999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

An eigenvalue inequality of a class of matrices and its applications in proving the Fischer inequality

2017-10-10 01:01:45ZHANGHuaminYINHongcai
浙江大學學報(理學版) 2017年5期
關鍵詞:研究

ZHANG Huamin, YIN Hongcai

(1.Department of Mathematics & Physics, Bengbu University, Bengbu 233030,Anhui Province, China;2.School of Management Science and Engineering, Anhui University of Finance & Economics,Bengbu 233000, Anhui Province, China)

An eigenvalue inequality of a class of matrices and its applications in proving the Fischer inequality

ZHANG Huamin1, YIN Hongcai2

(1.Department of Mathematics & Physics, Bengbu University, Bengbu 233030,Anhui Province, China;2.School of Management Science and Engineering, Anhui University of Finance & Economics,Bengbu 233000, Anhui Province, China)

The Hadamard inequality and Fischer inequality play an important role in the matrix study. Many articles have addressed these inequalities providing new proofs, noteworthy extensions, generalizations, refinements, counterparts and applications. This paper discusses the eigenvalues of a class of matrices related to the real symmetric positive definite matrix and establishes an inequality of the eigenvalues. By using this inequality, the Fischer determinant inequality and Hadamard determinant inequality are proved.

positive definite matrix; eigenvalue; eigenvector; determinant inequality

1 Introduction and preliminaries

Inequality is an active research topic in recent years,the classical convexity has been generalized and extended in a diverse manner.One of them is the pre-invexity,introduced by WEIR et al[1]as a significant generalization of convex functions.Many researchers have studied the basic properties of the pre-invex functions and their role in optimization,variational inequalities and equilibrium problems[2-4].

Hadamard and Fischer inequalities are prima-ry inequalities for the real symmetric positive def-inite matrix, and there are many inequalities can be proved by using these two inequalities.There are many methods to prove these inequalities[5-7].Some results have been established inspired by the Hadamard inequality[8-9].

The real symmetric positive definite matrix has many properties and has been used in many ar-eas[10-12].Some properties can be used to prove the Hadamard inequality.In this note,inspired by the results established in[13-14],a new eigenvalue inequality related to the real symmetric positive definite matrix is proposed, and the Hadamard and Fischer inequality are proved by using this new inequality.

Firstly, let us introduce some notations and lemmas.Inis the identity matrix with ordern×n.For a square matrixA,we use λ[A],det(A) andATrepresent the set of the eigenvalues,the deter-minant and the transpose ofA,respectively.

Next,we introduce two lemmas.The following result about the block matrix determinant is well known[10].

Lemma1If matrixAis invertible,then for any block matrix,we have

(1)

or if marixDis invertible,then we have

(2)

Lemma2IfA∈Rm×nis a full column-rank matrix,theA(ATA)-1ATis idempotent and the eigenvalues ofA(ATA)1ATare 1 or 0, there exists an orthogonal matrixQsuch that

Q[A(ATA)-1AT]Q=diag[1,…,1,0,…,0]=∶Λ.

Furthermore,we have rank [A]=n.

This lemma was suggested in[14],for convenience,we give the proof here.

ProofIf σ∈λ[A(ATA)1AT],then there exists a nonzero vectorx∈Rm, satisfying

A(ATA)1ATx=σx.

Thus,we have

[A(ATA)-1ATx]T[A(ATA)-1ATx]=(σx)T(σx),
xT[A(ATA)-1AT][A(ATA)1AT]x=σ2‖x‖2,
xT[A(ATA)-1ATA(ATA)1AT]x=σ2‖x‖2,
xT[A(ATA)1AT]x=σ-2‖x‖2,
xTσx=2‖x‖2,
σ‖x‖2=σ2‖x‖2.

Since‖x‖2≠0,A(ATA)-1AThas eigenvaluesσ=0 orσ=1.Because of the symmetry ofA(ATA)-1AT,there exists a real orthogonal matrixQ:=[q1,q2,…,qm]∈Rm×msuch that

QT[A(ATA)-1AT]Q= diag[1,…,1,0,…,0]=Λ.

On the other hand,since (ATA)-1ATis the left pseudo-inverse ofA,we have

rank[A]=rank[QT[A(ATA)-1AT]Q]=
rank[A(ATA)-1AT]=rank[A]=n.

This proves lemma 2.

2 An inequality of a class of matrices

In this section,we will establish a new property about the eigenvalues related to the symmetric positive definite matrix.IfA∈Rn×nis a symmetric positive definite matrix,then there exists an invertible matrixBsuch thatA=BBT.Suppose thatBcan be expressed as a block matrix

Set

With these symbols,the following result holds.

Theorem1If the eigenvalues of the matrixN-1Aareδ1,δ2,…,δn,then 0<δ1δ2…δn≤1.

ProofLetf(λ)∶=det(λIn-N-1A)be the characteristic polynomial of matrixN-1A,we have

f(λ)=

(3)

We verify that 2 not belongs to the eigenvalues of the matrixN-1A.If 2 is the eigenvalue of the matrixN-1A,then

On the other hand,

f(2)=

This is a contradiction,so 2 is not a eigenvalue of the matrixN-1A.

According to lemma 1,suppose thatm≥p,equation (3) can be manipulated as

det((λ-1)Im)det((λ-1)Ip-(λ-1)-1Ip×

(4)

[q1,q2,…,qn]diag[1,…,1,0,…,0]=

[q1,q2,…,qm,0,0,…,0],

(5)

(6)

(7)

(k1q2+k2q2+…+knqn)=

(8)

(k1q1+k2q2+…+knqn)=

k1q1+k2q2+…+kmqm.

(9)

The both side of equation (6) multiply byTgives

=.

(10)

According to equations(7) and (9),the left-side of equation (10) can be rewritten as

(k1q1+k2q2+…+knqn)T×

(k1q1+k2q2+…+kmqm)=

(11)

Combining equations(10)(8)and(11)gives

Hence,we have

(12)

(13)

whereRis strictly upper triangular.Substituting equation(13)into equation(4)and simplifying it, give

From this equation,we can see that the eigenvalues ofN-1Aare

1+ρ1,1-ρ1,…,1+ρp,1-ρp,1,…,1.

(14)

From this equation,we have

0≤δ1δ2…δn=

(1+ρ1)(1-ρ1)…(1+ρp)(1-ρp)=

(15)

Since 2 is not the eigenvalue of the matrixN-1A,an improvement of inequality (12) is 0≤ρ<1.

Correspondingly,inequality (15) can be im-proved as

0≤δ1δ2…δn=

(1+ρ1)(1-ρ1)…(1+ρp)(1-ρp)=

The proof is completed.

Remark1The above proof shows that the sup-positionm≥pis not essential.In fact,ifm

f(λ)=

det((λ-1)Ip)det((λ-1)Im-(λ-1)-1×

This manipulation does not change the subsequent proof.

3 New proof of the Fischer inequality

In this section,we will use the results in theo-rem 1 to prove two determinant inequalities related to the symmetric positive definite matrix,that is,the Fischer inequality and the Hadamard inequali-ty.

Theorem2Considering the following symmetric positive definite block matrix

here Mii,i=1,2,…,k,are the definite submatri-ces,then

det(M)≤det(M11)det(M22)…det(Mkk).

det(N-1M)≤det(N-1)det(M)=δ1δ2…δn≤1.

That is,

det(M)≤det(N)=det(M11)det(M22).

Fork>2,using this manipulation successively gives

det(M)≤det(M11)det(M22)…det(Mkk).

The proof is completed.

It is clear that Hadamard inequality is the spe-cial case of Fischer inequality whenk=n,so the following inequality holds.

Theorem3IfM=(mij) ∈Rn×nis a symmetric positive definite matrix,then

det(M)≤m11m22…mnn.

4 Conclusions and future work

The eigenvalues of a class of matrices related to the real symmetric positive definite matrix are discussed in this paper, and an inequality about the eigenvalues is established.Using this result,the Fischer inequality and the Hadamard inequality of the positive definite matrix are proved.

SandTdenote the subsets of set W:= {1,2,…,n}and S and T satisfy S ∪T=W.cd(S) denotes the cardinality of set S.Screpresents the complementary set of S.MSdenotes the principal submatrix determined by set S.

Consider the following of the Koteljanskii,Fan and Szasz inequalities[15],

j=1,2,…,n-1,

[1]WEIRT.Pre-invexfunctionsinmultiobjectiveoptimization[J].JournalofMathematicalAnalysisandApplications,1998,136(1): 29-38.

[2] MOHAN S R,NEOGY S K.On invex sets and pre-invex functions[J].JournalofMathematicalAnalysisandApplications,1995,189(3): 901-908.

[3] NOOR M A.Variational-like inequalities[J].Optimization,1994,30(4): 323-330.

[4] YANG X M,LI D.On properties of pre-invex functions[J].JournalofMathematicalAnalysisandApplications,2001,256(1): 229-241.

[5] WANG S G,WU M X,JIA Z Z.TheMatrixInequalities[M].2nd ed. Beijing: Science Press,2006.

[6] BELLMAN R.IntroductiontoMatrixAnalysis[M].NewYork: Mcgraw-Hill Book Company,1970.

[7] ZENG C N,XU W X,ZHOU J Z.Several notes on Hadamard theorem[J].JournalofMath,2010,30(1): 152-156.

[8] ZHANG X D,YANG S J.A note on Hadamard’s inequality[J].ActaMathematicaeApplicataeSinca,1997,20(2): 269-274.

[9] LI X Y,LENG G S.Inverse forms of Hadamard inequality and Szasz inequality[J].JournalofNaturalScienceofHunanNormalUniversity,2007,30(2): 19-21.

[10] ZHANG X D.MatrixAnalysisandApplications[M].Beijing: Tsinghua University Press,2004.

[11] HORN R A,JOHNSON C R.MatrixAnalysis[M].Cambridge: Cambridge University Press,1985.

[12] GOLUB G H,VAN LOAN C F.MatrixComputations[M].3rd ed.Baltimore,MD: Johns Hopkins University Press,1996.

[13] YIN H C,ZHANG H M.Eigenvalues of a class of matrices related to the positive definite matrices[J].JournalofZhejiangUniversity:ScienceEdition,2014,41(1): 1-5.

[14] ZHANG H M,DING F.A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations[J].JournaloftheFranklinInstitute,2014,351(1): 340-357.

[15] GOVER E,KRIKORIAN N.Determinants and the volumes of parallelotopes and zonotopes[J].LinearAlgebraandItsApplications,2010,433(1): 28-40.

張華民1,殷紅彩2

( 1.蚌埠學院 數理系,安徽 蚌埠 233030; 2.安徽財經大學 管理科學和工程學院,安徽 蚌埠 233000)

Hadamard和Fischer不等式在矩陣研究中起重要作用.已有大量文獻研究此兩不等式的新證明、 推廣、 細化及應用.本文研究了和實對稱正定矩陣相關的一類矩陣的特征值,并建立了關于這類矩陣特征值乘積范圍的一個不等式,利用此不等式證明了行列式的Fischer和Hadamard不等式.

正定矩陣;特征值;特征向量;行列式不等式

O 151.2

:A

:1008-9497(2017)05-511-05

date:Feb.4,2016.

Supported by Natural Science Foundation of Anhui Provincial Education Department (KJ2016A458) and Excellent Personnel Domestic Visiting Project (gxfxZD2016274).

Abouttheauthor:ZHANG Huamin (1972-),ORCID:http://orcid.org/0000-0002-7416-7415,male,doctor,associate professor,the field of interest are matrix theory and its applications,E-mail:zhangeasymail@126.com.

10.3785/j.issn.1008-9497.2017.05.002

一類矩陣特征值的不等式及其在Fischer不等式證明中的應用.浙江大學學報(理學版),2017,44(5):511-515

猜你喜歡
研究
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
關于遼朝“一國兩制”研究的回顧與思考
EMA伺服控制系統研究
基于聲、光、磁、觸摸多功能控制的研究
電子制作(2018年11期)2018-08-04 03:26:04
新版C-NCAP側面碰撞假人損傷研究
關于反傾銷會計研究的思考
焊接膜層脫落的攻關研究
電子制作(2017年23期)2017-02-02 07:17:19
主站蜘蛛池模板: 被公侵犯人妻少妇一区二区三区| 亚洲91精品视频| 亚洲高清在线播放| 免费国产高清精品一区在线| 国产欧美日韩另类| 亚洲第一国产综合| 免费福利视频网站| 99资源在线| 波多野结衣一区二区三区AV| 国产成人综合欧美精品久久| 亚洲有码在线播放| 国产在线专区| 久久特级毛片| 亚洲精品无码久久毛片波多野吉| 美女裸体18禁网站| 男人的天堂久久精品激情| 国产精品一区二区在线播放| 国产麻豆精品在线观看| 91午夜福利在线观看精品| 8090成人午夜精品| 71pao成人国产永久免费视频| 久久99国产乱子伦精品免| 亚洲色偷偷偷鲁综合| 亚洲第一视频网| 国产精品美人久久久久久AV| 99精品视频九九精品| 欧美精品成人| 99re在线免费视频| 亚洲日产2021三区在线| 亚洲不卡网| 久久久久青草线综合超碰| 精品无码日韩国产不卡av| 国产成人1024精品| 美女国产在线| 97视频免费看| 91po国产在线精品免费观看| 蜜桃视频一区二区| 美女视频黄频a免费高清不卡| 99精品国产电影| 全免费a级毛片免费看不卡| 国内精品九九久久久精品| 一级毛片在线播放| 欧美性猛交一区二区三区| 夜色爽爽影院18禁妓女影院| 国产欧美在线观看视频| 一级毛片不卡片免费观看| 毛片手机在线看| 天天操天天噜| 免费AV在线播放观看18禁强制| 园内精品自拍视频在线播放| 国产又大又粗又猛又爽的视频| 成人精品亚洲| 小说 亚洲 无码 精品| 操国产美女| 亚洲婷婷六月| 69国产精品视频免费| A级毛片高清免费视频就| 国产青青草视频| 色视频国产| 波多野结衣久久精品| 欧美日韩国产系列在线观看| 精品乱码久久久久久久| 视频二区亚洲精品| 99爱在线| 午夜福利网址| 亚洲精品国产成人7777| 亚洲欧美人成电影在线观看| 国产人碰人摸人爱免费视频| 91青青草视频| 久久久久中文字幕精品视频| 欧美另类图片视频无弹跳第一页| 久草热视频在线| 一级香蕉视频在线观看| 在线视频亚洲欧美| 制服丝袜一区二区三区在线| 欧洲av毛片| 亚洲精品午夜天堂网页| 四虎永久在线精品国产免费| 性色一区| 日本亚洲最大的色成网站www| 精品国产福利在线| 亚洲无码高清视频在线观看|