孟祥菊,田淑環,許會峰
(保定學院 數學與計算機系,河北 保定 071000)
冪平均的凸組合界
孟祥菊,田淑環,許會峰
(保定學院 數學與計算機系,河北 保定 071000)
得到了關于幾何平均G(a,b)、反調和平均C(a,b)、冪平均Mr(a,b)和算術平均A(a,b)的不等式,對所有的a、b>0成立的γ的最佳值.
冪平均;幾何平均;反調和平均;算術平均

1995年,Seiffert[1]證明了不等式M1(a,b)
StoLarsky[2]證明了不等式I(a,b)=L0(a,b)≥M2/3(a,b),當且僅當a=b時等號成立.
褚玉明等[3]證明了不等式αT(a,b)+(1-α)G(a,b)0且a≠b成立的充分必要條件是α<3/5且β>π/4.
經典平均在物理學、天文學、氣象學中有廣泛的應用,它們之間的估計式是近年來研究的熱門課題.國內外學者們[4-9]建立了一系列精確的不等式,這些結果是經典結論的推廣和發展.







(1)

(2)

定理2不等式A(a+b)+C(a+b)≥2M2(a,b)當且僅當a=b時等號成立.
證明若a=b,則A(a,b)+C(a,b)=2M2(a,b)=2a.



故A(a,b)+C(a,b)≥2M2(a,b)
下面證明2M2(a,b)是冪平均關于算術平均和反調和平均的最佳凸組合下界.
對于?ε>0,0 (3) (4) [1] SEIFFERT H J.Aufgabe 16[J].Die Wurzel,1995,29(87):221-222. [2] STOLARSKY K B.The power and generalized logarithmic means[J].The American Mathematical Monthly,1980,87(7):545-548. [3] CHU Y M,ZONG C,WANG G D.Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean[J].J Math Inequal,2011,5(3):429-434. [4] RICHARDS K C.Sharp power mean bounds for the Gaussian hypergeometric function[J].Journal of Mathematical Analysis and Applications,2005,3089(1):303-313. [5] CHU Y M,WANG M K,WANG G D.The optimal generalized logarithmic Mean boundcs for seiffert’s mean[J].Acta Mathematica Scientia,2012,32B(4):1619-1626. [6] 孟祥菊,潘學功,高夢涵.對數平均的最優凸組合界[J].河北大學學報(自然科學版),2014,34(5):471-474.DOI:10.3969/j.issn.1000-1565.2014.05.005 MENG X J,PAN X G,GAO M H.Optimal convex combination bounds for logarithmic mean[J].Journal of Hebei University(Natural Science Edition),2014,34(5):471-474.DOI:10.3969/j.issn.1000-1565.2014.05.005 [7] 趙鐵洪,褚玉明.對數平均和雙參數廣義Muirhead平均之間的比較[J].中國科學:數學,2015,45(3):233-244. ZHAO T H,CHU Y M.Comparison between the logarithmic and two-parameter generalized Muirhead means[J].Science China(mathematics),2015,45(3):233-244. [8] 史明宇,褚玉明,蔣月評.關于冪平均、調和平均和指數平均的最佳不等式[J].數學物理學報,2011,31A(5):1377-1384. SHI M Y,CHU Y M,JIANG Y P.Optimal inequalities related to the power,harmonic and identric means[J].Acta Mathematica Scientia,2011,31A(5):1377-1384. [9] 孫惠,褚玉明.Toader平均的二次與調和平均界[J].數學物理學報,2015,35A(1):36-42. SUN H,CHU Y M.Bounds for toader mean by quadratic and harmonic means[J].Acta Mathematica Scientia,2015,35A(1):36-42. (責任編輯:王蘭英) Optimalconvexcombinationboundsforthepowermean MENGXiangju,TIANShuhuan,XUHuifeng (Department of Mathematics and Computer Science,Baoding College,Baoding 071000,China) The optimal value of parameters are obtained to make the following double inequality holds for alla,b>0,2Mr(a,b)≥G(a,b)+C(a,b)andA(a,b)+C(a,b)≥2Mr(a,b)whereMr(a,b),G(a,b),C(a,b),A(a,b)denote the power mean,the geometric mean,the contraharmonic mean,the arithmetic mean of two different positive numbers a and b respectively. the power mean;the geometric mean;the contraharmonic mean;the arithmetic mean O178 A 1000-1565(2017)05-0454-03 10.3969/j.issn.1000-1565.2017.05.002 2016-11-25 河北省軟科學基金資助項目(154576249);河北省自然科學基金資助項目(A2015201149) 孟祥菊(1971—),女,河北盧龍人,保定學院副教授,主要從事幾何函數論的研究.E-mail:mengxiangju328@163.com


