999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

超聲脈沖測溫技術(shù)初步研究

2017-10-26 12:49:11田苗王高劉爭光魏艷龍方煒桂志國程麗鵬
聲學技術(shù) 2017年1期
關(guān)鍵詞:測量實驗

田苗,王高,劉爭光,魏艷龍,方煒,桂志國,程麗鵬

?

超聲脈沖測溫技術(shù)初步研究

田苗1,王高1,劉爭光2,魏艷龍1,方煒3,桂志國1,程麗鵬1

(1. 中北大學信息與通信工程學院,山西太原030051; 2.中北大學理學院,山西太原 030051;3. 中北大學儀器與電子學院,山西太原 030051)

目前基于脈沖技術(shù)的超聲測溫研究主要側(cè)重于超聲換能器和系統(tǒng)硬件電路設(shè)計,而對高溫敏感元件的研究較少。通過選取合適的敏感元件材料,以及對超聲導(dǎo)波在桿中的頻散特性和反射、透射分析,最終選用了一根長為1 m、直徑1 mm左右的帶反射凹槽的釷鎢桿作為敏感元件,并在一個超聲測溫平臺進行了初步的實驗。實驗結(jié)果表明,采用釷鎢合金桿作為敏感元件,可有效測量12 ℃~1 600 ℃聲速與溫度的關(guān)系,所測得的高溫下的聲速與參考值相比誤差不超過0.68%。

超聲測溫;釷鎢合金;溫度;聲速

0 引言

溫度的測量及控制在工農(nóng)業(yè)生產(chǎn)中需求迫切[1],尤其是近十幾年,隨著我國科學技術(shù)水平的快速發(fā)展,特別是航空航天和核工業(yè)領(lǐng)域,急需一種能在高溫或者超高溫環(huán)境下可靠、有效的溫度測量手段[2]。

目前比較成熟的溫度測量技術(shù)有熱電偶、紅外輻射測溫。熱電偶是目前工業(yè)測溫的主要手段。但是因為其材料及結(jié)構(gòu)限制,在2 000℃以上的超高溫環(huán)境下很難得到應(yīng)用[3]。紅外輻射測溫由于其非接觸和響應(yīng)速度快等特性,常應(yīng)用于爆炸、發(fā)動機噴口等特殊環(huán)境。但其測量精度受背景環(huán)境折射率、霧氣等因素影響較大,很難實現(xiàn)精確測量[4]。

超聲測溫技術(shù)起步較晚,但由于其測溫范圍寬、響應(yīng)速度快、測量精度高等特點,在一些傳統(tǒng)測溫手段無法滿足要求的環(huán)境中,已成為國內(nèi)外科研人員主要的研究方向[5-7]。超聲測溫技術(shù)在我國發(fā)展緩慢,主要還處于高校實驗室研究階段,未有成熟的商業(yè)化應(yīng)用,所以很有必要對超聲測溫技術(shù)進行相關(guān)研究。

1 超聲測溫原理

超聲測溫是近50年發(fā)展起來的一種新型的測溫技術(shù),其理論基礎(chǔ)是超聲波在氣體、液體、固體中的傳播速度與介質(zhì)溫度有確定的函數(shù)關(guān)系[8]。在理想氣體中,聲速與絕對溫度的平方根成正比,而在大多數(shù)固體和液體中,當溫度升高時,聲波的傳播速度會減小。超聲測溫依據(jù)于聲波傳輸與介質(zhì)的單值函數(shù)關(guān)系,通過率先標定介質(zhì)中的聲速,從而可以測定介質(zhì)的溫度[9]。

超聲波在固體桿中的傳播速度存在如下公式[10]:

由此聲波傳播的速度可寫為[12]

結(jié)合式(2)、(3)可以計算得到不同溫度下的鎢釷桿中的聲速作為理論參考值。

2 超聲脈沖測溫系統(tǒng)

圖1 超聲脈沖測溫系統(tǒng)結(jié)構(gòu)示意圖

根據(jù)由式(4)得到的敏感元件中難熔材料的聲速與溫度對應(yīng)關(guān)系值,就可以計算得到高溫區(qū)的溫度。

3 敏感元件

隨著科技的進步,換能器和電子學的技術(shù)水平已相當先進。在超聲脈沖測溫技術(shù)的應(yīng)用中,傳感器敏感元件的聲傳輸特性研究反而更為重要。尤其是敏感元件的材料性能,幾乎已成為制約超聲測溫技術(shù)發(fā)展的主要因素。因此,本文主要介紹敏感元件材料的選擇及其結(jié)構(gòu)設(shè)計。

3.1 材料的選擇

超聲溫度傳感器敏感元件的材料選擇方面有三個準則需要考慮:(1) 材料的化學和物理性質(zhì)在測量的環(huán)境和溫度內(nèi)必須是穩(wěn)定的;(2) 材料要有良好的溫度敏感度;(3) 材料必須要有很好的傳聲特性。因此,常用一些難熔金屬如鉭、鎢、錸等以及他們的合金作為敏感元件的候選材料。

鉭在高溫環(huán)境非常易氧化且不穩(wěn)定。錸有很好的溫度敏感度但是其傳聲特性不是很好。釷鎢合金(鎢中參雜2%的二氧化釷)在這些材料中表現(xiàn)最好,其熔點接近3 410℃,并且有很好的導(dǎo)聲特性,選用其作為敏感元件,有很寬的測溫范圍[13]。雖然與其他材料相比釷鎢合金的溫度敏感度不是很好,但是其在一定的熱處理后有一個非常穩(wěn)定的溫度校準曲線。

3.2 結(jié)構(gòu)設(shè)計

3.2.1 敏感元件尺寸

超聲導(dǎo)波的群速度和相速度如式(6)所示[15]:

(a) 群速度

(b) 相速度

圖2 超聲波在釷鎢桿中的頻散曲線

Fig.2 The dispersion of ultrasound in thoriated tungsten

3.2.2 反射凹槽尺寸

超聲波在變截面或者不同物質(zhì)界面處傳播,都會發(fā)生反射、透射,反射系數(shù)與透射系數(shù)與聲波阻抗有關(guān)聯(lián),如圖3所示,圖3(a)為反射前的情況,圖3(b)為反射后的情況。

(a) 反射前 (b) 反射后

由傳感器的反射系數(shù)可以獲得細桿直徑的比值:

結(jié)合目前的研究,當反射系數(shù)為0.2、凹槽直徑為0.8 mm、寬1 mm時,可以獲得較為明顯的反射信號。在釷鎢桿不會由于直徑過細而造成結(jié)構(gòu)損壞的同時,可有效提高反射信號的分析和提取,從而提高測量的精度。

3.2.3 反射間距

結(jié)合3.2.1、3.2.2、3.2.3,敏感元件的結(jié)構(gòu)設(shè)計如表1所示。

表1 敏感元件的結(jié)構(gòu)參數(shù)

4 超聲測溫實驗

圖4 超聲測溫實驗系統(tǒng)

實驗中,連接好實驗裝置后,將釷鎢桿置于一個剛玉保護管里,并把含有反射凹槽的一端深入到高溫爐中心,另一端通入氬氣防止氧化。每當溫度升高100 ℃時,計算機控制數(shù)據(jù)采集卡采集一次數(shù)據(jù)。

5 實驗結(jié)果分析

本實驗一共進行了5次,圖5(a)與5(b)所示為數(shù)據(jù)采集卡第1次獲得的實驗結(jié)果,可以較為清楚地看到超聲波在兩個凹槽和端面處的反射波形。在常溫(12℃)時,兩個凹槽間回波信號的時間差為2.236×10-5s。當溫度到1 600℃時,兩個凹槽間回波信號的時間差變?yōu)?.436×10-5s。

(a) 12 ℃

(b) 1600 ℃

圖5 不同溫度下的反射信號波形圖

Fig.5 The waveform of reflection signal at different temperatures

圖6 時間差與溫度的關(guān)系曲線

實驗中的高溫爐經(jīng)過B型熱電偶校準,同一溫度下,其與B型熱電偶最大數(shù)值相差不超過5 ℃。整個高溫爐內(nèi)的溫度梯度分布不超過10 ℃,敏感元件區(qū)域的溫度梯度分布不超過2 ℃。因此,可忽略環(huán)境噪聲對時間差的影響,直接計算得釷鎢桿中的聲速與溫度的關(guān)系曲線如圖7所示,并與理論參考值作比較。可見,實驗結(jié)果的平均值與理論值基本吻合,隨著溫度的升高,超聲波在釷鎢桿中的傳播速度逐漸減小,而且溫度越高,聲速減小得越快。在常溫時,測量誤差約為0.68%,在1 600 ℃時,測量誤差約為0.25%。

圖7 不同溫度下的聲速實測值與理論計算值對比

6 結(jié)論

(1) 使用釷鎢合金作為敏感元件所搭建的超聲測溫系統(tǒng),能在1 600℃下穩(wěn)定工作,所測得的高溫下的聲速與理論參考值相比誤差不超過0.68%。

(2) 由于釷鎢桿在高溫下易氧化而損壞,而通入氬氣保護又影響了測量精度,因此,更加合適的敏感元件材料選取仍是今后超聲測溫技術(shù)研究的重點。

(3) 整個超聲測溫系統(tǒng)受限于高溫爐的性能,最高只能測到1 600℃ 的聲速與溫度的關(guān)系。1 600 ℃時超聲測溫系統(tǒng)仍有明顯的反射信號,如果條件允許,整個測溫系統(tǒng)能測量更高溫度下的聲速與溫度關(guān)系,理論上可以到達釷鎢合金的熔點3 410℃。

(4) 本實驗只是初步研究了聲速與溫度之間的關(guān)系,沒有對超聲測溫傳感器進行標定之后用來直接測量溫度,需要以后進一步的研究。

[1] 王利軍, 田亮, 葉艷, 等. 超聲波溫度測量裝置的設(shè)計與實現(xiàn)[J]. 電站系統(tǒng)工程, 2011, 27(6): 19-25. WANG Lijun, TIAN Liang, YE Yan, et al. Design and implement of an ultrasonic temperature measurement device[J]. Power System Engineering, 2011, 27(6): 19-25.

[2] 王瑾玨, 張金, 高望. 一種新的超聲表面波測溫方法研究[J]. 應(yīng)用聲學, 2015, 34(3): 278-282. WANG Jinjue, ZHANG Jin, GAO Wang. Study on a new method for heated material temperature measuring[J]. Applied Acoustics, 2015, 34(3): 278-282.

[3] 張興紅, 邱磊, 何濤, 等. 反射式超聲波溫度計設(shè)計[J]. 儀表技術(shù)與傳感器, 2014, 51(9): 16-18.ZHANG Xinghong, QIU Lei, HE Tao, et al. Design of reflective ultrasonic thermometer[J]. Instrument Technique and Sensor, 2014, 51(9): 16-18.

[4] 張虎, 李世偉, 陳應(yīng)航, 等. 非接觸高溫測量技術(shù)發(fā)展與現(xiàn)狀[J]. 宇航計測技術(shù), 2012, 32(5): 68-71. ZHANG Hu, LI Shiwei. CHEN Yinghang, et al. The present situation on non-contact high temperature measurement technology[J]. Journal of Astronautic Metrology and Measurement. 2012, 32(5): 68-71.

[5] Alzebda S, Kalashnikov A N. Ultrasonic sensing of temperature of liquids using inexpensive narrow band piezoelectric transducers[J]. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, 2010, 57(12): 2704-2711.

[6] Shih J L, Kobayashi M, Jen C K. Flexible ultrasonic transducers for structural health monitoring of pipes at high temperatures[C]//2009 IEEE International Ultrasonics Symposium. IEEE, 2009: 681-684.

[7] 張興紅, 蔡偉, 向鳳云, 等. 精密超聲波溫度測量儀設(shè)計[J]. 儀表技術(shù)與傳感器, 2011, 12(6): 32-35.ZHANG Xinghong, CAI We, XIANG Fengyun, et al. Design of precise ultrasonic thermometer[J]. Instrument Technique and Sensor, 2011, 12(6): 32-35.

[8] 米小兵, 張淑儀, 張俊杰,等. 超聲波自動測溫技術(shù)[J]. 南京大學學報(自然科學版), 2003, 39(4): 517-524. MI Xiaobing, ZHANG Shuyi, ZHANG Junjie, et al. Automatic ultrasonic thermometry[J]. Journal of Nanjing University (Natural Sciences), 2003, 39(4): 517-524.

[9] 孫崇正. 超聲波測溫技術(shù)進展[J]. 宇航計測技術(shù), 1995, 15(2): 34-42. SUN Congzheng. The progress of ultrasonic measuring technology[J]. Journal of Astronautic Metrology and Measurement, 1995, 15(2): 34-42.

[10] 張海瀾. 理論聲學[M]. 北京: 高等教育出版社, 2007. ZHANG Hailan. Theoretical Acoustics[M]. Beijing: High Education Press, 2007.

[11] ?koro G P, Bennett J R J, Edgecock T R, et al. Dynamic Young’s moduli of tungsten and tantalum at high temperature and stress[J]. Journal of Nuclear Materials, 2011, 409(1): 40-46.

[12] Daw J, Rempe J, Crepeau J. Update on ultrasonic thermometry development at idaho national laboratory[C]//International Toppical Meeting on Nuclear Plant Instrumentation, Control, and Human Machine Interface Technologied, 2012: 22-26.

[13] 殷為宏, 湯慧萍. 難熔金屬材料與工程應(yīng)用[M]. 北京: 冶金工業(yè)出版社, 2012. YIN Weihong, TANG Hui-ping.Refractory metal materials and engineering applications[M]. Beijing: Metallurgical Industry Press, 2012.

[14] 龍盛蓉. 管道磁致伸縮導(dǎo)波檢測機理及傳播特性研究[D]. 南昌: 南昌大學, 2014. LONG Shengrong,The testing mechanism and propagation characteristic of magnetostrictive guided waves of pipelines[D]. Nanchang: Nanchang University, 2014.

[15] 王悅民, 楊波. 磁致伸縮導(dǎo)波無損檢測理論與方法[M]. 北京: 科學出版社, 2015. WANG Yueming, YANG Bo.Theory and method of magnetostrictive guided wave nondestructive testing[M]. Beijing:Science Press, 2015.

[16] Carlson G A, Sullivan W H, Plein H G, et al. Ultrasonic thermometry system for measuring very high temperatures in reactor safety experiments[R]. Sandia Labs. Albuquerque, NM (USA), 1979.

A preliminary study of pulse-echo ultrasonic thermometry

TIAN Miao1,WANG Gao1,LIU Zheng-guang2, WEI Yan-long1,FANG Wei3, GUI Zhi-guo1,CHENG Li-peng1

(1. School of Information and Communication Engineering, North University of China, Taiyuan 030051, Shanxi, China;2. School of Science, North University of China,Taiyuan 030051, Shanxi, China;3.School of Instrument and Electronics, North University of China, Taiyuan 030051, Shanxi, China)

At present, the study of ultrasonic thermometry based on pulse-echo technology mainly focuses on the design of ultrasonic transducer and hardware circuit system, but the study of sensitive element at high temperature is less. In this paper, several appropriate sensor materials are evaluated, through the analysis of the dispersion characteristics and reflection of ultrasound in the rod. A 1 m long and 1 mm diameter of the thoriated tungsten rod with reflection groove is used as the sensor, and a preliminary experiment is carried out on an ultrasonic thermometry platform. The results show that the use of thoriated tungsten rod as the sensor, can effectively measure the relationship between velocity and temperature at 12℃ to 1 600℃, and the error of ultrasound measured at high temperature compared with the reference value is not more than 0.68%.

ultrasonic thermometry; thoriated tungsten; temperature; acoustic velocity

TH811

A

1000-3630(2017)-01-0027-05

10.16300/j.cnki.1000-3630.2017.01.006

2016-04-19;

2016-06-02

國家安全重點基礎(chǔ)研究計劃(6132******)資助。

田苗(1991-), 男, 山西忻州人, 碩士研究生, 研究方向為超聲測溫技術(shù)。

田苗, E-mail: 397920239@qq.com

猜你喜歡
測量實驗
記一次有趣的實驗
微型實驗里看“燃燒”
把握四個“三” 測量變簡單
做個怪怪長實驗
滑動摩擦力的測量和計算
滑動摩擦力的測量與計算
測量的樂趣
NO與NO2相互轉(zhuǎn)化實驗的改進
實踐十號上的19項實驗
太空探索(2016年5期)2016-07-12 15:17:55
測量
主站蜘蛛池模板: 亚洲丝袜第一页| 国产综合另类小说色区色噜噜| 国产综合无码一区二区色蜜蜜| 国产乱论视频| 99国产在线视频| 99精品国产电影| 在线观看视频一区二区| 国产男女免费完整版视频| 国产不卡国语在线| 成人欧美日韩| 欧美日韩国产高清一区二区三区| 国产成人精品一区二区| 伊人久久久久久久| 婷婷综合色| 日韩精品视频久久| 欧美成人在线免费| 国产成人高清精品免费5388| 97国产精品视频自在拍| 亚洲视频欧美不卡| 久久久91人妻无码精品蜜桃HD| 国产精品区网红主播在线观看| 91精品情国产情侣高潮对白蜜| 国产一级妓女av网站| 欧美自慰一级看片免费| 中文字幕在线观看日本| 亚洲自拍另类| 91免费国产在线观看尤物| 呦女亚洲一区精品| 亚洲欧洲综合| 精品福利网| 国产网友愉拍精品视频| 色欲不卡无码一区二区| 国产精品欧美日本韩免费一区二区三区不卡| 精品国产中文一级毛片在线看 | 免费高清自慰一区二区三区| 狠狠色丁香婷婷综合| 久久毛片免费基地| 国产在线精彩视频二区| 狠狠ⅴ日韩v欧美v天堂| 欧洲一区二区三区无码| 欧美成人怡春院在线激情| 思思99思思久久最新精品| 亚洲热线99精品视频| 天天做天天爱天天爽综合区| 亚洲久悠悠色悠在线播放| 亚洲一区国色天香| 欧美综合中文字幕久久| 精品国产三级在线观看| 欧美一级黄片一区2区| 亚洲不卡av中文在线| 亚洲天堂视频网站| 国产区在线观看视频| av无码久久精品| 欧美视频在线不卡| 国产va在线观看免费| 亚洲成av人无码综合在线观看| 永久毛片在线播| 久久免费精品琪琪| 热伊人99re久久精品最新地| 国产真实二区一区在线亚洲| 日韩欧美国产三级| 最新日本中文字幕| 亚洲免费毛片| 熟妇人妻无乱码中文字幕真矢织江 | 国产H片无码不卡在线视频| 曰AV在线无码| 国产一区二区三区日韩精品| 在线国产毛片| 国产小视频a在线观看| 无码不卡的中文字幕视频| 久久综合亚洲鲁鲁九月天| 谁有在线观看日韩亚洲最新视频| 国产欧美在线观看视频| 麻豆精品国产自产在线| 97人妻精品专区久久久久| 无码在线激情片| 综合色在线| 免费看a级毛片| 韩日免费小视频| 国产精品久久久久无码网站| 欧洲精品视频在线观看| 3p叠罗汉国产精品久久|