999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

2017-10-10 01:02:00HUShuangnianLIYanyan
浙江大學學報(理學版) 2017年5期
關鍵詞:數(shù)學

HU Shuangnian, LI Yanyan

(1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

HU Shuangnian1,2, LI Yanyan3

(1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

finite field; rational point; Markoff-Hurwitz-type equations

0 Introduction and the main result

Markoff-Hurwitz-type equations are the following type of the Diophantine equation:

wheren,care positive integers andn≥3. This type of equations were firstly studied by MARKOFF[1]for the casen=3,c=3 because of its relation to Diophantine approximation. More generally, these equations were studied by HURWITZ[2].

Recently, BAOULINA[5-7]studied the generalized Markoff-Hurwitz-type equation:

(1)

In this paper, we consider the rational points of the further generalized Markoff-Hurwitz-type equations of the form

(2)

Nq=qt-1+(-1)n-1(q-1)t-n.

Clearly,Nqis independent of the coefficientsai,cand the exponentskn+1,…,kt. Lettingt=n, then theorem 1 reduces to the theorem of PAN et al[8]. Theorem 1 also generalizes the main results of [10] in some other cases.

This paper is organized as follows. In section 1, we recall some useful known lemmas. In section 2, we make use of the results presented in section 1 to show theorem 1. Some interesting applications of theorem 1 will be provided as corollaries at the end.

1 Preliminary lemmas

In this section, we present some useful lemmas which are needed in section 2. Letmbe a positive integer andh(x1,x2,…,xr) be a polynomial with integer coefficients. We useN[h≡0(modm)] to denote the number of the solutions of the congruenceh(x1,x2,…,xr)≡(modm). We first recall two well known results in the elementary number theory.

Lemma1[13]Leta,bbe positive integers. Then

gcd(a,b)lcm[a,b]=ab.

Nq[a(x1x2…xr)d=α].

Since lemma 2 tells us that

Then the desired result follows immediately. This ends the proof of lemma 2.

The following result comes from PAN et al[8].

Nq[a1x1m1+a2x2m2+…+anxnmn=cx1k1x2k2…xnkn]=

qn-1+(-1)n-1.

2 Proof of theorem 1

In this section, we give the proof of theorem 1.

ProofFirstly, we claim that the condition of lemma 5 is equivalent to the conditions of theorem 1. That is, the condition

is equivalent to the following two conditions:

are pairwise coprime. Since

thus we can deduce that the condition

(3)

qt-n-(q-1)t-n.

(4)

Using the assumptiond1,d2,…,dnare pairwise coprime, it follows from (4) and lemma 4 that

(qt-n-(q-1)t-n)×

qn-1(qt-n-(q-1)t-n)=

qt-1-qn-1(q-1)t-n.

(5)

d(q-1)t-n-1×

(6)

Then, it follows from lemma 6 that

(7)

Using (6) and (7), one can derive that

(8)The desired result can follow immediately from (3),(5) and (8). This ends the proof of theorem 1.

In concluding this section, we present some trivial corollaries.

Corollary1For the further generalized Markoff-Hurwitz-type equations of the form

Nq=qt-1+(-1)n-1(q-1)t-n.

Corollary2For the further generalized Markoff-Hurwitz-type equations of the form

(a1x1m1+a2x2m2+…+anxnmn)k=cx1m1x2m2…xtmt

Nq=qt-1+(-1)n-1(q-1)t-n.

Corollary3For the further generalized Markoff-Hurwitz-type equations of the form

Nq=qt-1+(-1)n-1(q-1)t-n.

Clearly, corollaries 1~3 are some special cases of theorem 1. For example, consider the further generalized Markoff-Hurwitz-type equation over

(8)

[1]MARKOFFAA.Surlesformesquadratiquesbinairesindéfinies[J].MathematischeAnnalen,1880,17(3):379-399.

[2] HURWITZ A. über eine aufgabe der unbestimmten analysis[J].ArchivderMathematikundPhysik,1907(3):185-196.

[3] CARLITZ L. Certain special equations in a finite field[J].MonatshefteFürMathematik,1954,58(1):5-12.

[4] CARLITZ L. The number of solutions of some equations in a finite field[J].PortugaliaeMathematica,1954,13(1):25-31.

[6] BAOULINA I. Generalizations of the Markoff-Hurwitz equations over finite fields [J].JournalofNumberTheory,2006,118(1):31-52.

[8] PAN X L, ZHAO X R, CAO W. A problem of Carlitz and its generalizations[J].ArchivderMathematik,2014,102(4):337-343.

[9] CAO W. On generalized Markoff-Hurwitz-type equations over finite fields [J].ActaApplicandaeMathematicae,2010,112(3):275-281.

[10] SONG J, CHEN F Y. The number of some equations over finite fields[J].JournalofUniversityofChineseAcademyofSciences,2015,32(5):582-587.

[11] CAO W, SUN Q. On a class of equations with special degrees over finite fields [J].ActaArithmetica,2007,130(2):195-202.

[12] ZHAO Z J, CAO X W. On the number of solutions of certain equations over finite fields [J].JournalofMathematicalResearchandExposition,2010,30(6):957-966.

[13] KENG H L.IntroductiontoNumberTheory[M]. Heidelberg: Springer-Verlag,1982.

[14] BAOULINA I. Solutions of equations over finite fields: Enumeration via bijections [J].JournalofAlgebraandItsApplications,2016,15(7):1650136.

[15] LIDL R, NIEDERREITER H.FiniteFields-EncyclopediaofMathematicsandItsApplications[M]. 2nd ed. Cambridge: Cambridge University Press,1997.

胡雙年1,2, 李艷艷3

(1. 南陽理工學院 數(shù)學與統(tǒng)計學院,河南 南陽 473004; 2. 鄭州大學 數(shù)學與統(tǒng)計學院, 河南 鄭州 450001; 3. 南陽理工學院 電子與電氣工程學院, 河南 南陽 473004)

有限域;有理點;Markoff-Hurwitz-type方程

O 156.1

:A

:1008-9497(2017)05-516-04

date:Nov.7, 2016.

Supported by the Key Program of Universities of Henan Province of China (17A110010), China Postdoctoral Science Foundation Funded Project (2016M602251) and by the National Science Foundation of China Grant (11501387).

Abouttheauthor:HU Shuangnian (1982-),ORCID:http://orcid.org/0000-0002-5174-8460,male, Ph.D, lecturer, the field of interest is number theory, E-mail:hushuangnian@163.com.

10.3785/j.issn.1008-9497.2017.05.003

有限域上廣義Markoff-Hurwitz-type方程的有理點個數(shù).浙江大學學報(理學版),2017,44(5):516-519,537

猜你喜歡
數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
中等數(shù)學
我們愛數(shù)學
我為什么怕數(shù)學
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數(shù)學就難過
數(shù)學也瘋狂
主站蜘蛛池模板: 18禁黄无遮挡免费动漫网站| 丁香婷婷久久| 国产成人精品高清在线| 欧美精品v欧洲精品| 伊人中文网| 国产成人久久777777| 免费人成视频在线观看网站| 永久免费无码日韩视频| 国产幂在线无码精品| AV天堂资源福利在线观看| 久久久精品国产SM调教网站| 有专无码视频| 国产乱肥老妇精品视频| 色噜噜在线观看| 中字无码精油按摩中出视频| 欧美日本在线一区二区三区| 国产日韩精品一区在线不卡| 亚洲乱强伦| 黄色三级毛片网站| 制服丝袜一区二区三区在线| 欧美97色| 免费看黄片一区二区三区| 99这里精品| 中文字幕无码中文字幕有码在线 | 国产一线在线| 最新日韩AV网址在线观看| 成人免费午夜视频| 国产成人无码AV在线播放动漫| 久久大香香蕉国产免费网站| 午夜精品福利影院| 色色中文字幕| 国产亚洲一区二区三区在线| 免费无码网站| av午夜福利一片免费看| 57pao国产成视频免费播放| 韩日午夜在线资源一区二区| 五月激情婷婷综合| 日本一区二区不卡视频| 久久精品中文字幕免费| 亚洲av日韩av制服丝袜| 91蝌蚪视频在线观看| 国产区免费| 色婷婷狠狠干| 91在线无码精品秘九色APP| 午夜国产小视频| 国产制服丝袜无码视频| 国产草草影院18成年视频| 浮力影院国产第一页| AV不卡国产在线观看| 日韩精品无码不卡无码| 色婷婷亚洲综合五月| 欧美成人一级| 午夜天堂视频| 亚洲欧洲国产成人综合不卡| 国产一区二区免费播放| 亚洲国产日韩视频观看| 国产va欧美va在线观看| 欧美中文字幕在线视频| 欧美三级自拍| 国产精品爆乳99久久| 亚洲天堂色色人体| 国产毛片片精品天天看视频| 九九九久久国产精品| 亚洲国产欧美国产综合久久| 2021精品国产自在现线看| 久久国产香蕉| 黄色在线网| 九九九精品成人免费视频7| 亚洲一级色| 国产福利小视频高清在线观看| 亚洲天堂免费在线视频| 亚洲VA中文字幕| 欧美视频在线观看第一页| 热99精品视频| 亚洲精品无码日韩国产不卡| 中文字幕不卡免费高清视频| 亚洲精品麻豆| 国产精品午夜福利麻豆| 成人中文字幕在线| 美女一级免费毛片| 天天干天天色综合网| 丁香五月亚洲综合在线|