999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Relation between Cartesian product andadjacent vertex distinguishing coloring

2017-10-10 01:02:23WANGGuoxing
關(guān)鍵詞:施工

WANG Guoxing

(1. Gansu Business Development Research Center, Lanzhou University of Finance and Economics, Lanzhou 730020, China;2. College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

Relation between Cartesian product andadjacent vertex distinguishing coloring

WANG Guoxing1,2

(1. Gansu Business Development Research Center, Lanzhou University of Finance and Economics, Lanzhou 730020, China;2. College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

Cartesian product; proper edge coloring; proper total coloring; adjacent vertex distinguishing proper edge coloring; adjacent vertex distinguishing total coloring

0 Introduction

The graph coloring has a widely applications in many subject. We only consider simple, finite and undirected graph in this paper.

The adjacent vertex distinguishing proper edge coloring of graphs is investigated in several papers[1-6]. The adjacent vertex distinguishing total coloring of graphs is proposed in [7] and studied in several papers[7-16]. Especially, the adjacent vertex distinguishing total chromatic number ofPmKnis obtained in [11] and the adjacent vertex distinguishing total chromatic numbers of the Cartesian products ofPmwithPnandCn, and the Cartesian product ofCmwithCnare given in [13]. We use the usual notation as can be found in any book on graph theory[17].

1 Preliminaries

Lemma2[18]χ″=(Cm□Cn)=5(m,n≥3).

From lemma 2, we can obtain the following lemma 3 immediately since anr-regular graphGhas (equitable) total chromatic numberr+1 if and only ifGhas adjacent vertex distinguishing proper edge chromatic numberr+1.

SupposeGis a graph. If a bijectionσfromV(G) toV(G) preserves the adjacency relation, i.e.,σ(u) is adjacent toσ(v) if and only ifuis adjacent tovfor any two distinct verticesuandvofG, thenσis called an automorphism of graphG.

IfGhas an automorphismσ, such that for any vertexv∈V(G),vandσ(v) are adjacent (and thenv≠σ(v)), then we say that graphGis of property (P).

The Cartesian product of two graphsGandH, denoted byG□H, is a graph with vertex setV(G)×V(H) and edge set {(u,v)(u′,v′)|uu′∈E(G),v=v′oru=u′,vv′∈E(H)}.

LetQtdenotet-cube, i.e.,

For two types of adjacent vertex distinguishing colorings of the Cartesian product of a graph with another graph which is of property (P), we will give some important results in section 2 and section 3.

2 The relation between AVDPEC andCartesian product of two graphs

Theorem1SupposeGis a graph without isolated edge andGhas property (P),tis a positive integer.

Theorem 1 (i) follows.

(ii) Since for any positive integerl,G□Qlis of property (P) whenGis of property (P), we can obtain (ii) by applying (i) repeatedly .

(iv) We can obtain (iv) by using (iii) repeatedly.

Fig.1 AVDPEC of Q3

Lemma5For any graphG,G□K2has property (P).

From theorem 1 and lemma 5, we may obtain the following corollary 1.

Corollary1For any graphGwith no isolated edge and integert(≥1), we have

Note that for any graphGand integer numberr(≥3),G□Crhas property (P), so we have the following corollary 2 by theorem 1.

Theorem2Suppose that graphGhas property (P) and has no isolated edge,r(≥4) is an even integer.

We will give an edge coloring ofG□Crusings+2 colors as follows:

(4) 受注漿施工影響,隧道管片的水平位移和道床沉降在施工前期增長較快,后期增長緩慢;水平收斂和豎直收斂在施工前期增長較慢,而后期增長較快。

From theorem 2, we will obtain the following corollary 3 immediately.

Corollary3Suppose thatGis of property (P) and has no isolated edge,r1,r2,…,rsare even integers at least 4.

ProofSimilar to the proof of theorem 2(i), we can complete the proof of theorem 3.

3 The relation between AVDTC andCartesian product of two graphs

Theorem4SupposeGis of property (P), andtis a positive integer.

The theorem 4(i) follows.

(ii) Since for any positive integerl,G□Qlis of property (P) whenGis of property (P), we can obtain theorem 4(ii) by applying theorem 4(i) repeatedly.

(iv) We can obtain theorem 4(iv) by using theorem 4(iii) repeatedly.

From theorem 4 and thatG□K2is of property (P), we obtain the following corollary 5.

Corollary5Supposet(≥2) is an integer.

From theorem 4 and thatG□Cris of property (P), we obtain the following corollary 6.

Theorem5Suppose thatGis of property (P),r(≥4) is even.

ProofSimilar to the proof of theorem 2, we can complete the proof of theorem 5. The process is easy, so we omitted it.

By generalizing theorem 5, we have

Corollary7SupposeGis of property (P) andr1,r2,…,rs(≥4) are even.

From lemma 4, theorem 4(iv) and corollary 7(ii), we may deduce the following corollary 8.

Corollary8Ifm≥3,n≥3,t≥1,r1,r2,…,rs(≥4) are even, then

ProofSimilar to the proof of theorem 5(i) or theorem 2(i), we can complete the proof of theorem 6.

[1]BALISTERPN,GY?RIE,LEHELJ,etal.Adjacentvertexdistinguishingedge-colorings[J].SIAMJDiscreteMath,2007,21(1):237-250.

[2] BARIL J L, KHEDDOUCI H, TOGNI O. Adjacent vertex distinguishing edge colorings of meshes[J].AustralasianJournalofCombinatorics,2006,35:89-102.

[4] HATAMI H. Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number[J].JournalofCombinatorialTheory:SeriesB,2005,95:246-256.

[6] ZHANG Z F, LIU L Z, WANG J F. Adjacent strong edge coloring of graphs[J].ApplMathLett,2002,15:623-626.

[7] ZANG Z F, CHEN X E, LI J W, et al. On adjacent vertex distinguishing total coloring of graphs[J].ScienceinChina(SerA):Mathematics,2005,48(3):289-299.

[8] CHEN X E. Adjacent-vertex-distinguishing total chromatic numbers onK2n+1-E(P3)[J].InternationalJournalofPureandAppliedMathematics,2004,13(1):21-29.

[9] CHEN X E. On the adjacent vertex distinguishing total coloring numbers of graphs with Δ=3[J].DiscreteMathematics,2008,308:4003-4007.

[10] CHEN X E, ZHANG Z F. AVDTC numbers of generalized Halin graphs with maximum degree at least 6[J].ActaMathematicaeApplicataeSinica:EnglishSeries,2008,24(1):55-58.

[11] CHEN X E, ZHANG Z F. Adjacent-vertex-distinguishing total chromatic numbers ofPm×Kn[J].JMathematicalResearchandExposition,2006,26(3):489-494.

[12] CHEN X E, ZHANG Z F, SUN Y R. Adjacent-vertex-distinguishing total chromatic numbers on monocycle graphs and the square of cycles[J].InternationalJournalofPureandAppliedMathematics,2005,18(4):481-491.

[13] CHEN X E, ZHANG Z F, SUN Y R. A note on adjacent-vertex-distinguishing total chromatic numbers forPm×Pn,Pm×CnandCm×Cn[J].JMathematicalResearchandExposition,2008,28(4):789-798.

[14] HULGAN J. Concise proofs for adjacent vertex distinguishing total colorings[J].DiscreteMathematics,2009,309:2548-2550.

[15] SUN Y L, SUN L. The (adjacent) vertex-distinguishing total coloring of the Mycielski graphs and the Cartesian product graphs[C]//7-thChina-JapanConference,DiscreteGeometry,CombinatoricsandGraphTheory. Heidelberg: Springer-Verlag,2007:200-205.

[16] WANG H Y. On the adjacent vertex distinguishing total chromatic numbers of graphs with Δ=3[J].JCombOptim,2007,14:87-109.

[17] BONDY J A, MURTY U S R.GraphTheorywithApplications[M]. New York: Elsevier Science Publishing Co. Inc.,1976.

[18] TONG C L, LIN X H, YANG Y S, et al. Equitable total coloring ofCmCn[J].DiscreteAppliedMathematics,2009,157:596-601.

王國興1,2

(1.蘭州財(cái)經(jīng)大學(xué) 甘肅商務(wù)發(fā)展研究中心,甘肅 蘭州 730020;2.蘭州財(cái)經(jīng)大學(xué) 信息工程學(xué)院, 甘肅 蘭州 730020)

Cartesian積;正常邊染色;正常全染色;鄰點(diǎn)可區(qū)別邊染色;鄰點(diǎn)可區(qū)別全染色

O 157.5

:A

:1008-9497(2017)05-520-06

date:Dec.26, 2016.

Supported by the National Natural Science Foundation of China (61662066), Gansu Business Development Research Center Project of Lanzhou University of Finance and Economics(JYYY201506) and Key Science and Research Project of Lanzhou University of Finance and Economics(LZ201302).

Abouttheauthor:WANG Guoxing(1976-),ORCID:http://orcid.org/0000-0001-6582-650X, male, master, associate professor, the field of interest are the graph theory and its applications,E-mail: wanggx@lzufe.edu.cn.

10.3785/j.issn.1008-9497.2017.05.004

Cartesian積與鄰點(diǎn)可區(qū)別著色之間的關(guān)系.浙江大學(xué)學(xué)報(bào)(理學(xué)版),2017,44(5):520-525

猜你喜歡
施工
后澆帶施工技術(shù)在房建施工中的運(yùn)用
鋁模板在高層建筑施工中的應(yīng)用
后澆帶施工技術(shù)在房建施工中的踐行探索
新型環(huán)保建筑材料在土木工程施工中的應(yīng)用
防滲漏技術(shù)在民用建筑施工中的應(yīng)用
后澆帶施工技術(shù)在房建施工中的應(yīng)用
后澆帶施工技術(shù)在房建施工中的應(yīng)用
土木工程施工技術(shù)創(chuàng)新探討
防滲漏施工技術(shù)在房建施工中的應(yīng)用
上海建材(2017年4期)2017-10-16 01:33:34
土木工程施工實(shí)習(xí)的探討與實(shí)踐
主站蜘蛛池模板: julia中文字幕久久亚洲| 亚洲一级毛片免费看| 亚洲性视频网站| 亚洲欧美精品日韩欧美| 国产青青草视频| 国产簧片免费在线播放| 国产麻豆另类AV| 国产成人综合日韩精品无码首页 | 九九这里只有精品视频| 一本一本大道香蕉久在线播放| 亚洲国产综合第一精品小说| 国产乱人免费视频| 国产农村精品一级毛片视频| 亚洲三级成人| 美女视频黄又黄又免费高清| 国产在线视频福利资源站| 亚洲精品无码av中文字幕| 人妻丰满熟妇av五码区| 亚洲综合网在线观看| 国产精品jizz在线观看软件| 国产一二三区在线| 人妻出轨无码中文一区二区| 青青操视频免费观看| 青青草国产免费国产| 国产欧美另类| 国产一区二区丝袜高跟鞋| 国产免费精彩视频| 自慰高潮喷白浆在线观看| 日本成人不卡视频| 欧美一区二区自偷自拍视频| 国产欧美日韩免费| 99在线观看精品视频| 欧洲熟妇精品视频| 欧美中文字幕在线视频| 福利在线一区| 欧美日韩专区| 97人妻精品专区久久久久| 白丝美女办公室高潮喷水视频| 青青草综合网| 中文字幕亚洲无线码一区女同| 中文字幕66页| 亚欧乱色视频网站大全| 丝袜久久剧情精品国产| 日韩福利视频导航| 欧美精品v| 第一页亚洲| 人妻少妇乱子伦精品无码专区毛片| 亚洲国产成人精品青青草原| 欧美黄网在线| 国产真实二区一区在线亚洲| 在线观看免费黄色网址| 波多野吉衣一区二区三区av| 国产成人一区免费观看| 日韩不卡高清视频| 日本www色视频| 色欲色欲久久综合网| 国产剧情一区二区| 91精品国产91欠久久久久| 欧美a级在线| 国产91视频免费观看| 亚洲最大在线观看| 国产农村妇女精品一二区| 一级毛片免费高清视频| 美女视频黄频a免费高清不卡| 亚洲女同一区二区| 99尹人香蕉国产免费天天拍| 青青草国产在线视频| 九色在线观看视频| 国产毛片一区| 国产精品欧美日本韩免费一区二区三区不卡 | 色偷偷一区二区三区| 国产va在线| 成人在线不卡视频| 亚洲视频一区| 日韩一二三区视频精品| 日韩一级毛一欧美一国产| 亚洲一级毛片| 欧美三级视频网站| 國產尤物AV尤物在線觀看| 亚洲综合色婷婷| 国产超碰一区二区三区| 成人精品在线观看|