肖 海劉 剛,2趙金凡蒙蒂凱諾劉普靈,2?
(1 西北農(nóng)林科技大學(xué)水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100)
(2 中國(guó)科學(xué)院水利部水土保持研究所,陜西楊凌 712100)
(3 三峽大學(xué)水利與環(huán)境學(xué)院,湖北宜昌 443002)
(4 四川農(nóng)業(yè)大學(xué)林學(xué)院,成都 611130)
雨滴機(jī)械打擊和消散作用對(duì)土壤團(tuán)聚體的破壞特征*
肖 海1劉 剛1,2趙金凡3蒙蒂凱諾4劉普靈1,2?
(1 西北農(nóng)林科技大學(xué)水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100)
(2 中國(guó)科學(xué)院水利部水土保持研究所,陜西楊凌 712100)
(3 三峽大學(xué)水利與環(huán)境學(xué)院,湖北宜昌 443002)
(4 四川農(nóng)業(yè)大學(xué)林學(xué)院,成都 611130)
土壤團(tuán)聚體是土壤結(jié)構(gòu)的基本單元,其穩(wěn)定性是描述土壤抵抗侵蝕過程中破壞作用的重要指標(biāo)。但濺蝕過程中,雨滴對(duì)團(tuán)聚體的消散和機(jī)械打擊兩種破壞作用的相對(duì)貢獻(xiàn)及其破壞機(jī)制尚未明晰。利用酒精和超純水作為雨滴形成材料,模擬機(jī)械打擊單獨(dú)作用及消散和機(jī)械打擊共同作用,分別在五個(gè)高度(0.5、1、1.5、2和2.5 m)對(duì)塿土和黃綿土進(jìn)行濺蝕實(shí)驗(yàn)。結(jié)果表明:當(dāng)降雨動(dòng)能相同時(shí),塿土的濺蝕率均小于黃綿土。同時(shí),超純水雨滴對(duì)土壤的機(jī)械打擊和消散共同作用所導(dǎo)致的濺蝕率均大于酒精雨滴單一機(jī)械打擊作用的濺蝕率。隨著降雨動(dòng)能增加,兩種雨滴對(duì)兩種土壤的濺蝕率均呈冪函數(shù)增加;團(tuán)聚體因消散破壞作用和機(jī)械打擊作用的濺蝕率均亦隨之增加。但兩種土壤的消散破壞作用和機(jī)械打擊作用的貢獻(xiàn)率分別隨著降雨動(dòng)能增加而減小和增加。在相同降雨動(dòng)能時(shí),塿土消散破壞作用的貢獻(xiàn)率均大于黃綿土,而機(jī)械打擊作用貢獻(xiàn)率均小于黃綿土。研究結(jié)果對(duì)深入理解濺蝕過程中團(tuán)聚體破壞機(jī)理及評(píng)價(jià)濺蝕過程中團(tuán)聚體穩(wěn)定性具有重要意義。
濺蝕;團(tuán)聚體;降雨動(dòng)能;消散作用;機(jī)械打擊
濺蝕是降雨侵蝕的初始階段,通過雨滴打擊,對(duì)坡面土壤進(jìn)行分離、搬運(yùn),同時(shí)為后續(xù)侵蝕過程提供泥沙來源,是水力侵蝕的重要環(huán)節(jié)與組成部分[1-2]。土壤團(tuán)聚體作為土壤結(jié)構(gòu)的基本單元,其穩(wěn)定性是描述土壤抵抗侵蝕過程中破壞作用的重要指標(biāo)[3-5]。團(tuán)粒性質(zhì)好的土壤,團(tuán)聚體穩(wěn)定性更高,對(duì)雨滴擊濺的抵抗力更強(qiáng)[6]。雨滴打擊過程中會(huì)導(dǎo)致土壤表層結(jié)皮,影響土壤侵蝕過程[7-8]。胡霞等[9]發(fā)現(xiàn)不同土壤團(tuán)聚體破碎后所形成的表土結(jié)皮機(jī)制不同,因而影響著濺蝕速率的變化趨勢(shì)。程琴娟和蔡強(qiáng)國(guó)[10]發(fā)現(xiàn)團(tuán)聚體穩(wěn)定性高的黑土濺蝕率遠(yuǎn)小于團(tuán)聚體穩(wěn)定性差的黃土。馬仁明等[11]研究發(fā)現(xiàn)在雨滴打擊作用下,土壤團(tuán)聚體穩(wěn)定性與濺蝕率之間有顯著負(fù)相關(guān)關(guān)系。
現(xiàn)有研究表明,降雨過程中水對(duì)土壤團(tuán)聚體存在四種破壞作用:消散作用、機(jī)械外力作用、土壤礦物濕潤(rùn)后非均勻膨脹作用和物理化學(xué)驅(qū)散作用[12]。物理化學(xué)驅(qū)散作用在前三種作用破壞時(shí)均存在,而且對(duì)各處理的影響是相似的[12],因此,Le Bissonnais[12]提出團(tuán)聚體在快速濕潤(rùn)、濕潤(rùn)后機(jī)械震蕩和緩慢濕潤(rùn) 3 種處理來評(píng)價(jià)其穩(wěn)定性。同時(shí),由于土壤礦物濕潤(rùn)后非均勻膨脹作用對(duì)團(tuán)聚體破壞是有限的[12],因此,消散和機(jī)械外力兩種破壞作用對(duì)降雨條件下侵蝕過程中土壤團(tuán)聚體破壞起主要作用。一些學(xué)者使用相對(duì)消散指數(shù)(RSI)和相對(duì)機(jī)械破碎指數(shù)(RMI)的乘積得到土壤團(tuán)聚體特征參數(shù)Ka來代替面蝕中土壤可蝕性因子參數(shù)Ki[13-14]。但這些研究均假設(shè)侵蝕過程中雨滴機(jī)械打擊和消散破壞兩種作用貢獻(xiàn)相同。這一假設(shè)是否成立仍需進(jìn)一步研究,尤其在濺蝕階段這兩種團(tuán)聚體破壞作用的相對(duì)貢獻(xiàn)尚未明晰。
因此,本文以塿土和黃綿土作為研究對(duì)象,利用酒精和超純水作為雨滴形成材料,分別模擬機(jī)械打擊單獨(dú)作用及消散和機(jī)械打擊共同作用,從而研究濺蝕過程中不同破壞作用隨降雨動(dòng)能的變化,及其對(duì)團(tuán)聚體破壞作用的相對(duì)貢獻(xiàn)。本研究對(duì)深入理解濺蝕過程中團(tuán)聚體破壞機(jī)理、評(píng)價(jià)濺蝕過程中團(tuán)聚體穩(wěn)定性具有重要意義。
1.1 試驗(yàn)設(shè)計(jì)
本研究選擇黃土高原地區(qū)兩種不同質(zhì)地土壤(壤質(zhì)黏土(楊凌塿土,即土墊旱耕人為土)和砂質(zhì)壤土(安塞黃綿土,即黃土正常新成土)),經(jīng)風(fēng)干后過5 mm篩,剔除土壤中小石子及根系等雜質(zhì),土壤基本理化性質(zhì)見表1。
在降雨條件下,土壤礦物濕潤(rùn)后非均勻膨脹作用對(duì)團(tuán)聚體破壞是有限的[12],同時(shí),用于本試驗(yàn)的黃土母質(zhì)土壤所含礦物質(zhì)的膨脹性較差[15],因此,本研究將土壤礦物濕潤(rùn)后非均勻膨脹作用對(duì)團(tuán)聚體的破壞作用忽略。本研究將侵蝕過程中團(tuán)聚體破壞視為由消散作用和機(jī)械外力作用共同導(dǎo)致。酒精通過改變表面張力、黏度和接觸角度能夠大幅度減小水分消散作用對(duì)土壤團(tuán)聚體破壞[12]。結(jié)合LB(Le Bissonnais)團(tuán)聚體測(cè)試方法,為探討在濺蝕過程中不同土壤團(tuán)聚體破壞形式的貢獻(xiàn),本研究分別采用超純水和95%酒精模擬團(tuán)聚體在濺蝕過程中完全充分破壞(包括消散作用和降雨動(dòng)能作用)和僅存在降雨動(dòng)能破壞兩種情況。對(duì)兩種土壤分別使用超純水和95%酒精進(jìn)行降雨模擬,通過在0.5、1、1.5、2和2.5 m五個(gè)不同降雨高度形成五種降雨動(dòng)能,進(jìn)行濺蝕研究。每種實(shí)驗(yàn)條件下重復(fù)兩次,累計(jì)共40場(chǎng)降雨。
采用LB法[12]、馬爾文激光粒度儀(Mastersizer 2000,Malvern Instruments Ltd.,英國(guó))掃描法和重鉻酸鉀氧化外加熱法分別測(cè)定土壤團(tuán)聚體穩(wěn)定性、土壤顆粒體積分?jǐn)?shù)(國(guó)際制)和有機(jī)質(zhì)含量。

表1 供試土壤基本性質(zhì)Table 1 Basic physical-chemical properties of the soils in the experiment
1.2 試驗(yàn)裝置
本研究在黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室人工降雨大廳,使用自制針式降雨器進(jìn)行人工模擬降雨。自制針式降雨器由供液裝置、供雨裝置以及支撐裝置組成(圖1)。支撐裝置總長(zhǎng)1.7 m,底部為一圓盤以確保裝置平穩(wěn),在1 m高處伸出一個(gè)空心支架安放供雨裝置,頂部為一平臺(tái)用來放置供液裝置。供液裝置為一塑料桶,在側(cè)面開孔連接一根有開關(guān)的塑料管對(duì)供雨裝置提供液體。供雨裝置為直徑10 cm的圓筒,圓筒底部均勻分布39個(gè)6號(hào)針頭(直徑0.6 mm),圓筒側(cè)壁留有上中下三個(gè)孔。實(shí)際降雨過程中通過調(diào)節(jié)針頭高度以及側(cè)壁開孔高度得到所需要的降雨強(qiáng)度。
本試驗(yàn)所使用濺蝕盤為外環(huán)頂部直徑及高均為30 cm、外環(huán)底部直徑為15 cm的倒圓臺(tái)形裝置,在底部中間安放有直徑和高均為10 cm的內(nèi)環(huán)作為濺蝕盤。使用鐵皮焊接外環(huán)與內(nèi)環(huán)中間形成斜面,并使用玻璃膠將接口處進(jìn)行粘膠處理以防止漏液,在斜面最低處打孔形成出液口。內(nèi)環(huán)底部打孔,以確保入滲液體能夠及時(shí)排除。此裝置與馬仁明等[16]研究所用類似,是在Morgan濺蝕盤基礎(chǔ)上改進(jìn)的。

圖1 實(shí)驗(yàn)裝置示意圖Fig. 1 Schematic diagram of the experimental apparatus
1.3 模擬降雨步驟
將自制針式降雨器安放至設(shè)計(jì)高度后,開始調(diào)節(jié)針頭高度及側(cè)壁開孔位置對(duì)降雨強(qiáng)度進(jìn)行率定,本試驗(yàn)設(shè)計(jì)降雨強(qiáng)度為60 mm h-1,實(shí)際降雨強(qiáng)度為(62.70±0.59)mm h-1。率定好降雨強(qiáng)度之后,將濺蝕裝置位置標(biāo)記好,將其拿出降雨范圍之外,開始進(jìn)行濺蝕盤裝填土壤:先在內(nèi)環(huán)底部8 cm先填充直徑為1~2 cm的石子,然后在上面鋪一層濾紙,將風(fēng)干土按設(shè)計(jì)容重裝填內(nèi)環(huán)頂部2 cm(設(shè)計(jì)容重根據(jù)野外耕作層容重確定:塿土1.20 g cm-3;黃綿土為1.23 g cm-3)。使用擋板蓋在濺蝕盤上,將濺蝕盤放置于標(biāo)記好的位置上后,將擋板撤開時(shí)按下秒表,開始試驗(yàn)。試驗(yàn)過程中以3 min為時(shí)間間隔在出口處接取全部泥沙樣品,待濺蝕盤表面出現(xiàn)明顯積液時(shí)停止試驗(yàn)。每次接樣時(shí),用注射器使用與雨滴相同的液體沖洗在外環(huán)收集盤上的土壤顆粒。將各次接樣泥沙樣烘干后在萬分之一天平上稱重得到濺蝕量。
1.4 降雨動(dòng)能測(cè)定與計(jì)算
在率定好降雨強(qiáng)度后,對(duì)同一高度同種液體情況下每一個(gè)針頭雨滴速度及大小進(jìn)行測(cè)定。使用10 ml容量瓶放置于所測(cè)定針頭下;記錄10滴雨所需要的時(shí)間;用吸水性能較好的紙巾將容量瓶外部雨滴擦拭干凈后使用萬分之一天平稱取10滴雨的質(zhì)量。所有針頭測(cè)完后開始下一輪測(cè)定,共測(cè)4輪。計(jì)算時(shí)假設(shè)形成雨滴為球形,使用式(1)計(jì)算雨滴直徑:

式中,D為雨滴直徑,mm;m為單顆雨滴質(zhì)量,g;ρ為密度,g cm-3,水取1.0,95%酒精取0.81。
雨滴降落時(shí)因重力作用而逐漸加速,由于空氣的阻力產(chǎn)生向上的浮力,二力趨于平衡時(shí),雨滴則以固定速度下降,稱為雨滴終點(diǎn)速度。不同大小雨滴終點(diǎn)速度不同,本文使用文獻(xiàn)[17]中公式計(jì)算。
根據(jù)動(dòng)能計(jì)算公式,單個(gè)雨滴動(dòng)能采用式(2)計(jì)算:

式中,ei為單顆雨滴動(dòng)能,J;mi為單顆雨滴質(zhì)量,kg;vai為雨滴 i 實(shí)際速度,m s-1。
根據(jù)式(2)計(jì)算單個(gè)雨滴動(dòng)能,在同一高度時(shí)對(duì)所有雨滴動(dòng)能相加,得到此高度下的總動(dòng)能,經(jīng)換算得到單位時(shí)間單位面積的降雨動(dòng)能KE,J m-2h-1。

式中,Ni為 1 h中 i 針頭的雨滴數(shù),顆;Ti為 i 針頭的10雨滴時(shí)間,s;A為降雨面積,m2。
1.5 數(shù)據(jù)處理
土壤濺蝕率(Ds)表示雨滴在單位時(shí)間單位面積內(nèi)從濺蝕盤內(nèi)擊濺出來的土壤質(zhì)量,g m-2min-1。

式中,S為t時(shí)間內(nèi)濺蝕出來的土壤量,g;As為濺蝕盤面積,m2,本研究取值0.007 854 m2;t為濺蝕時(shí)間,min。
LB法所測(cè)團(tuán)聚體在快速濕潤(rùn)、預(yù)濕潤(rùn)后機(jī)械震蕩和慢速濕潤(rùn) 3 種處理下穩(wěn)定性分別使用平均重量直徑MWDfw、MWDws、MWDsw表示。不同處理中,MWD 值越低表示團(tuán)聚體穩(wěn)定性越低,該處理對(duì)團(tuán)聚體的破碎作用越大[13]。平均重量直徑計(jì)算方法為:

同時(shí),分別使用相對(duì)消散指數(shù)(RSI)和相對(duì)機(jī)械破碎指數(shù)(RMI)來評(píng)價(jià)土壤團(tuán)聚體對(duì)消散作用和機(jī)械打擊作用的敏感性。二者的值越大,表明團(tuán)聚體對(duì)消散作用和機(jī)械破碎作用敏感程度越高[6,13]。相對(duì)消散指數(shù)(RSI)和相對(duì)機(jī)械破碎指數(shù)(RMI)分別使用文獻(xiàn)[13]中公式計(jì)算。
2.1 不同高度下降雨動(dòng)能
由于超純水和95%濃度酒精基本理化性質(zhì)不同,因此,在同一高度情況下,所形成的雨滴大小、數(shù)量及相應(yīng)的降雨動(dòng)能也存在較大的差別(表2)。超純水和酒精所形成各自的雨滴大小和10滴所需要時(shí)間在不同高度間無顯著差別。而在同一高度下,超純水10滴與95%酒精10滴所需要時(shí)間和平均雨滴直徑有所差別,前者五種高度的平均值分別為后者的1.56倍和1.29倍。通過計(jì)算,超純水五個(gè)高度所形成的降雨對(duì)應(yīng)的降雨動(dòng)能為59.44~806.9 J m-2h-1,95%酒精五個(gè)高度所形成的降雨對(duì)應(yīng)的降雨動(dòng)能為40.13~497.2 J m-2h-1,超純水五個(gè)高度所形成的降雨對(duì)應(yīng)的降雨動(dòng)能為95%酒精降雨動(dòng)能的1.48倍~1.62倍。

表2 不同高度下雨滴基本信息及降雨動(dòng)能Table 2 Information of raindrops and related rainfall kinetic energy relative to height where the drops fell from
2.2 兩種土壤團(tuán)聚體穩(wěn)定性
LB法所測(cè)土壤團(tuán)聚體三種穩(wěn)定性指標(biāo)及兩種相對(duì)指數(shù)見表3。塿土的三種團(tuán)聚體穩(wěn)定性指標(biāo)與黃綿土均存在顯著差異。塿土在快速濕潤(rùn)、預(yù)濕潤(rùn)后震蕩和慢速濕潤(rùn)條件下MWD大小分別為0.492、2.109和2.647 mm,黃綿土三種條件下的MWD大小分別為0.103、0.171和0.433 mm,即三種條件下塿土均遠(yuǎn)大于黃綿土,說明塿土團(tuán)聚體穩(wěn)定性相對(duì)較大,這與塿土含有更高的可為土壤團(tuán)聚體形成和穩(wěn)定提供膠結(jié)作用的黏粒和有機(jī)質(zhì)有關(guān)。同種土壤不同破碎機(jī)制中,MWD均存在慢速濕潤(rùn)最大、預(yù)濕潤(rùn)后震蕩次之、快速濕潤(rùn)最小。表明,塿土和黃綿土的土壤團(tuán)聚體破壞均是團(tuán)聚體快速濕潤(rùn)時(shí)孔隙內(nèi)部封閉的空氣壓力作用為主,其次是機(jī)械擾動(dòng)作用,黏粒膨脹作用影響最小。這主要是因?yàn)閮煞N土壤黏粒礦物組成主要是膨脹性較差的云母和高嶺石[15]。兩種土壤相對(duì)消散指數(shù)(RSI)均大于相對(duì)機(jī)械破碎指數(shù)(RMI),這表明兩種土壤對(duì)消散作用敏感性均大于機(jī)械破碎作用。塿土相對(duì)消散指數(shù)顯著大于黃綿土,表明塿土對(duì)消散作用敏感性顯著高于黃綿土。塿土之間的相對(duì)機(jī)械破碎指數(shù)大于黃綿土,兩者之間存在顯著性差異,表明黃綿土對(duì)機(jī)械破碎作用敏感性遠(yuǎn)大于塿土。

表3 LB法所測(cè)試驗(yàn)土壤團(tuán)聚體穩(wěn)定性和敏感性指標(biāo)Table 3 Aggregate stabilities measured with the LB-method and related sensitively index in study soils
2.3 降雨動(dòng)能對(duì)濺蝕的影響
雨滴攜帶動(dòng)能與土壤表面發(fā)生碰撞,形成沖擊力,為土壤顆粒產(chǎn)生濺蝕提供直接動(dòng)力[18]。除了由于撞擊使得部分能量被土壤吸收為熱能以外,剩余部分能量將土壤結(jié)構(gòu)破壞,分散破壞土壤團(tuán)聚體,部分土壤顆粒獲得由雨滴傳遞過來的動(dòng)量,獲得能量后與破碎的水滴向四周發(fā)生躍移,從而擊濺出濺蝕盤,形成濺蝕[19]。降雨動(dòng)能越大,對(duì)土壤結(jié)構(gòu)破壞也越嚴(yán)重,土壤顆粒獲得的動(dòng)能和勢(shì)能也相應(yīng)增加,土壤顆粒被擊濺出濺蝕盤的可能性也將增加。因此,兩種土壤在兩種雨滴作用下濺蝕率均隨著降雨動(dòng)能的增加而增加(圖2)。土壤濺蝕率與降雨動(dòng)能關(guān)系進(jìn)行擬合,發(fā)現(xiàn)冪函數(shù)能夠很好地描述兩者之間的關(guān)系,相關(guān)系數(shù)均達(dá)到0.95以上(表4),說明降雨動(dòng)能變化能夠較好地反映土壤濺蝕情況[2,17,20]。
此外,兩種土壤的試驗(yàn)結(jié)果均表明,超純水雨滴對(duì)土壤的機(jī)械打擊和消散共同作用所導(dǎo)致的濺蝕率均大于酒精雨滴機(jī)械打擊作用的濺蝕率。在同一降雨動(dòng)能下,塿土濺蝕率均小于黃綿土,這是因?yàn)?,這兩種土壤抵抗雨滴動(dòng)能的土粒間的黏結(jié)作用不同,土壤黏粒和有機(jī)質(zhì)越多,所形成的土壤團(tuán)聚體含量越高且穩(wěn)定性更好(表3),因而所產(chǎn)生的濺蝕量也越少。
2.4 消散和機(jī)械打擊作用對(duì)降雨動(dòng)能的響應(yīng)及貢獻(xiàn)率
利用表4中不同土壤濺蝕率與降雨動(dòng)能關(guān)系,分別計(jì)算從50到800 J m-2h-19種降雨動(dòng)能下兩種土壤相應(yīng)濺蝕率(表5)。超純水雨滴對(duì)土壤的機(jī)械打擊和消散共同作用的濺蝕率為總濺蝕率,酒精雨滴打擊作用為機(jī)械打擊作用貢獻(xiàn)的濺蝕率,二者之差為消散破壞作用貢獻(xiàn)濺蝕率。分別將消散破壞作用和機(jī)械打擊作用所貢獻(xiàn)的濺蝕率與總濺蝕率相除得到消散作用和機(jī)械作用破壞對(duì)應(yīng)的貢獻(xiàn)率。

圖2 濺蝕率與降雨動(dòng)能關(guān)系圖(a. 超純水;b.酒精)Fig. 2 Relationship between rainfall kinetic energy and splash erosion rate(a. Ultra-pure water;b. Alcohol)

表4 兩種團(tuán)聚體破壞情況下土壤濺蝕率與降雨動(dòng)能關(guān)系Table 4 Correlation coefficients between rainfall kinetic energy and splash erosion rate under two breakdown conditions on aggregate

表5 消散和機(jī)械打擊作用對(duì)兩種土壤在不同降雨動(dòng)能下濺蝕率及相對(duì)貢獻(xiàn)率Table 5 Splash erosion rate and contribution rate of slaking effect and mechanical impact relative to rainfall kinetic energy and soil type
團(tuán)聚體消散破壞作用和機(jī)械打擊作用的濺蝕率均隨著降雨動(dòng)能增加而增加。這是因?yàn)?,團(tuán)聚體在消散作用和降雨動(dòng)能破壞后,需要由雨滴動(dòng)能提供原始動(dòng)能才能被攜帶出濺蝕盤,形成濺蝕[20]。從貢獻(xiàn)率來看,無論塿土還是黃綿土,消散破壞作用和機(jī)械打擊作用的貢獻(xiàn)率分別隨著降雨動(dòng)能的增加而減小和增加(表5)。這是因?yàn)椋S著降雨動(dòng)能增加,雨滴機(jī)械打擊的團(tuán)聚體增加,從而提高了機(jī)械打擊作用貢獻(xiàn)率。相同降雨動(dòng)能時(shí),塿土消散破壞作用的貢獻(xiàn)率均大于黃綿土,而機(jī)械打擊作用貢獻(xiàn)率則小于黃綿土,這是因?yàn)椋c塿土相比,黃綿土對(duì)消散破壞作用的敏感性(RSI)更大,而對(duì)機(jī)械打擊敏感性(RMI)更小(表3)。
此外,在降雨動(dòng)能較小時(shí),塿土的消散破壞作用貢獻(xiàn)率大于65%,尤其在50和100 J m-2h-1時(shí),貢獻(xiàn)率超過70%,對(duì)濺蝕貢獻(xiàn)率占主導(dǎo)地位,而黃綿土并未出現(xiàn)此現(xiàn)象,其消散作用貢獻(xiàn)率一直小于60%。這可能與兩種土壤對(duì)消散和機(jī)械打擊作用的敏感性不同有關(guān)。塿土對(duì)消散作用及機(jī)械打擊作用的敏感性分別為0.838和0.760,黃綿土相對(duì)應(yīng)的敏感性分別為0.203和0.605(表3)。塿土的RSI是RMI的4.128倍,而黃綿土的RSI僅為RMI的1.256倍,這表明,與機(jī)械打擊作用相比,塿土對(duì)消散作用敏感性遠(yuǎn)大于黃綿土。
綜上所述,在濺蝕階段,消散破壞作用和機(jī)械打擊作用的貢獻(xiàn)率并非簡(jiǎn)單的相等,而是在不同土壤和不同降雨動(dòng)能時(shí)存在區(qū)別,同時(shí),隨著降雨動(dòng)能的增加,消散作用貢獻(xiàn)率減小而機(jī)械打擊作用貢獻(xiàn)率增加。
本研究中,超純水五個(gè)高度所形成的降雨對(duì)應(yīng)的降雨動(dòng)能為59.44~806.9 J m-2h-1,95%酒精五個(gè)高度所形成的降雨對(duì)應(yīng)的降雨動(dòng)能為40.13~497.2 J m-2h-1,超純水的降雨動(dòng)能為95%酒精的1.48倍~1.62倍。LB法的三種測(cè)試條件下,塿土的中值粒徑均比黃綿土大,兩種土壤團(tuán)聚體破壞均以團(tuán)聚體快速濕潤(rùn)時(shí)孔隙內(nèi)部封閉的空氣壓力作用為主,其次是機(jī)械擾動(dòng)作用,黏粒膨脹作用影響最小。塿土對(duì)消散作用敏感性顯著大于黃綿土,而對(duì)機(jī)械破碎作用敏感性遠(yuǎn)小于黃綿土。兩種雨滴對(duì)兩種土壤濺蝕過程中,土壤濺蝕率均隨著降雨動(dòng)能的增加而增加。冪函數(shù)能夠很好地描述土壤濺蝕率與降雨動(dòng)能之間的關(guān)系。相同降雨動(dòng)能時(shí),超純水雨滴對(duì)土壤的機(jī)械打擊和消散共同作用所導(dǎo)致的濺蝕率均大于酒精雨滴單一機(jī)械破壞作用的濺蝕率。團(tuán)聚體因消散破壞作用和機(jī)械打擊作用的濺蝕率均隨著降雨動(dòng)能增加而增加。從貢獻(xiàn)率來看,塿土和黃綿土的消散破壞作用的貢獻(xiàn)率均隨著降雨動(dòng)能增加而減小而機(jī)械打擊作用的貢獻(xiàn)率均隨著降雨動(dòng)能而增加。在濺蝕階段,消散破壞作用和機(jī)械打擊作用的貢獻(xiàn)率在不同土壤和不同降雨動(dòng)能時(shí)存在區(qū)別,同時(shí),隨著降雨動(dòng)能的增加,消散作用貢獻(xiàn)率減小而機(jī)械打擊作用貢獻(xiàn)率增加。
[1] 劉和平,符素華,王秀穎,等. 坡度對(duì)降雨濺蝕影響的研究. 土壤學(xué)報(bào),2011,48(3):479—486
Liu H P,F(xiàn)u S H,Wang X Y,et al. Effects of slope gradient on raindrop splash erosion(In Chinese). Acta Pedologica Sinica,2011,48(3):479—486
[2] Fu Y,Li G L,Zheng T H,et al. Impact of raindrop characteristics on the selective detachment and transport of aggregate fragments in the Loess Plateau of China. Soil Science Society of America Journal,2016,80(4):1071—1077
[3] 余冰,宋云瑞,程嘉寧,等. 不同模擬糙度集中水流內(nèi)紅壤團(tuán)聚體剝蝕特征研究. 土壤學(xué)報(bào),2016,53(4):860—868
Yu B,Song Y R,Cheng J N,et al. Denudation of red soil aggregates in concentrated flow as affected by artificial surface roughness(In Chinese). Acta Pedologica Sinica,2016,53(4):860—868
[4] Dimoyiannis D,Valmis S,Danalatos N G. Interrill erosion on cultivated Greek soils:Modeling sediment delivery. Earth Surface Processes and Landforms,2006,31(8):940—949
[5] Cantón Y,Solé-Benet A,Asensio C,et al. Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena,2009,77(3):192—199
[6] Zhang B,Horn R. Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma,2001,99(1):123—145
[7] 唐澤軍,雷廷武,張晴雯,等. 雨滴濺蝕和結(jié)皮效應(yīng)對(duì)土壤侵蝕影響的試驗(yàn)研究. 土壤學(xué)報(bào),2004,41(4):632—635
Tang Z J,Lei T W,Zhang Q W,et al. Quantitative determination of the impacts of raindrop splash and crust on soil erosion with REE experimental data(In Chinese). Acta Pedologica Sinica,2004,41(4):632—635
[8] 卜崇峰,蔡強(qiáng)國(guó),張興昌,等. 黃土結(jié)皮的發(fā)育機(jī)理與侵蝕效應(yīng)研究. 土壤學(xué)報(bào),2009,46(1):16—23
Bu C F,Cai Q G,Zhang X C,et al. Mechanism and erosion effect of development of soil crust of loess(In Chinese). Acta Pedologica Sinica,2009,46(1):16—23
[9] 胡霞,嚴(yán)平,李順江,等. 人工降雨條件下土壤結(jié)皮的形成以及與土壤濺蝕的關(guān)系. 水土保持學(xué)報(bào),2005,19(2):13—16
Hu X,Yan P,Li S J,et al. Development of soil crust through rainfall simulating in laboratory and relationship between crust and splash erosion(In Chinese). Journal of Soil Water Conservation,2005,19(2):13—16
[10] 程琴娟,蔡強(qiáng)國(guó). 我國(guó)水土流失典型區(qū)土壤濺蝕特征研究. 水土保持通報(bào),2010,30(1):17—21
Cheng Q J,Cai Q G. Splash erosion by raindrops in typical soil and water loss regions of China(In Chinese). Bulletin of Soil and Water Conservation,2010,30(1):17—21
[11] 馬仁明,王軍光,李朝霞,等. 降雨過程中紅壤團(tuán)聚體粒徑變化對(duì)濺蝕的影響. 長(zhǎng)江流域資源與環(huán)境,2013,22(6):779—785
Ma R M,Wang J G,Li Z X,et al. Effects of dynamic distribution of aggregate size on splash erosion under rainfall in red soils(In Chinese). Resources and Environment in the Yangtze Basin,2013,22(6):779—785
[12] Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility:I. Theory and methodology. European Journal of Soil Science,1996,47(4):425—437
[13] 閆峰陵,李朝霞,史志華,等. 紅壤團(tuán)聚體特征與坡面侵蝕定量關(guān)系. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(3):37—41
Yan F L,Li Z X,Shi Z H,et al. Quantitative relationship between aggregate characteristics of red soil and slope erosion(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2009,25(3):37—41
[14] Shi Z H,Yan F L,Li L,et al. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. Catena,2010,81(3):240—248
[15] 范云濤,雷廷武,蔡強(qiáng)國(guó). 濕潤(rùn)速度對(duì)土壤表面強(qiáng)度和土壤團(tuán)聚體結(jié)構(gòu)的影響. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(5):46—50
Fan Y T,Lei T W,Cai Q G. Effects of wetting rate on soil surface strength and aggregate stability(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2008,24(5):46—50
[16] 馬仁明,蔡崇法,李朝霞,等. 前期土壤含水率對(duì)紅壤團(tuán)聚體穩(wěn)定性及濺蝕的影響. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(3):95—103
Ma R M,Cai C F,Li Z X,et al. Effect of antecedent soil moisture on aggregate stability and splash erosion of krasnozem(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2014,30(3):95—103
[17] 胡偉,鄭粉莉,邊鋒. 降雨能量對(duì)東北典型黑土區(qū)土壤濺蝕的影響. 生態(tài)學(xué)報(bào),2016,36(15):4708—4717
Hu W,Zheng F L,Bian F. Effects of raindrop kinetic energy on splash erosion in the typical black soil region of Northeast China(In Chinese). Acta Ecologica Sinica,2016,36(15):4708—4717
[18] 吳普特,周佩華. 地表坡度對(duì)雨滴濺蝕的影響. 水土保持通報(bào),1991,11(3):8—13,28
Wu P T,Zhou P H. The effect of land slope upon raindrop splash erosion(In Chinese). Bulletin of Soil and Water Conservation,1991,11(3):8—13,28
[19] 張科利,細(xì)山田健三. 坡面濺蝕發(fā)生過程及其與坡度關(guān)系的模擬研究. 地理科學(xué),1998,18(6):561—566
Zhang K L,Hosoyamada K. Splash erosion process and its relation to slope gradient(In Chinese). Scientia Geographica Sinica,1998,18(6):561—566
[20] 程金花,秦越,張洪江,等. 華北土石山區(qū)模擬降雨下土壤濺蝕研究. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):153—161
Cheng J H,Qin Y,Zhang H J,et al. Splash erosion under artificial rainfall in rocky mountain area of northern China(In Chinese). Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):153—161
Characteristics of Mechanical Impact and Slaking Effect of Rain Drops on Soil Aggregates
XIAO Hai1LIU Gang1,2ZHAO Jinfan3MENG Dikainuo4LIU Puling1,2?
(1 State Key Laboratory of Erosion and Dryland Agriculture on the Loess Plateaus,Institute of Soil and Water Conservation,Northwest A&F University,Yangling,Shaanxi 712100,China)
(2 Institute of Soil and Water Conservation,CAS&MWR,Yangling,Shaanxi 712100,China)
(3 College of Hydraulic and Environmental Engineering,China Three Gorges University,Yichang,Hubei 443002,China)
(4 College of Forestry,Sichuan Agricultural University,Chengdu 611130,China)
【Objective】Soil aggregate is a basic unit in soil structure and its stability is an important index describing soil’s resistance to breakdown in the process of water erosion. However,in splash erosion how raindrops function through mechanical impact and slaking effect on soil aggregates and what are the mechanisms and contribution rates of the two are still unclear. This study is oriented to investigate effects of mechanical impact and slaking effect of rain drops on breakdown of soil aggregates during splash erosion.【Method】A series of indoor splash erosion experiments were carried out in the State Key Laboratory ofSoil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,China. Samples of Loessal soil(Sandy loamy soil)collected from Yan’an and Lou soil(Loamy loam soil)collected from Yangling in Shaanxi province,two typical soils in the Loess Plateau,were tested in the experiments. A home-made needle type rainfall simulator,consisting of three parts:water supply apparatus,needle nozzles and support frame,was used to simulate rain drops of ultra-pure water and alcohol to determine effect of mechanical impact alone and joint effect of mechanical impact and slaking on soil aggregates,separately. The splash erosion experiments were designed to have two type of soils and 5 treatments in height for rain drops to fall,i.e. 0.5 m,1 m,1.5 m,2 m and 2.5 m.【Result】Results show that in the two soils soil aggregate stability exhibited an order of MWDfw<MWDws<MWDsw. Slaking effect(Fast wetting)was the major mechanism of the breakdown of soil aggregates,and followed by mechanical disturbance(Wetting and Shaking),and then chemical slaking(Slow Wetting)in the end. The soil of loamy clay was higher than the soil of sandy loam in RSI(Relative Slaking Index),suggesting the former is more susceptible to slaking effect than sandy loam soil,while the latter is more to mechanical impact. In splash erosion,when rain drops fell from the same height,splash erosion rate was lower in loamy clay soil than in sandy loam soil,and splash erosion rate caused by rain drops of pure water through the joint effect of mechanical impact and slaking was higher than that caused by drops of alcohol through mechanical impact alone in both soils. Regardless of pathways of the rain drops affecting soil aggregates,splash erosion rate increased with rising kinetic energy of the rain drops,and power function could be used to well describe the relationship between splash erosion rate and rain drop kinetic energy. The splash erosion rates caused by slaking effect and/or mechanical impact of rain drops both increased with rising rain drop kinetic energy or rising height where rain drops fell from. The slaking effect contributed more than 50% to the splash erosion rate,indicting slaking effect was the main factor causing aggregate breakdown effect,but the slaking effect decreased in contribution to splash erosion rate with rising rain drop kinetic energy,while the mechanical impact acted reversely. In the cases the same in rain drop kinetic energy,the contribution of slaking effect was higher in loamy clay soil than in sandy loam soil,but that of mechanical impact was just the reverse. 【Conclusion】Contribution rates of slaking effect and mechanical impact vary with rain drop kinetic energy and soil type. All the findings in this study could be of great significance to evaluation of aggregate stability and to in-depth understanding of the mechanism of aggregate breakdown during splash erosion.
Splash erosion;Soil aggregate;Rainfall kinetic energy;Slaking effect;Mechanical impact
S157.1
A
(責(zé)任編輯:陳榮府)
10.11766/trxb201701090508
* 國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAC01B03-03)、中國(guó)科學(xué)院“西部之光”人才培養(yǎng)計(jì)劃項(xiàng)目(2014-91)和陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃青年人才項(xiàng)目(2016JQ4017)共同資助 Support by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No. 2015BAC01B03-03),the Light of West China Foundation of Chinese Academy of Sciences(No. 2014-91)and the Natural Science Basic Research Plan in Shaanxi Province of China(No. 2016JQ4017)
? 通信作者 Corresponding author,E-mail:pliu@ms.iswc.ac.cn
肖 海(1988—),男,湖南郴州人,博士研究生,研究方向?yàn)橥寥狼治g。E-mail:xiaohai19881104@sohu.com
2017-01-09;
2017-02-17;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-03-17