陳韶蕊
(河北科技大學理學院,河北石家莊 050018)
1008-1542(2017)05-0453-07
10.7535/hbkd.2017yx05007
新型TiO2-銅卟啉催化劑的合成及其光催化甲基橙降解研究
陳韶蕊
(河北科技大學理學院,河北石家莊 050018)
為了研究不同長度側鏈催化劑對光催化降解甲基橙溶液的影響,更好地解決水污染治理問題,以1-萘酚為原料,經兩步反應得到中間體4-(3-萘氧基-烷氧基)-苯甲醛,利用Lindsey法合成4個結構新穎的卟啉及銅卟啉衍生物,中間體和目標產物的結構經MS,NMR和元素分析進行確認,制備了TiO2-銅卟啉催化劑,并進行了光催化甲基橙降解實驗。結果表明:當銅卟啉衍生物苯環上連有側鏈時,其光催化活性優于四苯基銅卟啉催化劑,但側鏈的長度對活性的影響不明顯。該研究為今后合成高效催化劑提供了思路。
有機光化學;萘酚;卟啉;合成;甲基橙;光催化
近年來,隨著世界工業化進程的加快和人口的增長,生產、生活過程中排放的各種污水對環境造成了嚴重破壞,污染水體的治理已成為環保領域里的一個重要課題。作為高級氧化技術之一,光催化降解具有反應條件溫和、設備簡單、易于操作、二次污染小、運行成本低、有望用太陽光作為反應光源等優點,是一種非常有發展前景的水污染治理技術,近年來受到了廣泛關注[1-3]。
卟啉類化合物是一種高度共軛的大環化合物,卟啉及其金屬卟啉類化合物因具有高效的可見光吸收特性及特殊的光電、催化性質,廣泛應用于光催化動力學療法[4-5]、太陽能的光電轉化[6-8]、選擇性催化氧化[9]、光催化環氧化等方面[10-11]。TiO2作為光催化劑,具有無毒、穩定、便宜和資源豐富等多種性質,在光催化降解環境污染物方面引起了廣泛關注[12-13]。但由于TiO2在可見光區無吸收,限制了其對太陽能的吸收及光催化降解有機物。而利用TiO2-金屬卟啉這種“有機-無機”復合光敏催化材料,卻能夠直接利用可見光,敏化分子氧,產生單線態氧,快速消除水體中的生物難降解有機污染物,從而使水質得到凈化[14-18]。
近年來人們對TiO2-金屬卟啉光催化降解有機物進行了大量研究,但有關尾式卟啉側鏈長度對光催化活性的影響未見報道。筆者采用Lindsey法設計了不同長度側鏈的尾式銅卟啉衍生物,其結構經NMR,MS等進行確認,制備了TiO2-銅卟啉催化劑,利用掃描電子顯微鏡 (SEM)、漫反射紫外可見光譜(DRS)及X射線衍射(XRD)對催化劑進行表征,研究了不同長度側鏈的催化劑對光催化降解甲基橙溶液的影響。目標化合物的合成路線見圖1。

圖1 目標化合物的合成路線Fig.1 Synthesis route of target compounds
X4型數字顯微熔點測定儀,溫度計未較正,AV500型核磁共振儀 (美國Bruker公司提供),質譜采用英國VG公司的VGZAB-HS型質譜儀進行測定,氙燈光化學反應儀 (北京紐比特科技有限公司提供),X射線衍射 (XRD)采用Rigaku D/MAX 2500儀器測定,漫反射紫外可見光譜(DSR)采用Shimadzu UV2550儀器測定。
5,10,15,20-四苯基銅卟啉(CuTPP),自制;所用試劑均為市售分析純。
中間體1的合成參照文獻[19]。
1.2.1 3-萘氧基-1-溴丙烷(中間體1a)
淡黃色液體,產率為91.6%。1H NMR(500 MHz,CDCl3) δ(×10-6),2.42 (m,2H,—CH2),3.89(t,J= 6.3 Hz,2H—CH2Br),4.33(t,J=5.9 Hz,2H,—OCH2),6.86(m,1H,Naph),7.41(m,1H,Naph),7.48(m,1H,Naph),7.53(m,2H,Naph),7.85(m,1H,Naph),8.28(m,1H,Naph)。MS:m/z215.1 ([M+H]+) amu。
1.2.2 4-萘氧基-1-溴丁烷(中間體1b)[20]
熔點為42~44 ℃,產率為89.4%。1H NMR(500 MHz,CDCl3)δ(×10-6),2.11 (m, 2H,—CH2), 2.18 (m, 2H, —CH2), 3.56(t,J=6.5 Hz, 2H,—CH2Br), 4.19(t,J=5.8 Hz, 2H,—OCH2), 6.81(m, 1H, Naph), 7.36(m, 1H, Naph), 7.44(m, 1H, Naph), 7.48(m, 2H, Naph), 7.81(m, 1H, Naph), 8.27(m, 1H, Naph)。MS:m/z229.4 ([M+H]+) amu。
1.2.3 5-萘氧基-1-溴戊烷(中間體1c)[19]
淡黃色液體,產率為90.5%。1H NMR(500 MHz, CDCl3) δ(×10-6),1.78(m, 2H, —CH2), 2.00~2.06 (m, 4H, —CH2), 3.46 (t, 2H,—CH2Br), 4.20(t, 2H,—OCH2), 6.81(m, 1H, Naph), 7.32(m, 1H, Naph), 7.44(m, 1H, Naph), 7.53(m, 2H, Naph), 7.83(m, 1H, Naph), 8.28(m, 1H, Naph)。MS:m/z243.2 ([M+H]+) amu。
1.2.4 6-萘氧基-1-溴己烷(中間體1d)
熔點為76~78 ℃,產率為87.8%。1H NMR(500 MHz, CDCl3) δ(×10-6),1.56(m, 2H,—CH2), 1.78~1.91 (m, 6H,—CH2), 3.42(t, 2H, —CH2Br), 4.11(t, 2H,—OCH2), 6.85(m, 1H, Naph), 7.34(m, 1H, Naph), 7.45(m, 1H, Naph), 7.56(m, 2H, Naph), 7.85(m, 1H, Naph), 8.27(m, 1H, Naph)。MS:m/z257.3 ([M+H]+) amu。
中間體2的合成參照文獻[19]。
1.3.1 4-(3-萘氧基-丙氧基)-苯甲醛(中間體2a)
熔點為46~48 ℃,產率為62.3%。1H NMR(500 MHz, CDCl3) δ(×10-6),2.26 (m, 2H,—CH2), 4.18(m,J= 6.0 Hz, 2H,—CH2O), 4.26(m,J=6.0 Hz, 2H,—OCH2), 6.81(m, 1H, Naph), 7.00(m, 2H, Ph), 7.35(m, 1H, Naph),7.45(m, 2H, Ph), 7.47(m, 1H, Naph), 7.81(m, 1H, Naph), 8.24(m, 1H, Naph), 9.88(s, 1H,—CHO)。MS:m/z257.3 ([M+H]+) amu。
1.3.2 4-(4-萘氧基-丁氧基)-苯甲醛(中間體2b)
熔點為72~74 ℃,產率為67.1%。1H NMR(500 MHz, CDCl3) δ(×10-6),2.14 (m, 4H,—CH2), 4.18(m,J=6.0 Hz, 2H,—CH2O), 4.23(m,J=6.0 Hz, 2H,—OCH2), 6.81(m, 1H, Naph), 7.00(m, 2H, Ph), 7.25(m, 1H, Naph), 7.45(m, 2H, Naph), 7.48(m, 1H, Naph), 7.81(m, 3H, Naph+Ph), 8.24(m, 1H, Naph), 9.88(s, 1H, —CHO)。MS:m/z271.3 ([M+H]+) amu。
1.3.3 4-(5-萘氧基-戊氧基)-苯甲醛(中間體2c)
熔點為56~58 ℃,產率為60.1%。1H NMR(500 MHz, CDCl3) δ(×10-6),1.78 (m, 2H,—CH2), 1.92(m, 2H, —CH2), 2.01(m, 2H,—CH2), 4.08(t,J=6.0 Hz, 2H,—OCH2), 4.17(t,J=6.0 Hz, 2H,—OCH2), 6.79(m, 1H, Naph), 6.99(m, 2H, Ph), 7.35(m, 1H, Naph),7.43~7.49(m, 3H, Naph), 7.78(m, 1H, Naph), 7.80(m, 2H, Ph), 8.26(m, 1H, Naph), 9.87(s, 1H,—CHO)。MS:m/z285.1([M+H]+) amu。
1.3.4 4-(6-萘氧基-己氧基)-苯甲醛(中間體2d)
熔點為86~88 ℃,產率為61.1%。1H NMR(500 MHz, CDCl3) δ(×10-6),1.57~1.70 (m, 4H,—CH2), 1.92 (m, 2H,—CH2), 1.98 (m, 2H,—CH2), 4.05(t,J=6.0 Hz, 2H,—OCH2), 4.16(t,J=6.0 Hz, 2H,—OCH2), 6.78(m, 1H, Naph), 6.98(m, 2H, Ph), 7.36(m, 1H, Naph),7.37~7.48(m, 3H, Naph), 7.78(m, 1H, Naph), 7.81(m, 2H, Ph), 8.26(m, 1H, Naph), 9.87(s, 1H,—CHO)。MS:m/z299.4 ([M+H]+) amu。
1.4.1 化合物3的合成
在氮氣保護下,將5.0 mmol的中間體2,1.59 g(15 mmol)的苯甲醛,1.4 mL (20.0 mmol)的吡咯及600 mL的氯仿在室溫下攪拌15 min,滴加0.03 mL的三氟化硼乙醚和10 mL氯仿的溶液,于室溫下反應48 h,再加入0.85 g (3.75 mmol)的DDQ繼續反應30 h,蒸除溶劑,經柱色譜分離得到化合物3[21]。
1)5,10,15-三苯基-20-(4-(3-萘氧基丙氧基)-苯基)卟啉(化合物3a)
熔點大于300 ℃,產率為7.6%。Anal. Calcd. for C57H42N4O2(%):C, 84.00; H, 5.19; N, 6.87。Found C, 83.82; H, 5.27; N, 6.96. 1H NMR(500 MHz, CDCl3) δ(×10-6),-2.76(s, 2H,—NH), 2.43(m, 2H,—CH2), 4.32(m, 2H,—CH2O), 4.40(m, 2H,—CH2O), 7.27(m, 2H, Ph), 7.53(m,2H, Ph), 7.73(m, 12H, Ph), 8.11(m, 2H, Ph), 8.22(m, 7H, Naph), 8.87 (m, 9H, pyrrole+Ph)。MS:m/z815.4 ([M+H]+) amu。UV-vis (CH2Cl2): λmax(nm), 418(Soret band), 515, 550, 591, 646 (Q bands)。
2)5,10,15-三苯基-20-(4-(4-萘氧基丁氧基)-苯基)卟啉(化合物3b)
熔點大于300 ℃,產率為6.9%。Anal. Calcd. for C58H44N4O2(%): C, 84.03; H, 5.35; N, 6.76。Found C, 84.23; H, 5.39; N, 6.87。1H NMR(500 MHz, CDCl3) δ(×10-6),-2.76(s, 2H, -NH), 2.28(m, 4H, —CH2), 4.35(m, 4H,—CH2O), 6.88(m, 2H, Ph), 7.23~7.81(m, 15H, Ph), 8.36(m, 2H, Ph), 8.38(m, 7H, Naph), 8.89(m, 8H, pyrrole)。MS: m/z 829.3([M+H]+) amu。UV-vis (CH2Cl2): λmax(nm), 418(Soret band), 515, 551, 591,645 (Q bands)。
3)5,10,15-三苯基-20-(4-(5-萘氧基戊氧基)-苯基)卟啉(化合物3c)
熔點大于300 ℃,產率為6.7%。Anal. Calcd. for C59H46N4O2(%): C, 84.06; H, 5.50; N, 6.65。Found C, 84.32; H, 5.67; N, 6.78。1H NMR(500 MHz, CDCl3) δ(×10-6),-2.74(s, 2H,—NH), 1.84(m, 2H,—CH2), 2.02 (m, 4H,—CH2), 4.17(m, 4H,—CH2O), 7.20(m, 2H, Ph), 7.40(m, 2H, Ph), 7.76(m, 13H, Ph), 8.07(m, 2H, Ph), 8.21(m, 7H, Naph), 8.88 (m, 8H, pyrrole)。MS:m/z843.5 ([M+H]+) amu。UV-vis (CH2Cl2): λmax(nm), 418(Soret band), 516, 551, 591, 646 (Q bands)。
4)5,10,15-三苯基-20-(4-(6-萘氧基己氧基)-苯基)卟啉(化合物3d)
熔點大于300 ℃,產率為7.0%; Anal. Calcd. for C60H48N4O2(%): C, 84.08; H, 5.65; N, 6.54。Found C, 84.25; H, 5.89; N, 6.66。1H NMR(500 MHz, CDCl3) δ(×10-6),-2.74(s, 2H,—NH), 1.69(m,4H,—CH2), 1.97 (m,4H, —CH2), 4.15(m, 4H,—CH2O), 7.19(m, 2H, Ph), 7.37(m, 2H, Ph), 7.45(m, 2H, Ph), 7.73(m, 11H, Ph), 8.20(m, 2H, Ph), 8.33(m, 7H, Naph), 8.89(m, 8H, pyrrole)。MS:m/z857.1 ([M+H]+) amu。UV-vis (CH2Cl2): λmax(nm), 418(Soret band), 516, 551, 591, 646 (Q bands)。
1.4.2 化合物4的合成
將化合物3 (0.10 mmol)、醋酸銅(0.026 g, 0.18 mmol)及25 mL二氯甲烷于室溫下反應1~2 h,TLC檢測反應完全,經過濾、蒸除溶劑得到產品,柱色譜分離后得到化合物4[22]。
1)5,10,15-三苯基-20-(4-(3-萘氧基丙氧基)-苯基)銅卟啉(化合物4a)
熔點大于300 ℃,產率為93.6%。UV-vis (CH2Cl2) : λmax(nm), 416(Soret band), 539 (Q band)。Anal. Calcd. for C57H40CuN4O2(%):C, 78.11; H, 4.60; N, 6.39。Found C, 78.25; H, 4.80; N, 6.36。
2)5,10,15-三苯基-20-(4-(4-萘氧基丁氧基)-苯基)銅卟啉(化合物4b)
熔點大于300 ℃,產率為94.9%。UV-vis (CH2Cl2): λmax(nm), 416(Soret band), 539 (Q band)。Anal. Calcd. for C58H42CuN4O2(%): C,78.23; H, 4.75; N, 6.29。Found C, 78.45; H, 4.89; N, 6.46。
3)5,10,15-三苯基-20-(4-(5-萘氧基戊氧基)-苯基)銅卟啉(化合物4c)
熔點大于300 ℃,產率為92.7%。UV-vis (CH2Cl2) : λmax(nm), 416(Soret band), 539 (Q band)。Anal. Calcd. for C59H44CuN4O2(%): C, 78.34; H, 4.90; N, 6.19。Found C,78.52; H, 4.89; N, 6.06。
4)5,10,15-三苯基-20-(4-(6-萘氧基己氧基)-苯基)銅卟啉(化合物4d)
熔點大于300 ℃,產率為90.3%。UV-vis (CH2Cl2) : λmax(nm), 416(Soret band), 539 (Q band)。Anal. Calcd. for C60H46CuN4O2(%):C, 78.45; H, 5.05; N, 6.10。Found C, 78.25; H, 5.29; N, 6.06。
將6 μmol的Cu-卟啉 (化合物4) 溶于25 mL的二氯甲烷中,加入0.2 g的TiO2,于室溫攪拌8 h, 蒸除溶劑并在烘箱中干燥,得到光敏劑4a-TiO2, 4b-TiO2, 4c-TiO2和4d-TiO2[23]。
稱取0.1 g的光敏劑,加入到100 mL質量濃度為10 mg/ mL的甲基橙溶液中,避光攪拌30 min達到吸咐平衡。在300 W,24 V氙燈光照下攪拌30 min。取樣3 mL,將樣品離心10 min,取上清液在464 nm下測定其吸光度值[24]。補加蒸餾水,使甲基橙溶液恢復至原來刻度,重復上述步驟,總體照射時間為150 min。
化合物4a, 4b, 4c, 4d-TiO2的漫反射紫外可見光譜見圖2。由圖2可知,TiO2在400 nm以上沒有吸收,而4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2在420 nm (Soret band) 和541 nm (Q band)均有特征吸收,此吸收峰與銅卟啉(化合物4)在二氯甲烷中的吸收峰一致,且發生了紅移(416~420 nm)。由此數據可知,銅卟啉負載到TiO2表面,并且拓寬了TiO2吸收范圍。
4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2的X射線衍射分析見圖3。

圖2 4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2的漫反射紫外可見光譜Fig.2 UV-vis diffuse reflectance spectra of the bare TiO2, 4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2

圖3 4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2的X射線衍射Fig.3 XRD pattern of the bare TiO2 and 4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2
由圖3可知,4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2在25.4°, 37.9°, 48.1°, 54.1°, 62.8°和68.4° 出現了特征衍射峰,其衍射峰位置與TiO2一致,說明銅卟啉負載在TiO2表面但并不影響其晶體結構。
圖4是純TiO2和4b-TiO2的SEM圖。由圖4可知,兩種物質具有相同的表面狀態,這說明銅卟啉負載在TiO2表面,但并不影響其晶體結構。

圖4 TiO2和4b-TiO2的掃描電子顯微鏡Fig.4 SEM pattern of the bare TiO2 and 4b-TiO2 catalysts

圖5 TiO2, CuTPp, 4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2光催化降解甲基橙Fig.5 Photocatalytic degradation of methyl orange by bear TiO2, CuTPp and 4a-TiO2, 4b-TiO2,4c-TiO2, 4b-TiO2 catalysts
以不同時間樣品的吸光度與甲基橙原液吸光度的比值為縱坐標,時間為橫坐標作圖,得到圖5。其中CuTPp是四苯基銅卟啉(自制)。由圖5可知,CuTPp, 4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2與TiO2的催化活性順序為4a-TiO2>4d-TiO2>4c-TiO2>4b-TiO2>CuTPp-TiO2>TiO2。
由圖5可知:CuTPP, 4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2與TiO2相比均表現出更強的光催化活性,尤其是4a-TiO2的光催化活性最好,且4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2的催化活性均優于CuTPp-TiO2。利用制備的催化劑光催化降解甲基橙,在光照射下卟啉和TiO2都可以被激發。卟琳激發后成為激發態的卟琳分子,激發態的卟琳分子將電子傳遞至TiO2的導帶上,自身成為卟琳正離子,導帶上的電子與水中的溶解氧反應生成·O-,生成的·O-通過一系列反應產生氧化性極強的·OH,·OH能夠催化氧化溶液中的甲基橙分子,最終生成無毒的小分子降解產物。根據此過程可推測,當苯環上連有取代基時可增強CuPp-TiO2的相互作用,因而增強其催化活性,但CuPp和TiO2之間的相互作用主要是共價鍵和物理作用,因此取代基的長度對催化活性的影響并不明顯[25]。

圖6 4a-TiO2, 4b-TiO2, 4c-TiO2, 4d-TiO2催化劑的穩定性Fig.6 Stability of 4a-TiO2, 4b-TiO2,4c-TiO2, 4b-TiO2 catalysts
催化劑的穩定性在實際應用中具有重要的作用。為了進一步研究催化劑的穩定性,當一次降解完成后,將所使用的催化劑回收,于120 ℃烘干重復使用,研究結果如圖6所示。
由圖6可知:在第1次光催化降解完成后,4a-TiO2, 4b-TiO2, 4c-TiO2和4d-TiO2的效率分別為75.8%,60.4%,66.4%和68.3%;重復使用4次后,效率分別為68.8%,53.7%,58.5%和59.8%。由此可知催化劑具有較好的穩定性。
本研究采用Lindsey法,合成了4個結構新穎的卟啉及銅卟啉衍生物,中間體和目標產物的結構經MS,NMR和元素分析進行確認,制備了TiO2-銅卟啉催化劑光催化降解甲基橙溶液。研究發現:同TiO2-CuTPP催化劑相比,當苯環上連有取代基時其光催化活性增強,但鏈的長度對活性的影響不明顯。此研究為今后進一步研究合成高效催化劑提供了思路和借鑒。
/
[1] 羅利軍,王娟,潘學軍,等. 二氧化鈦選擇性光催化降解有機污染物研究進展[J].化學通報,2013, 76(4): 332-337.
LUO Lijun, WANG Juan, PAN Xuejun, et al. Progress in selective degradation of organic contaminants by titanium dioxide[J]. Chemistry Bulletin, 2013, 76(4): 332-337.
[2] 湯小勝,李汝杏,湯平,等.納米二氧化鈦光催化技術降解廢水中苯酚的研究[J].湖北理工學院學報,2017, 33(1): 26-30.
TANG Xiaosheng, LI Ruxing, TANG Ping, et al. Research on degradation of phenol in wastewater by nanometer titanium dioxide photocatalysis technology[J]. Journal of Hubei Polytechnic University, 2017, 33(1): 26-30.
[3] 吳勇民,李甫,黃咸雨.含酚廢水處理新技術及其發展前景[J].環境科學與管理,2007, 32(3): 150-154.
WU Yongmin, LI Fu, HUANG Xianyu. New techniques for ttreatment of phenol containing wastewater and prospect[J]. Environmental Science and Management, 2007, 32(3): 150-154.
[4] LIAO P Y, WANG X R, ZHANG X H, et al. Synthesis of 2-morpholinetetraphenylporphyrins and their photodynamic activities[J]. Bioorganic Chemistry, 2017, 71: 299-304.
[5] SLOMP A M, BARREIRA S M W, CARRENHO L Z B, et al. Photodynamic effect of meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium)porphyrins on HaCaT keratinocytes[J]. Bioorganic & Medicinal Chemistry Letters, 2017, 27(2): 156-161.
[6] KEAWIN T, TARSANG R, SIRITHIP K, et al. Anchoring number-performance relationship of zinc-porphyrin sensitizers for dye-sensitized solar cells: A combined experimental and theoretical study[J]. Dyes and Pigments, 2017, 136: 697-706.
[7] GUO C, PENG Q, LIU Q, et al. Selective oxidation of ethylbenzene with air catalyzed by simple [mu]-oxo dimeric metalloporphyrins under mild conditions in the absence of additives[J]. Journal of Molecular Catalysis A: Chemical, 2003, 192 (1/2): 295-302.
[8] CHENG H L, HUANG Z S, WANG L Y, et al. Synthesis and photovoltaic performance of the porphyrin based sensitizers with 2H-[1,2,3]triazolo[4,5-c]pyridine and benzotriazole as auxiliary acceptors[J]. Dyes and Pigments, 2017, 137: 143-151.
[9] KARIMI B, GHOREISHI-NEZHAD M, CLARK J H. Selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide catalyzed with a recoverable silica-based tungstate interphase catalyst[J]. Organic Letters, 2005, 7(4): 625-628.
[10] MELE G, DEL SOLE R, VASAPOLLO G, et al. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2impregnated with functionalized Cu(Ⅱ)-porphyrin or Cu(Ⅱ)-phthalocyanine[J]. Journal of Catalysis, 2003, 217 (2): 334-342.
[11] CASTRO K A D F, LIMA F H C, SIMǒES M M Q, et al. Synthesis, characterization and catalytic activity under homogeneous conditions of ethylene glycol substituted porphyrin manganese(Ⅲ) complexes[J]. Inorganica Chimica Acta, 2017, 455: 575-583.
[12] YU D, BAI J, LIANG H, et al. AgI-modified TiO2supported by PAN nanofibers: A heterostructured composite with enhanced visible-light catalytic activity in degrading MO[J]. Dyes and Pigments, 2016, 133: 51-59.
[13] MA Y, WANG X, JIA Y, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews,2014, 114(19): 9987-10003.
[14] WANG C, YANG G M, LI J,et al. Novel meso-substituted porphyrins: Synthesis, characterization and photocatalytic activity of their TiO2-based composites[J]. Dyes and Pigments, 2009, 80(3): 321-328.
[15] WANG C, LI J, MELE G, et al. The photocatalytic activity of novel, substituted porphyrin/TiO2-based composites[J]. Dyes and Pigments, 2010, 84(2): 183-189.
[16] 劉瑩, 楊毅華, 劉守信. 提高 TiO2光催化處理廢水效率的研究進展[J]. 河北科技大學學報, 2014, 35 (1): 58-63.
LIU Ying, YANG Yihua, LIU Shouxin. Ways to enhance the efficiency of TiO2photocatalytic in wastewater treatment and the research progress[J]. Journal of Hebei University of Science and Technology, 2014, 35(1): 58-63.
[17] ZHAO X, LIU X, YU M M, et al. The highly efficient and stable Cu, Co, Zn-porphyrineTiO2photocatalysts with heterojunction by using fashioned one-step method[J]. Dyes and Pigments, 2017, 136: 648-656.
[18] LYU X F, QIAN H, MELEC G, et al. Impact of different TiO2samples and porphyrin substituents on the photocatalytic performance of TiO2/copper porphyrin composites[J]. Catalysis Today, 2017, 281: 45-52.
[19] KANG I J, WANG LW, HSU S J, et al. Design and synthesis of indole, 2,3-dihydro-indole, and 3,4-dihydro-2H-quinoline -1-carbothioic acid amide derivatives as novel HCV inhibitors[J]. Bioorganic and Medicinal Chemistry Letters,2009, 19(15): 4134-4138.
[20] BODENDIEK S B, MAHIEUX C, HANSEL W, et al. 4-Phenoxybutoxy-substituted heterocycles:A structure-activity relationship study of blockers of the lymphocyte potassium channel Kv1.3[J]. European Journal of Medicinal Chemistry, 2009, 44(5): 1838-1852.
[21] KANG M S, OH J B, ROH S G, et al. Novel extended π-conjugated dendritic Zn(II)-porphyrin derivatives for dye-sensitized solar cell based on solid polymeric electrolyte: Synthesis and characterization[J]. Bulletin of the Korean Chemical Society, 2007, 28(1): 33-40.
[22] SANTOS L J, CARVALHODA-SILVA D, REBOUC J S, et al. Synthesis of new porphyrin/fullerene supramolecular assemblies: A spectroscopic and electrochemical investigation of their coordination equilibrium in solution[J]. Tetrahedron, 2011, 67(1): 228-235.
[23] SUN W J, LI J, YAO G P, et al. Surface-modification of TiO2-with new metalloporphyrins and their photocatalytic activity in the degradation of 4-notrophenol[J]. Applied Surface Science, 2011, 258(2): 940-945.
[24] MELE G, GARCIA-LOPEZ E, PALMISANO L, et al. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2-impregnated with lanthanide double-decker phthalocyanine complexes[J]. The Journal of Physical Chemistry C, 2007, 111 (17):6581-6588.
[25] 呂向菲.不同外圍取代基卟琳和金屬卟琳的合成及其修飾TiO2的研究 [D]. 西安:西北大學,2011.
LYU Xiangfei, Study on the Synthesis of Different Substituents Porphyrin and Metal Porphyrin and Modification of TiO2[D]. Xi’an: Northwest University, 2011.
Study on the synthesis of novel TiO2-copper porphyrin catalyst and photocatalytic degradation of methyl orange
CHEN Shaorui
(School of Science, Hebei University of Science and Technology, Shijiazhuang,Hebei 050018, China)
In order to study the effect of different length side chain catalysts on photocatalytic degradation of methyl orange solution, solving the poroblem of water pollution control, four novel porphyrins and their corresponding copper complexes are synthesized from the starting material 1-naphthol, and their structures are characterized by MS, NMR and elemental analysis. Novel TiO2-porphyrins hybrid systems are prepared and its photocatalytic activity is investigated by photodegradation of methyl orange in aqueous solution under visible light. The results indicate that when there are side chains on the benzene ring of copper-porphyrin derivatives, the photocatalytic activity of substituted TiO2-copper porphyrins is better than TiO2-copper tetraphenyl porphyrin, but the effect of the side chains' length on the activity is not obvious. This study provides an idea for the synthesis of highly efficient catalysts in the future.
organic photochemistry;naphthol;porphyrins;synthesis;methyl orange;photocatalysis
O69
A
2017-06-12;
2017-08-16;責任編輯:張士瑩
河北省自然科學基金(B2012208036);河北科技大學五大平臺項目(1182120)
陳韶蕊(1971—),女,河北趙縣人,副教授,博士,主要從事有機合成方面的研究。
E-mail:sjz_wgq@126.com
陳韶蕊.新型TiO2-銅卟啉催化劑的合成及其光催化甲基橙降解研究[J].河北科技大學學報,2017,38(5):453-459.
CHEN Shaorui.Study on the synthesis of novel TiO2-copper porphyrin catalyst and photocatalytic degradation of methyl orange [J].Journal of Hebei University of Science and Technology,2017,38(5):453-459.