麻醉,打開胸腔,心臟灌流至肺部發(fā)白后剪下肺葉。肺葉用眼科手術(shù)剪剪成約1 mm的組織塊,經(jīng)研磨過70 μm細胞篩網(wǎng)得到肺組織細胞,以5×107·L-1的密度接種于6孔板中,每孔2 mL含10%胎牛血清的完全培養(yǎng)基進行培養(yǎng)。接種24 h后全量換液,根據(jù)分組情況加入完全培養(yǎng)基或含10 mg·L-1脂多糖的完全培養(yǎng)基致炎。每組3個復(fù)孔,作用4 h后獲得細胞上清液,3 000 r·min-1離心10 min去除細胞碎片,所得即LPS誘導(dǎo)的肺組織損傷的條件培養(yǎng)基[22],經(jīng)ELISA檢測CM中的IL-1β和TNF-α水平,與未加LPS處理組的肺組織上清液比較明顯升高(數(shù)據(jù)未在文中顯示),表明構(gòu)建模型成功,-80℃保存待用。體外培養(yǎng)的肺組織細胞經(jīng)LPS致炎所得的條件培養(yǎng)基(CM)孵育MSCs誘導(dǎo)其分化,24孔板內(nèi)以5×104·L-1的密度接種MSC,接種24 h后將培養(yǎng)基內(nèi)加入50% CM,每2 d換液一次,形成CM-MSCs共培養(yǎng)體系,8 d后用免疫熒光細胞化學(xué)法檢測肺胞中SP-C(肺泡II型上皮細胞標記物)、vWF(肺血管內(nèi)皮細胞標記物)特異性蛋白的表達。
1.9 免疫熒光細胞化學(xué)法檢測 體外培養(yǎng)的MSCs和CM誘導(dǎo)8 d的MSC用4%多聚甲醛固定30 min,PBS洗滌3次,用0.1% Triton X-100透化20 min,5%山羊血清封閉1 h后,分別加入大鼠抗SP-C、vWF等一抗,4 ℃孵育過夜,次晨用PBS洗滌3次,分別加入與一抗對應(yīng)的種屬特異性Cy3、FITC熒光二抗,室溫孵育1 h,用PBS洗滌3次,0.5 mg·L-1的DAPI室溫孵育5 min后用抗熒光淬滅封片劑封片,熒光顯微鏡下觀察攝片[20-21,23]。
1.10 CXCR4轉(zhuǎn)基因MSCs的體外遷移實驗 將膜孔孔徑為8 μm的Transwell小室懸掛在24孔板中,將轉(zhuǎn)染后5 d的CXCR4+-MSCs、CXCR4--MSCs、GFP-MSCs和未經(jīng)轉(zhuǎn)染的Mock-MSCs細胞懸液100 μL(含1×104個細胞)加入上室,將含不同濃度趨化因子SDF-1α(0、50、100 μg·L-1)的培養(yǎng)基600 μL加入下室,37 ℃、5% CO2孵育5 h。培養(yǎng)5 h后細胞穿過膜孔粘附在小室膜的下表面。遷移結(jié)束后取出小室稍稍水洗,用棉簽擦去濾膜上表面未穿膜的細胞,4%多聚甲醛固定15 min,用0.5%結(jié)晶紫染色10 min,顯微鏡下計數(shù)10個不同視野的穿膜細胞數(shù),取平均值[24-25]。

2.1 MSCs培養(yǎng)和形態(tài)觀察與鑒定 在倒置顯微鏡下觀察,72 h后可見貼壁細胞呈小圓形及多角形。培養(yǎng)至d 7,多數(shù)細胞伸展呈梭形并呈集落式生長,培養(yǎng)到d 10~14融合度達80%~90%。傳代培養(yǎng)至第2代(P2)時細胞形態(tài)趨于統(tǒng)一,呈現(xiàn)為長梭形細胞束排列。經(jīng)流式細胞儀檢測MSCs表面抗原標記物CD29、CD44、CD90、CD34、CD45,經(jīng)流式細胞儀鑒定,CD29(99.5%)、CD44(99.1%)、CD90(96.9%)陽性,CD34(0.31%)、CD45(0.14%)陰性,即CD29+/CD44+/CD90+/CD34-CD45-,表明所獲得的細胞是MSCs,可用于后續(xù)實驗(Fig 1)。
2.2 CXCR4基因轉(zhuǎn)染MSCs和CXCR4表達的檢測 用免疫細胞化學(xué)法檢測,結(jié)果顯示,轉(zhuǎn)染了CXCR4-GFP共表達載體的CXCR4+-MSCs、CXCR4--MSCs和轉(zhuǎn)染了原載體(含GFP)的對照組GFP-MSCs都明顯表達 GFP(綠色),說明3組細胞都被病毒質(zhì)粒有效轉(zhuǎn)染;但CXCR4(紅色)只在CXCR4+-MSCs中明顯表達,而在CXCR4--MSCs及對照組GFP-MSCs中幾乎不表達(Fig 2A)。對免疫熒光的結(jié)果進行拍照,對CXCR4陽性細胞進行計數(shù),CXCR4+-MSCs組中CXCR4陽性細胞占90.2%,CXCR4--MSCs組中CXCR4陽性細胞占1.2%,而GFP-MSCs對照組中僅占7.6%,說明CXCR4+-MSCs能高表達CXCR4(Fig 2B,2C)。
2.3 CXCR4基因轉(zhuǎn)染不影響MSCs的增殖能力 基因轉(zhuǎn)染5 d后開始繪制CXCR4+-MSCs、對照組GFP-MSCs和未轉(zhuǎn)基因的Mock-MSCs 3組細胞的生長曲線,結(jié)果表明3組細胞的擴增能力無明顯差異(P>0.05);以上結(jié)果說明,CXCR4高表達不影響MSCs的增殖能力(Fig 3)。

Fig 1 Immunophenotype of MSCs by using flow cytometry
A:CD29 positive;B:CD44 positive; C:CD90 positive;D:CD34 negative;E:CD45 negative

Fig 2 Identification of CXCR4 expression in CXCR4-transduced MSCs
A:Immunocytochemistry staining:GFP(green) expression in MSCs transduced with both vectors was visible by fluorescence microscopy 3 days after infection. Magnification×20.Green:GFP;Red:CXCR4; Blue: DAPI stained nuclei.B:GFP-transduced MSCs were quantitatively analyzed by cell counting. Data were compared with isotype-matched controls. One representative experiment of three is shown.C:CXCR4-transduced MSCs were quantitatively analyzed by cell counting. One representative experiment of three is shown.

Fig 3 Assay for self-renewal capacity of CXCR4-transduced MSCs
Growth curve:CXCR4+-MSCs,GFP-MSCs or Mock-MSCs were seeded at the same density in 24 well plate 5 days post gene-transfection. At day 1, 3, 5, 7, 9; MSCs in each well were dissociated to single cells, numbers of the cells per well were counted by hemocytometer.A growth curve of MSCs revealed by enumerating the cells at each time point was developed.n=6.
2.4 CXCR4高表達、低表達對MSCs向肺組織細胞分化能力無影響 為了檢測CXCR4基因轉(zhuǎn)染是否影響MSCs的分化能力,體外培養(yǎng)的肺組織細胞經(jīng)LPS致炎所得的條件培養(yǎng)基(CM)孵育MSCs誘導(dǎo)其分化,8 d后用免疫熒光細胞化學(xué)法對肺泡Ⅱ型上皮細胞標記蛋白SP-C(紅色,F(xiàn)ig 4A)和血管內(nèi)皮細胞標記蛋白vWF(紅色,F(xiàn)ig 4B)進行染色,比較未轉(zhuǎn)染的MSCs(Mock-MSCs)、高表達CXCR4基因的MSCs(CXCR4+-MSCs)和低表達CXCR4基因的MSCs(CXCR4--MSCs)組在CM誘導(dǎo)下的分化能力。定量分析結(jié)果表明,CXCR4基因轉(zhuǎn)染對MSCs向肺組織分化的能力沒有影響(P>0.05,F(xiàn)ig 4C)。
2.5 CXCR4高表達增強了MSCs的遷移能力,低表達不影響其遷移能力 為檢測高表達CXCR4對MSCs遷移能力的影響,將CXCR4+-MSCs、CXCR4--MSCs、GFP-MSCs和未經(jīng)轉(zhuǎn)染的Mock-MSCs細胞置于Transwell小室上室,下室分別放置不同濃度的趨化因子SDF-1α(0、50、100 μg·L-1),孵育后取出小室用結(jié)晶紫染色并觀察拍照(穿膜細胞為藍紫色,F(xiàn)ig 5A),對穿膜細胞進行計數(shù)。遷移實驗結(jié)果顯示,CXCR4+-MSCs遷移細胞明顯多于GFP-MSCs;定量分析結(jié)果顯示,100 μg·L-1的SDF-1α對CXCR4+-MSCs的遷移效率作用明顯,CXCR4+-MSCs的遷移能力明顯高于GFP-MSCs(50、100 μg·L-1SDF-1α),定量分析結(jié)果顯示,50 μg·L-1SDF-1α因子的趨化下CXCR4+-MSCs遷移數(shù)量為55.67±2.83,明顯高于GFP-MSCs的遷移細胞數(shù)(30.34±4.11,P<0.01,F(xiàn)ig 5B),100 μg·L-1SDF-1α因子的趨化下CXCR4+-MSCs遷移數(shù)量為78.06±6.68,明顯高于GFP-MSCs的遷移細胞數(shù)(40.67±2.87,P<0.01)。其中,CXCR4--MSCs組和GFP-MSCs組比較差異無統(tǒng)計學(xué)意義。以上遷移實驗結(jié)果表明,CXCR4高表達促進MSCs的遷移能力,低表達不影響MSCs的遷移能力(Fig 5)。

Fig 4 Assay for differentiation of CXCR4-transduced MSCs A and B:CM induced differentiation of Mock-MSCs, CXCR4+-MSCs was identified by immunostaining. Mock-or CXCR4-transduced MSCs were cultured in condition medium for 8 days, then stained with lung cell markers(red) and DAPI(blue). Examples show that CXCR4-MSCs differentiated into Alveolar epithelial cells(SP-C+), vascular endothelial(vWF+) as verified by immunostaining,Magnification×20.C:Percentages of MSCs differentiated into lung cells were calculated by the numbers of each individual cell type among total numbers of MSCs(DAPI+). There was no difference between the groups.
骨髓MSCs具有取材簡單、體外擴增能力強等優(yōu)勢,具有很強的自我更新能力和多向分化潛能,是細胞治療和基因工程的良好載體。MSCs本身通過旁分泌實現(xiàn)的免疫調(diào)節(jié)作用可以改善急性肺損傷等系統(tǒng)免疫疾病的癥狀,減輕全身炎癥、緩解組織損傷,MSCs還可以遷移到病灶區(qū)域通過定植、分化在一定程度上實現(xiàn)組織再生[6,26-27]。
CXCR4廣泛地表達于多種細胞和組織,包括免疫細胞、肺、心臟、腎、肝和脾[28]。趨化因子及其受體介導(dǎo)一系列白細胞應(yīng)答,包括趨化現(xiàn)象和免疫激活[28]。在發(fā)生急性損傷的肺病變區(qū)域,由于劇烈的炎癥反應(yīng)產(chǎn)生高水平的趨化因子SDF-1α,與炎癥細胞表面的趨化因子受體CXCR4結(jié)合,引起炎細胞的聚集與激活[29-30]。但隨著MSCs的體外擴增,其表面趨化因子受體CXCR4逐漸降低,影響其移植后在體內(nèi)向產(chǎn)生趨化因子的受損肺組織遷移的能力,從而限制了它的療效[14-15]。使細胞表面過表達某種趨化因子受體是加快移植細胞遷移的有力方案,因此我們假設(shè),將CXCR4基因轉(zhuǎn)入MSCs,高表達CXCR4的MSCs應(yīng)該能更快速地遷移到受損的肺組織,縮短起效時間從而增強療效。

Fig 5 Chemotaxis assay for CXCR4-transduced MSCs

為了驗證上述假設(shè),我們首先體外擴增了純度較高的骨髓MSCs,經(jīng)流式細胞儀鑒定純度在90%以上。為了增強MSCs的遷移能力,我們用已構(gòu)建了的CXCR4-GFP載體質(zhì)粒,并包裝成慢病毒感染MSCs,轉(zhuǎn)染3 d后經(jīng)細胞免疫熒光化學(xué)檢測,MSCs既表達GFP又表達CXCR4證明轉(zhuǎn)染成功。體外增殖、分化實驗表明,轉(zhuǎn)染了GFP和CXCR4+-GFP、CXCR4--GFP的MSCs與未轉(zhuǎn)染的細胞比較,增殖能力并未受到影響,分化為肺組織細胞的能力差異也無顯著性,說明基因轉(zhuǎn)染不影響MSCs的增殖和分化能力。體外趨化實驗表明,高表達CXCR4的MSCs比只表達GFP的細胞對趨化因子SDF-1α有更強的趨化能力,表明CXCR4高表達能夠使MSCs增強向SDF-1趨化的能力。
綜上所述,CXCR4高表達能明顯增強BM-MSCs的趨化能力,說明其植入體內(nèi)后不僅可保持其原有的細胞替代與組織修復(fù)作用,而且可快速大量地向病灶部位的遷徙,明顯增強治療作用,是治療肺損傷等疾病的理想種子細胞,具有很廣闊的應(yīng)用前景。
(致謝:本實驗于遼寧中醫(yī)藥大學(xué)藥學(xué)院藥理實驗室完成。在此向所有參與本實驗的人員表示衷心感謝!)
[1] Keating A.Mesenchymal stromal cells: new directions[J].CellStemCell,2012,10(6): 709-16.
[2] Hayes M,Curley G,Laffey J G. Mesenchymal stem cells-a promising therapy for acute respiratory distress syndrome[J].F1000MedRep,2012,4:2.
[3] Sensebé L,Krampera M,Schrezenmeier H,et al. Mesenchymal stem cells for clinical application[J].VoxSang,2010,98(2):93-107.
[4] Griffin M,Iqbal S A,Bayat A. Exploring the application of mesenchymal stem cells in bone repair and regeneration[J].JBoneJointSurgBr,2011,93(4):427-34.
[5] Dominici M,Le Blanc K,Mueller I,et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J].Cytotherapy,2006,8(4):315-7.
[6] Gupta N,Su X,Popov B,et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice[J].JImmunol,2007,179(3):1855-63.
[7] Kotton D N,Ma B Y,Cardoso W V,et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium[J].Development,2001,128(24):5181-8.
[8] Rojas M,Xu J,Woods C R,et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung[J].AmJRespirCellMolBiol,2005,33(2):145-52.
[9] 李濟元,王衛(wèi)華,張彥梅,等.白藜蘆醇對肺腺癌細胞增殖和CXCR4表達的影響[J]. 中國藥理學(xué)通報,2012,28(4):588-9.
[9] Li J Y,Wang W H, Zhang Y M,et al.Effects of resveratrol on proliferation and expression of CXCR4 in lung adenocarcinoma cells[J].ChinPharmacolBull,2012,28(4):588-9.
[10]Petty J M,Sueblinvong V,Lenox C C,et al. Pulmonary stromal-derived factor-1 expression and effect on neutrophil recruitment during acute lung injury[J].JImmunol,2007,178(12):8148-57.
[11]Bleul C C,Farzan M,Choe H,et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry[J].Nature,1996,382(6594):829-33.
[12]Oberlin E,Amara A,Bachelerie F,et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1[J].Nature,1996,382(6594):833-5.
[13]Phillips R J,Burdick M D,Hong K,et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis[J].JClinInvest,2004,114(3):438-46.
[14]Honczarenko M,Le Y,Swierkowski M,et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors[J].StemCells,2006,24(4):1030-41.
[15]Wynn R F,Hart C A,Corradi-Perini C,et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow[J].Blood,2004,104(9):2643-5.
[16]Liang Z X,Sun J P,Wang P,et al. Bone marrow-derived mesenchymal stem cells protect rats from endotoxin-induced acute lung injury[J].ChinMedJ(Engl),2011,124(17):2715-22.
[17]Curley G F,Hayes M,Ansari B,et al. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat[J].Thorax,2012,67(6):496-501.
[18]Yang J, Yan Y, Xia Y, Kang T, et al. Neurotrophin 3 transduction augments remyelinating and immunomodulatory capacity of neural stem cells[J].MolTher,2014, 22(2):440-50.
[19]Yang J,Jiang Z,Fitzgerald D C,et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis[J].JClinInvest,2009,119(12): 3678-91.
[20]Zhang N,Kang T,Xia Y,et al. Effects of salvianolic acid B on survival,self-renewal and neuronal differentiation of bone marrow derived neural stem cells[J].EurJPharmacol,2012, 697(1-3):32-9.
[21]Yang J,Yan Y,Ma C G,et al. Accelerated and enhanced effect of CCR5-transduced bone marrow neural stem cells on autoimmune encephalomyelitis[J].ActaNeuropathol,2012,124(4):491-503.[22]Zhao J, He D,Su Y,et al. Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs[J].AmJPhysiolLungCellMolPhysiol,2011,301(4):547-56.
[23]Yang J,iang Z,Fitzgerald D C,et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis[J].JClinInvest,2009,119(12):3678-91.
[24]Du Z,Wei C,Yan J,et al. Mesenchymal stem cells overexpressing C-X-C chemokine receptor type 4 improve early liver regeneration of small-for-size liver grafts[J].LiverTranspl,2013,19(2):215-25.
[25]張 悅,歐來良,程兆康,等. CXCR4基因修飾骨髓間充質(zhì)干細胞體外遷移實驗[J]. 生物醫(yī)學(xué)工程學(xué)雜志,2009,26(3):595-600.
[25]Zhang Y,Ou L L,Cheng Z K,et al.CXCR4 gene modification between bone marrow mesenchymal stem cell migration in vitro experiment[J].JBiomedlEngin,2009,26(3):595-600.
[26]Zhu Y G,Feng X M,Abbott J,et al. Human Mesenchymal Stem Cell Microvesicles for Treatment of Escherichia coli Endotoxin-Induced Acute Lung Injury in Mice[J].StemCells,2014,32(1):116-25.
[27]Inamdar A C,Inamdar A A. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell[J].ExpLungRes,2013,39(8):315-27.
[28]崔紅霞,馮一中,顧振綸,等. CXCL12/CXCR4生物軸與特發(fā)性肺纖維化研究進展[J].中國藥理學(xué)通報,2010,26(3):298-301.
[28]Cui H X,Feng Y Z,Gu Z L,et al.Research progress of CXCL12/CXCR4 biological axis and idiopathic pulmonary fibrosis[J].ChinPharmacolBull,2010,26(3):298-301.
[29]Yellowley C.CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair[J].BonekeyRep,2013,13(2):300.
[30]Bhatia M,Zemans R L,Jeyaseelan S. Role of chemokines in the pathogenesis of acute lung injury[J].AmJRespirCellMolBiol,2012,46(5):566-72.
Effects of CXCR4 gene transfection on biological behavior of bone marrow mesenchymal stem cells (invitro)
WANG Yu-ying1,ZHANG Nan1,LI Xiu-li1,WANG Ya-meng1,LI Shao-heng1,YAN Yu-hui1,SONG Jie1,YANG Jing-xian1,WEN Qing-ping2
(1.DeptofPharmacology,SchoolofPharmacy,LiaoningUniversityofTraditionalChineseMedicine,DalianLiaoning116600,China; 2.DalianMedicalUniversity,DalianLiaoning116044,China)
Aim To observate the effect of chemokine receptor(CXCR4) gene transfection on biological behavior of bone marrow mesenchymal stem cellsinvitro.Methods Firstly, bone marrow mesenchymal stem cells were divided into three groups:GFP(transfected GFP into MSCs), CXCR4+(transfected CXCR4+into MSCs) and CXCR4-(transfected CXCR4-into MSCs) group.Then, their capacity of proliferation, differentiation and migration ability (invitro) was assessed with immunofluorescence cytochemistry method, flow cytometry assay and Transwell cell chemotaxis test.Results The high or low expression of CXCR4 had no effect on their ability of proliferation and differentiation into lung tissue. Compared with GFP group, however, CXCR4+-MSCs group significantly increased the number of migrating cells, while CXCR4--MSCs group showed no change in the number of migrating cells.Conclusions The proliferation and differentiation capacities are not affected by the high or low expression of CXCR4. The high expression of CXCR4 can significantly enhance the migration ability of MSCs to inflammatory lesions, and the low one has no effect on the migration of the cells. After the transplantation of MSCs, CXCR4′s high expression will access to the lesion area to participate in tissue repairing rapidly and largely, significantly enhancing the therapeutic efficacy.
bone marrow mesenchymal stem cells; chemokine receptor CXCR4; gene transfection; proliferation; differentiation; Migration
時間:2017-5-25 17:44 網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/34.1086.R.20170525.1744.026.html
2017-01-22,
2017-03-30
國家自然科學(xué)基金資助項目(No 81273923)
王玉瑩(1992-),女,碩士生,研究方向:神經(jīng)藥理學(xué),E-mail:799363692@qq.com; 楊靜嫻(1963-),女,博士,教授,博士生導(dǎo)師,研究方向:神經(jīng)藥理學(xué),通訊作者,E-mail:jingxianyang@yahoo.com; 聞慶平(1971-),男,博士,教授,博士生導(dǎo)師,研究方向:心血管麻醉和危重癥麻醉,通訊作者,E-mail: wenqp126@126.com
10.3969/j.issn.1001-1978.2017.06.013
A
1001-1978(2017)06-0806-08
R322.35;R329.24;R392.11;R394.2;R563.8;R977.6