馬 淵, 李紀夫, 王玉杰△
(新疆醫科大學 1第一附屬醫院泌尿外科, 2第五附屬醫院泌尿外科, 新疆 烏魯木齊 830011)
AR-V7在前列腺癌細胞耐藥中的作用
馬 淵1, 李紀夫2, 王玉杰1△
(新疆醫科大學1第一附屬醫院泌尿外科,2第五附屬醫院泌尿外科, 新疆 烏魯木齊 830011)
目的探討雄激素受體剪接變異體7(AR-V7)在前列腺癌細胞耐藥中的作用及分子機制。方法運用Lipofectamine 2000轉染法將AR-V7 siRNA(siAR-V7)轉染至4株前列腺癌細胞中,命名為PC3-siAR-V7、DU145-siAR-V7、LNCaP-siAR-V7和ArCaP-siAR-V7細胞,以轉染無關序列(NC siRNA)為陰性對照。運用real-time PCR和Western blot實驗分別檢測轉染前后細胞中AR-V7的mRNA和蛋白表達水平;運用MTT法和Transwell法分別檢測細胞活力和細胞遷移率;運用螢光素酶報告基因實驗和Western blot實驗分別檢測AR的啟動子活性及下游靶基因前列腺特異性抗原(PSA)和FK506結合蛋白5(FKBP5)的蛋白表達。構建耐比卡魯胺的前列腺癌細胞系LNCaP-DR,運用免疫熒光觀察LNCaP、LNCaP-siAR-V7和LNCaP-DR細胞中AR和AR-V7的亞細胞定位;運用蛋白質免疫共沉淀實驗檢測AR-V7與熱休克蛋白90(HSP90)的相互作用。結果4株前列腺癌細胞中的AR-V7 mRNA水平顯著高于正常前列腺上皮細胞RWPE-1(P<0.05);PC3-siAR-V7、DU145-siAR-V7、LNCaP-siAR-V7和ArCaP-siAR-V7細胞中AR-V7蛋白水平、細胞活性及細胞遷移率顯著低于NC siRNA轉染的細胞(P<0.05)。隨著比卡魯胺劑量的增加,所有細胞活力逐漸降低,而下調AR-V7表達顯著增強前列腺癌細胞對比卡魯胺的敏感性(P<0.05)。Western blot結果顯示下調AR-V7表達顯著抑制AR啟動子活性,其下游PSA和FKBP5蛋白水平明顯降低(P<0.05)。免疫熒光結果發現AR和AR-V7主要存在于前列腺癌細胞核內,AR少量存在于細胞質中;下調AR-V7表達則抑制AR的核轉運;AR存在于耐藥細胞核中,AR-V7在耐藥細胞中高表達。免疫共沉淀結果顯示內源性AR-V7與HSP90相互作用。結論AR-V7在前列腺癌細胞中高表達,下調AR-V7的表達顯著抑制前列腺癌細胞活力和遷移;前列腺癌細胞耐藥與AR-V7高表達相關,其機制可能通過AR-V7與HSP90相互作用介導AR-V7的核轉運,激活AR信號通路調控下游靶基因的轉錄活性最終導致細胞耐藥。
雄激素受體剪接變異體7; 前列腺癌; 耐藥性; 免疫共沉淀
前列腺癌是男性泌尿系統常見惡性腫瘤之一,其發病率和死亡率位居男性惡性腫瘤的第2位和第5位,每年有24萬新發病例[1-2]。資料顯示我國前列腺癌的發病率和死亡率呈逐年上升且年輕化趨勢[3-5]。目前前列腺癌的治療手段包括手術治療早期前列腺癌、單純去勢治療、去勢和抗雄激素聯合治療以及內分泌治療或雄激素剝奪療法(androgen deprivation therapy,ADT)治療中晚期前列腺癌和轉移性前列腺癌。但是,在長期的治療過程中幾乎所有的患者均產生耐藥性并發展成為難治性去勢抵抗性前列腺癌(castration-resistant prostate cancer,CRPC)。
目前對前列腺癌耐藥的分子機制尚不清楚,雄激素受體(androgen receptor,AR)信號通路的激活在前列腺癌的發生、發展以及耐藥過程中發揮重要作用[6-8]。研究發現雄激素受體剪接變異體7(androgen receptor splice variant 7,AR-V7)在CRPC細胞或組織中高表達,并與患者預后不良有關[9-10]。最新研究發現AR-V7在紫杉烷化療過程中具有抗藥性作用,首次提出AR-V7與前列腺癌耐藥性密切相關[11]。AR-V7與前列腺癌細胞耐藥的關系及AR-V7誘導前列腺癌細胞耐藥的分子機制尚不清楚。本研究旨在闡明AR-V7在前列腺癌細胞生長、轉移及耐藥中的作用,探討AR-V7誘導前列腺癌細胞耐藥的分子機制,為以AR-V7為新靶點研發內分泌治療增敏劑提供理論依據。
1細胞株與試劑
人前列腺癌細胞系PC3、DU145、LNCaP、ArCaP及正常前列腺上皮細胞株RWPE-1購自ATCC;DMEM培養基購自Gibco、胎牛血清(fetal bovine serum,FBS)、青霉素和鏈霉素購自北京鼎國昌盛生物技術有限責任公司;比卡魯胺、胰蛋白酶、MTT和二甲基亞砜(DMSO)購自Sigma;Transwell板購自Corning;Lipofectamine 2000購自Invitrogen;抗AR和AR-V7抗體購自Cell Signaling Technology;抗熱休克蛋白90(heat shook protein 90, HSP90)、FK506結合蛋白5(FK506-binding protein 5,FKBP5)和前列腺特異性抗原(prostate-specific antigen,PSA)抗體購自Abcam;抗tubulin抗體購自北京中杉金橋生物技術有限公司;反轉錄試劑盒 (PrimeScript? RT reagent kit with gDNA Eraser)和real-time PCR 試劑盒 (SYBR? Premix Ex TaqTMⅡ) 購于TaKaRa;BCA蛋白濃度檢測試劑盒購自Thermo。
2方法
2.1細胞培養 PC3、DU145、LNCaP、ArCaP和RWPE-1細胞培養于DMEM培養基(10% FBS、1%青霉素、1%鏈霉素)中,置于37 ℃、5% CO2及飽和濕度中培養至細胞融合度達到90%左右時進行細胞傳代。
2.2siRNA合成和細胞轉染 針對AR-V7基因開放閱讀框序列,運用Ambion公司的網上在線軟件(http://www.ambion.com/techlib/misc/siRNA_fin-der.html)設計AR-V7 siRNA (siAR-V7),同時設計陰性對照(negative control, NC)siRNA,由上海生工合成。將生長良好的PC3、LNCaP、DU145和ArCaP細胞以細胞密度為每孔2.5×105個接種到6孔板中,當細胞融合度為80%~90%時按照Lipofectamine 2000說明書轉染,轉染的細胞命名為PC3-siAR-V7、DU145-siAR-V7、LNCaP-siAR-V7和ArCaP-siAR-V7細胞,以轉染NC siRNA為陰性對照細胞。培養4 h后換成完全培養基繼續培養用于后續實驗。
2.3MTT實驗檢測細胞活力 轉染的細胞經消化計數后,以細胞密度為2.5×107/L接種于96孔板中,培養24 h后加入不同終濃度的比卡魯胺(0、2、5、10和20 μmol/L)作用72 h進行MTT實驗,同時設空白對照組。每孔加入20 μL 5 g/L MTT溶液,37 ℃繼續培養4 h,棄掉培養液,每孔加入150 μL DMSO,置于搖床上室溫振蕩5 min,用酶標儀測定492 nm處的吸光度(A)值。細胞活力抑制率(%)=(對照組A均值-實驗組A均值)/實驗組A均值×100%。
2.4細胞遷移實驗 siRNA轉染細胞48 h后經胰酶消化,然后在Transwell每個培養孔上室中加入2×103個細胞,下室為無血清培養基,設置空白對照組;37 ℃繼續培養6 h后經4%多聚甲醛固定、乙醇脫水、結晶紫染色、洗滌。用棉簽輕輕擦去上室的貼壁細胞,在顯微鏡下拍照并計數從Transwell上室遷移至微孔膜下層的細胞,每組設3個重復孔,通過每組Transwell的遷移細胞數比較細胞的遷移能力。
2.5構建耐比卡魯胺的前列腺癌細胞系 LNCaP細胞先給予終濃度為0.5 μmol/L比卡魯胺作用3 d;更換培養基,加入終濃度為1 μmol/L比卡魯胺作用3 d;換液加入終濃度為2 μmol/L比卡魯胺作用3 d,以此類推,之后分別給予4、6、8和10 μmol/L的比卡魯胺分別作用3 d;運用MTT法檢測細胞活力抑制率,直到細胞對比卡魯胺不敏感時表明耐比卡魯胺細胞系LNCaP-DR構建成功,用于后續實驗。
2.6免疫熒光觀察 LNCaP、LNCaP-siAR-V7和LNCaP-DR細胞經細胞爬片、4%多聚甲醛固定、0.1% Triton X-100透化、5% BSA封閉、 I 抗AR-V7孵育、II抗FITC孵育、DAPI核染色,共聚焦顯微鏡拍照,觀察LNCaP耐藥性細胞中AR-V7是否發生核轉位以及AR-V7發生核轉位是否依賴于AR通路。
2.7螢光素酶報告基因實驗 LNCaP-siAR-V7細胞和LNCaP-NC siRNA細胞經胰酶消化后接種于24孔板中,待細胞融合度為80%左右時進行細胞轉染。按照脂質體2000說明書將100 ng TOPFlash報告質粒和10 ng FOPFlash海腎螢光素酶對照質粒共轉染細胞,48 h后收集細胞。加入1×被動裂解液重懸細胞,4 ℃裂解24 h,12 000 r/min、4 ℃離心10 min,收集上清并測定細胞上清中螢光素酶的活性。以海腎螢光素酶活性為內參照計算樣品中螢光水平,從螢光素酶的活性判斷抑制AR-V7表達對AR啟動子活性的影響。
2.8Real-time PCR實驗 siRNA轉染細胞48 h后收集細胞,按照Trizol試劑說明書提取總RNA,濃度測定,保存于-80 ℃。按照real-time PCR試劑盒說明書合成cDNA。反應條件為: 42 ℃ 1 h, 70 ℃ 5 min, 4 ℃放置10 min。cDNA置于-80 ℃保存。取2 ng cDNA進行real-time PCR反應。AR-V7上游引物序列為5’-TTTCCACCTTGCGGGGTATG-3’,下游引物序列為5’-TGATTGGTTCAGACTTATCGTCG-3’。反應條件為: 95 ℃ 5 min; 95 ℃ 25 s, 58 ℃ 30 s, 72 ℃ 30 s, 35個循環; 72 ℃ 10 min。運用 SYBR Green Ⅱ 熒光染料法和IQ5TMReal-Time PCR Detection System(Bio-Rad)進行real-time PCR數據分析, 結果經內參照基因tubulin校正,各基因相對含量用 2-ΔΔCt表示。
2.9Western blot實驗 細胞正常培養48 h后,收集細胞,加入RIPA重懸細胞,超聲破碎后12 000×g4 ℃離心10 min,BCA法測定蛋白濃度。每個樣本取30 μg進行SDS-PAGE,將蛋白轉移到硝酸纖維素膜上,5%脫脂奶粉室溫封閉1 h,分別孵育 I 抗(AR、AR-V7、HSP90、FKBP5、PSA和tubulin),4 ℃過夜。洗膜、孵育 II 抗,室溫1 h。ECL顯影后掃描,蛋白相對表達量經內參校正后用Quantity One軟件分析。
2.10蛋白質免疫共沉淀(co-immunoprecipitation,Co-IP) 細胞經預冷PBS洗3遍,用細胞刮刮下細胞,4 000 r/min、4 ℃離心收集細胞;加入200 μL IP 裂解液,冰上裂解1 h,12 000×g、4 ℃離心5 min,收集上清,用IP裂解液補齊2 mL,取100 μL作為input;剩下的樣品平均分為2份,分別加入IgG和AR-V7抗體各2 μg,4 ℃孵育過夜。次日加入30 μL protein A,4 ℃孵育4 h,1 000×g、4 ℃離心5 min,收集沉淀,加入PBS洗滌,每次5 min,共5次。加入50 μL 1×loading buffer,100 ℃煮沸10 min,制備好的樣品進行Western blot,步驟同方法2.9。
3統計學處理
應用SPSS 17.0統計軟件進行相關數據分析,結果用均數±標準差(mean±SD)表示,兩組之間的比較采用t檢驗,多組間的比較采用單因素方差分析(one-way ANOVA)。以P<0.05為差異有統計學意義。
1AR-V7在前列腺癌細胞中的表達水平
Real-time PCR結果顯示AR-V7的mRNA在4種前列腺癌細胞中高表達,而在正常前列腺上皮細胞RWPE-1中低表達,兩兩比較差異具有統計學意義(P<0.05),見圖1A;siAR-V7轉染后,AR-V7在前列腺癌細胞中低表達,AR-V7 的mRNA水平顯著低于陰性對照(P<0.05),見圖1B;Western blot結果進一步證實siAR-V7明顯下調AR-V7的蛋白表達水平,見圖1C。

Figure 1. AR-V7 down-regulated by siRNA in prostate cancer cells. A: the expression of AR-V7 mRNA was detected using real-time PCR in prostate cancer cells and RWPE-1 cells; B: the level of AR-V7 mRNA was detected using real-time PCR in prostate cancer cells transfected with siAR-V7; C: the level of AR-V7 protein was detected using Western blot in prostate cancer cells transfected with siAR-V7. Mean±SD.n=3.**P<0.01vsRWPE-1 cells;##P<0.01vsNC siRNA group.
圖1siRNA在前列腺癌細胞中下調AR-V7表達
2下調AR-V7表達對前列腺癌細胞內分泌治療敏感性的影響
MTT結果顯示,AR-V7低表達的4種前列腺癌細胞活性顯著低于NC siRNA轉染的細胞;細胞經不同劑量比卡魯胺(2、5、10和20 μmol/L)作用后,隨著比卡魯胺劑量的增加細胞活性逐漸降低,呈劑量依賴效應;相同條件下,siAR-V7轉染細胞的活力顯著低于NC siRNA轉染細胞,兩兩比較差異具有統計學意義(P<0.05),見圖2。
3下調AR-V7表達對前列腺癌細胞遷移能力的影響
Transwell結果顯示,下調AR-V7表達使細胞遷移數明顯降低,顯著低于NC siRNA轉染細胞,差異具有統計學意義(P<0.05),見圖3。
4下調AR-V7表達對AR信號通路的影響
螢光素酶報告基因結果顯示,siAR-V7介導AR-V7低表達后,AR啟動子活性均顯著低于NC siRNA轉染細胞(P<0.05),見圖4A。Western blot結果發現下調AR-V7表達后AR蛋白水平明顯降低,AR通路下游PSA和FKBP5蛋白水平顯著下降(P<0.05),見圖4B、C。
5AR-V7低表達或比卡魯胺耐受的前列腺癌細胞中AR亞細胞定位
免疫熒光結果發現AR主要位于細胞核內,細胞質中存在少量AR表達;而下調AR-V7表達明顯降低細胞質中的AR的表達水平,細胞質核中的AR表達量無明顯變化,提示下調AR-V7的表達抑制了AR的核轉位;同時在耐比卡魯胺的LNCaP細胞中發現,AR主要表達在細胞核中,細胞質中沒有檢測到AR表達,見圖5A。此外,AR-V7主要存在前列腺癌細胞核內,當細胞產生比卡魯胺耐受后AR-V7的表達量明顯增加,見圖5B。
6蛋白質免疫共沉淀結果
蛋白質免疫共沉淀結果發現,HSP90蛋白與AR-V7相互作用;比卡魯胺耐受的LNCaP細胞中AR-V7的表達水平顯著增加(input),而HSP90蛋白水平無明顯變化,HSP90與AR-V7蛋白相互作用明顯增強(IP:AR-V7),見圖6。

Figure 2. The effect of AR-V7 low expression on the sensitivity of prostate cancer cells to bicalutamide. Mean±SD.n=3.*P<0.05,**P<0.01vsNC siRNA group.
圖2AR-V7低表達對前列腺癌細胞卡比魯胺敏感性的影響

Figure 3. The effect of AR-V7 low expression on the migration ability of prostate cancer cells (×40). Mean±SD.n=3.**P<0.01vsNC siRNA group.
圖3下調AR-V7表達對前列腺癌細胞遷移能力的影響
ADT是中晚期前列腺癌和轉移性前列腺癌的一線治療方案,通過阻斷雄激素的合成或阻止雄激素受體的轉錄激活抑制前列腺癌細胞生長達到治療目的。但是,幾乎所有患者在治療過程中會產生抗藥性并發展為難治性CRPC,目前CRPC的耐藥機制仍不清楚。AR-V7是一種AR剪切變異體,具有調控AR信號通路關鍵靶基因轉錄活性、蛋白表達和AR核轉運等功能[12-13]。臨床研究發現AR-V7在前列腺癌細胞或組織中高表達,并與CRPC的發生、發展以及耐藥密切相關[9,11,14],下調AR-V7表達顯著抑制前列腺癌細胞增殖[15]以及通過阻滯細胞周期抑制前列腺癌的生長[16]。本研究發現AR-V7在4種前列腺癌細胞中高表達,而在正常上皮前列腺細胞中低表達,與文獻報道[17]相符。進一步研究發現,用siRNA干擾AR-V7表達可顯著抑制4種前列腺癌細胞的細胞活性和遷移率,以及增強細胞對比卡魯胺的敏感性,提示AR-V7異常表達在前列腺癌細胞化療耐受中發揮著重要作用。

Figure 4. The effect of AR-V7 low expression on AR signal pathway in the prostate cancer cells. A: the promoter activity ofARwas monitored by luciferase reporter gene assay in prostate cancer cells transfected with siAR-V7 or NC siRNA; B: the protein levels of AR, PSA and FKBP5 were monitored by Western blot in prostate cancer cells transfected with siAR-V7 or NC siRNA; C: statistical analysis of relative protein expression levels. Mean±SD.n=3.**P<0.01vsNC siRNA group.
圖4下調AR-V7表達對AR信號通路的影響

Figure 5. The effects of AR-V7 low expression (A) and bicalutamide resistance (A, B) on AR subcellular localization in the prostate cancer cells. A: ×40; B: ×100.
圖5下調AR-V7表達和內分泌治療耐受對AR亞細胞定位的影響

Figure 6. The interaction of AR-V7 and HSP90 proteins was monitored by co-immunoprecipitation. A: the interaction of AR-V7 and HSP90 proteins was monitored by co-immunoprecipitation in LNCaP cells; B: the interaction of AR-V7 and HSP90 proteins was monitored by co-immunoprecipitation in LNCaP and LNCaP-DR cells.
圖6蛋白質免疫共沉淀檢測AR-V7與HSP90相互作用
目前CRPC內分泌耐受的機制仍不清楚,研究認為其耐藥性與AR基因的擴增和過表達以及AR信號通路再激活有關[18-20]。多項研究證實,AR-V7參與了CRPC對ADT治療抗藥性的產生[21-22];Zhang等[23]發現經紫杉醇和多西他賽治療的前列腺癌22Rv1和LNCaP95細胞中AR-V7的表達水平異常升高,最終對化療產生耐藥性。新近的研究發現在前列腺癌22Rv1細胞中AR-V7表達的增強與AR基因擴增有關[24]。本研究發現下調AR-V7的表達能降低AR啟動子活性,進而抑制其下游靶基因PSA和FKBP5表達,提示AR-V7異常表達激活AR信號通路進而促進AR靶基因的轉錄活性。在雄激素缺失的前列腺癌細胞中的研究發現AR-V7通過調控經典AR信號通路靶基因的表達抑制PC細胞的增殖[12, 15-16, 25],與本研究結果類似。
Zhang等[23]用熒光顯微法分析了增強綠色免疫熒光標記的AR和AR-V7在COS-7細胞中的表達和亞細胞定位,發現AR的核轉運依賴雄激素,而AR-V7可以自主地轉移至細胞核,且紫杉醇處理后不影響AR-V7的亞細胞定位。研究證實AR-V7能阻斷恩雜魯胺介導的AR核轉運,在雄激素缺乏的條件下AR-V7促進AR的核轉運[26],但其分子機制仍不清楚。本研究結果顯示大量AR存在于細胞核內,少量存在于細胞質中,而卡比魯胺耐受的前列腺癌細胞中AR存在于細胞核內,細胞質中的AR完全消失,提示化療耐受后AR的出核通路受到抑制,AR主要富集在細胞核中可能與AR靶基因轉錄激活導致細胞耐藥有關。此外AR-V7存在于細胞核中,細胞耐藥產生后AR-V7的表達量明顯增加;免疫共沉淀結果發現AR-V7與HSP90內源性相互作用,耐藥細胞中這種相互作用明顯增強;有研究發現AR與HSP90相互作用介導AR的入核,在大量共調節因子的幫助下激活AR通路并調控其下游基因的轉錄[27]。本研究結果提示AR-V7與HSP90相互作用可能介導AR-V7的入核激活AR信號通路促進AR靶基因PSA和FKBP5的表達,這可能是AR-V7通過激活AR通路最終導致細胞耐藥的機制之一。
綜上所述,AR-V7在前列腺癌細胞中高表達,下調AR-V7的表達顯著抑制細胞活性和遷移;AR-V7參與CRPC的耐藥,其機制可能通過激活AR信號通路促進AR靶基因轉錄活性而實現。本研究為以AR-V7為新靶點研發化療增敏劑提供理論依據。
[1] Bray F, Jemal A, Grey N, et al. Global cancer transitions according to the Human Development Index (2008-2030): a population-based study[J]. Lancet Oncol, 2012, 13(8):790-801.
[2] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1):9-29.
[3] Du LB, Li HZ, Wang XH, et al. Analysis of cancer incidence in Zhejiang cancer registry in China during 2000 to 2009[J]. Asian Pac J Cancer Prev, 2014, 15(14):5839-5843.
[4] Qu M, Ren SC, Sun YH. Current early diagnostic biomarkers of prostate cancer[J]. Asian J Androl, 2014, 16(4):549-554.
[5] 韓蘇軍,張思維,陳萬清,等. 中國前列腺癌發病現狀和流行趨勢分析[J].臨床腫瘤學雜志, 2013, 18(4):330-334.
[6] Migliaccio A, Castoria G, Di Domenico M, et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation[J]. EMBO J, 2000, 19(20):5406-5417.
[7] Di Donato M, Bilancio A, D'Amato L, et al. Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells[J]. Mol Biol Cell, 2015, 26(15):2858-2872.
[8] Brawley OW. Prostate cancer epidemiology in the United States[J]. World J Urol, 2012, 30(2):195-200.
[9] 方習武, 夏術階, 唐孝達. 雄激素受體在人類前列腺癌發展中的作用研究[J].中國病理生理雜志, 2004, 20(7):1275-1279.
[10] Hu DG, Hickey TE, Irvine C, et al. Identification of androgen receptor splice variant transcripts in breast cancer cell lines and human tissues[J]. Horm Cancer, 2014, 5(2):61-71.
[11] Thadani-Mulero M, Portella L, Sun S, et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer[J]. Cancer Res, 2014, 74(8):2270-2282.
[12] Hu R, Isaacs WB, Luo J. A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities[J]. Prostate, 2011, 71(15):1656-1667.
[13] Antonarakis ES, Lu C, Luber B, et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration resistant prostate cancer[J]. JAMA Oncol, 2015, 1(8):582-591.
[14] Li Y, Chan SC, Brand LJ, et al. Androgen receptor splice variants mediate enzalutamide resistance in castration resistant prostate cancer cell lines[J]. Cancer Res, 2013, 73(2):483-489.
[15] Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth[J]. Cancer Res, 2009, 69(6):2305-2313.
[16] Hu R, Lu C, Mostaghel EA, et al. Distinct transcriptional programs mediated by the ligand dependent full length androgen receptor and its splice variants in castration resistant prostate cancer[J]. Cancer Res, 2012, 72(14):3457-3462.
[17] Hu R, Dunn TA, Wei S, et al. Ligand independent androgen receptor variants derived from splicing of cryptic exons signify hormone refractory prostate cancer[J]. Cancer Res, 2009, 69(1):16-22.
[18] 顏艷靈, 鐘雪云, 鐘振宇. 利用RNA干涉技術研究雄激素受體在人前列腺癌細胞增殖中的作用[J]. 中國病理生理雜志, 2004, 20(4):580-583.
[19] Ryan CJ, Smith MR, de Bono JS, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy[J]. N Engl J Med, 2013, 368(6):138-148.
[20] de Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer[J]. N Engl J Med, 2011, 364(6):1995-2005.
[21] Efstathiou E, Titus M, Wen S, et al. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer[J]. Eur Urol, 2015, 67(1):53-60.
[22] Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resis-tance to enzalutamide and abiraterone in prostate cancer[J]. N Engl J Med, 2014,371(11):1028-1038.
[23] Zhang G, Liu X, Li J, et al. Androgen receptor splice variants circumvent AR blockade by microtubule-targeting agents[J]. Oncotarget, 2015, 6(27):23358-23371.
[24] Li Y, Alsagabi M, Fan D, et al. Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression[J]. Can-cer Res, 2011, 71(6):2108-2117.
[25] Krause WC, Shafi AA, Nakka M, et al. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells[J]. Int J Biochem Cell Biol, 2014, 54(1):49-59.
[26] Cao B, Qi Y, Zhang G, et al. Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy[J]. Oncotarget, 2014, 5(6):1646-1656.
[27] Culig Z, Santer FR. Androgen receptor signaling in prostate cancer[J]. Cancer Metastasis Rev, 2014, 33(2-3):413-427.
(責任編輯: 林白霜, 羅 森)
EffectofAR-V7onendocrinetherapyresistanceofprostatecancer
MA Yuan1, LI Ji-fu2, WANG Yu-jie1
(1DepartmentofUrology,TheFirstAffiliatedHospital,2DepartmentofUrology,TheFifthAffiliatedHospital,XinjiangMedicalUniversity,Wulumuqi830011,China.E-mail:wangyujie@163.com)
AIM: To explore the effect of androgen receptor splice variant 7 (AR-V7) on endocrine therapy resistance of prostate cancer cells and the resistance mechanisms.METHODSFour prostate cancer cell lines were transfected with AR-V7 siRNA (siAR-V7) using Lipofectamine 2000 kit, and the transfected cells were named as PC3-siAR-V7, DU145-siAR-V7, LNCaP-siAR-V7 and ArCaP-siAR-V7 cells. The prostate cancer cells transfected with negative control (NC) siRNA served as negative controls. The expression of AR-V7 at mRNA and protein levels was detected by real-time PCR and Western blot, respectively. The cell viability and cell migration rate were measured by MTT assay and Transwell method, respectively. The promoter activity ofARand the protein levels of targeted prostate-specific antigen (PSA) and FK506-binding protein 5 (FKBP5) were monitored by luciferase reporter gene assay and Western blot, respectively. The bicalutamide-resistant cell line, LNCaP-DR, was constructed, and the subcellular localization of AR and AR-V7 proteins in LNCaP, LNCaP-siAR-V7 and LNCaP-DR cells was observed by the method of immunofluorescence. The protein interaction of AR-V7 and heat shock protein 90 (HSP90) was determined by co-immunoprecipitation.RESULTSThe mRNA level of AR-V7 in the 4 prostate cancer cell lines was significantly higher than that in normal prostate epithelial cell line RWPE-1 (P<0.05). The AR-V7 level, cell viability and cell migration rate in the cells transfected with siAR-V7 were notablely lowered compared with the NC siRNA-transfected cells (P<0.05). The cell viability was gradually decreased following with the increase in bicalutamide dose, and down-regulation of AR-V7 expression significantly enhanced the sensitivity to bicalutamide (P<0.05). Down-regulation of AR-V7 expression significantly inhibitedARpromoter activity and reduced the protein levels of PSA and FKBP5 (P<0.05). The results of immunofluorescence observation showed that most AR and AR-V7 were mainly located in the nucleus, a few AR was located in the cytoplasm, and down-regulation of AR-V7 expression inhibited AR nuclear transport. AR was entirely located in the nucleus and the protein levels of AR-V7 was significantly increased in the bicalutamide-resistant cells. The interaction of endogenous AR-V7 with HSP90 was found in the prostate cancer cells.CONCLUSIONHigh AR-V7 level is found in the prostate cancer cells, and down-regulation of AR-V7 expression inhibits the cell viability and migration. High AR-V7 level is related to the bicalutamide resistance. The possible mechanism is that AR nuclear transport is mediated by the interaction of AR-V7 with HSP90 to activate AR signal pathway and regulate targeted gene transcriptional activity, thus resulting in drug resistance.
Androgen receptor splice variant 7; Prostate cancer; Drug resistance; Co-immunoprecipitation
R730.23; R737.25
A
10.3969/j.issn.1000- 4718.2017.10.023
1000- 4718(2017)10- 1874- 08
2017- 02- 16
2017- 03- 12
△通訊作者 Tel: 0991-7921184; E-mail: wangyujie@163.com
雜志網址: http://www.cjpp.net