999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

KILLING VECTOR FIELDS ON COMPACT RIEMANNIAN MANIFOLDS WITH NEGATIVE SCALAR CURVATURE

2017-11-06 09:36:37FUHaipingDANPingpingPENGXiaoyun
數學雜志 2017年6期

FU Hai-ping,DAN Ping-ping,PENG Xiao-yun

(1.Department of Mathematics,Nanchang University,Nanchang 330031,China)

(2.Jiangxi Tax Cadre School,Nanchang 330029,China)

KILLING VECTOR FIELDS ON COMPACT RIEMANNIAN MANIFOLDS WITH NEGATIVE SCALAR CURVATURE

FU Hai-ping1,DAN Ping-ping1,PENG Xiao-yun2

(1.Department of Mathematics,Nanchang University,Nanchang 330031,China)

(2.Jiangxi Tax Cadre School,Nanchang 330029,China)

In this paper,we investigate killing vector fields on compact Riemannian manifolds with negative scalar curvature.By using the Bochner method,we obtain a necessary condition of the existence of non-trivial killing vector fields on these manifolds,which extends Theorem 1 due to[6].

killing vector field;negative scalar curvature;trace-free Ricci curvature tensor

1 Introduction

A vector fieldVon a Riemannian manifold(M,g)is Killing if the Lie derivative of the metric with respect toVvanishes as follows

which is equivalent to

where▽denotes the covariant differential operator of(M,g)andX,Y∈TM.This is equivalent to the fact that the one-parameter group of diffeomorphisms associated toVconsists in isometries.Therefore,the space of the non-trivial Killing vector fields for(M,g)in some sense measures the size of the isometry group of(M,g).

The study of killing vector field has a long time.In 1946,Bochner[2]proved that when(M,g)is compact and has negative Ricci curvature,every Killing vector field must vanish.Later,Bochner’s result was extended by Yano to include conformal vector fields[10].It is well known that the existence of non-trivial closed conformal vector fields also imposes many restrictions on a compact Riemannian manifold(see[9]).The Killing vector fieldswere generalized to the Killingp-form and conformal Killingp-form by some authors such as Bochner and Yano,Gallot and Meyer,Tachibana and Yamaguchi,Liu Jizhi and Cai Kairen(see[8]).In 1999,Gursky[5]proved a vanishing theorem for conformal vector fields on four-manifolds of negative scalar curvature,whose assumptions were conformally invariant,and in the case of locally conformally fl at manifolds reduced to a sign condition on the Euler characteristic.The proof due to Gursky is actually are finement of the Bochner method which had been used to prove classical vanishing theorems.Recently,inspired by Gursky’s two papers[4,5],Hu and Li[6]proved Theorem A as follows.

Theorem ALet(M,g)be ann-dimensional compact oriented Riemannian manifold with scalar curvatureR<0.If there exists a non-trivial Killing vector field on(M,g),then we have

whereEdenotes the trace-free Ricci tensor.Moreover,equality is attained in(1.3)if and only ifRis constant and the Riemannian universal cover of(M,g)is isometric to a Riemannian product R×Nn?1for some Einstein manifoldNn?1with constant scalar curvatureR.

We follow their methods[3,5,6]to improve Theorem A and obtain the following results.

Theorem 1.1Let(M,g)be ann-dimensional compact oriented Riemannian manifold with scalar curvatureR.If there exists a non-trivial Killing vector field on(M,g),then we have

whereEdenotes the trace-free Ricci tensor.Moreover,equality holds in(1.4)if and only ifRis nonpositive constant and the Riemannian universal cover of(M,g)is isometric to a Riemannian product R×Nn?1for some Einstein manifoldNn?1with constant scalar curvatureR.

Corollary 1.2Let(M,g)be ann-dimensional compact oriented Riemannian manifold with scalar curvatureR<0.If there exists a non-trivial Killing vector field on(M,g),then we have

whereEdenotes the trace-free Ricci tensor.Moreover,equality holds in the above if and only ifRis constant and the Riemannian universal cover of(M,g)is isometric to a Riemannian product R×Nn?1for some Einstein manifoldNn?1with constant scalar curvatureR.

2 Proof of Theorem 1.1

Let(M,g)be ann-dimensional Riemannian manifold.Let{e1,···,en}with respect to the Riemannian metricgbe a local orthonormal basis ofTM,and{θ1,···,θn}be its dual basis.Let{θij}be the connection forms of(M,g),one has the structure equations

whereRijklare the components of the Riemannian curvature tensor of(M,g).The Ricci curvature tensorRijand the scalar curvatureRof(M,g)are de fined by

respectively.For a vector fieldon(M,g),we de fine the covariant derivativeVi,jand the second covariant derivativeVi,jk,respectively,byi.e.,

and

Using exterior derivation of(2.4),one gets the Ricci identity

From(2.5)and(2.7),we have

and thus for anyk,

Combing(2.6),(2.7)with(2.8),we get the following Weitzenb?ck formula(see[1])

Lemma 2.1Letbe a Killing vector field on then-dimensional Riemannian manifold(M,g).Then we have

Remark 2.2In[5],Gursky observed that(2.10)still holds for every conformal vector fieldV.In[6],Hu and Li proved Lemmas 2.1 and 2.3.For completeness,we write the proofs of Hu and Li.

ProofIt suffices to prove(2.10)for any fixed pointp∈?0:={x∈M|V(x)≠0}.Note that on ?0,(2.10)is equivalent to

Aroundp,we choose{ei}such thatV(p)=V1(p)e1(p);that is,V2=···=Vn=0 atp.From(2.7),we have

Then atp,we have

This proves(2.10),or equivalently proves(2.11)on ?0.

Combing(2.6)and(2.7)with(2.8),we have

Form(2.12)and the unique continuation result of Kazdan[7],we know that,for a nontrivial Killing vector fieldVon the compact Riemannian manifold(M,g),the setM?0is of measure zero.Combining this fact with(2.9)and(2.11),one has the following lemma.

Lemma 2.3LetVbe a non-trivial Killing vector field on a compact Riemannian manifold(M,g).Then holds onMin the sense of distributions.

In order to prove Theorem 1.1,we need the following algebraic lemma,which can be proved by the standard method of Lagrange multipliers,and was observed by Hu and Li[6].

Lemma 2.4LetA=(aij)n×nbe areal symmetric matrix withandx1,···,xn∈R.Then

and(x1,···,xn)correspondingly takes the value((n?1)λ,0,···,0),whereλ >0 holds if there is equality in the right-hand side of(2.14),andλ<0 holds if there is equality in the left-hand side of(2.14).

Proof of Theorem 1.1Letbe a non-trivial Killing vector field on(M,g).Denote byEthe trace-free part of the Ricci tensor Ric,i.e.,Eij=Rij?(R/n)δij.Then,applying Lemma 2.4,we get that

and the second equality holds at a pointp∈MwithV(p)≠0 if and only if by choosing suitable{ei},Ecan be diagonalized as

correspondingly,V1=(n?1)λandV2=...=Vn=0 for someλ >0.

Combining(2.13)with(2.16),we get

Forε>0,we de fine a functionThus we

From(2.18)and(2.19),we directly compute

and thus

and thus

Integrating(2.22)onM,we obtain

i.e.,

If the equality holds in(2.23),then equality(2.16)must hold at each point ofM.Thus at each point ofM,Ecan be diagonalized as in(2.17).So it satisfies

Furthermore,combining(2.17)with(2.24)givesλ=?R/n(n?1).Then we must haveV1=?R/n,V2=...=Vn=0 and

Remark 2.5We see that ifR<0,one has

Then

holds onMin the sense of distributions.Hence Corollary 1.2 can be considered as generalization of Theorem 1 in[6],i.e.,Theorem A.

[1]Besse A L.Einstein manifolds[M].Berlin:Springer-Verlag,1987.

[2]Bochner S.Vector field and Ricci cuvature[J].Bull.Amer.Math.Soc.,1946,52:776–797.

[3]Fu Haiping.On compact manifolds with harmonic curvature and positive scalar curvature[J].J.Geom.Anal.,DOI:10.1007/s12220-017-9798-z.

[4]Gursky M J.The Weyl fuctional,de Rham cohomology,and K?hler-Einstein metrics[J].Ann.Math.,1998,148:315–337.

[5]Gursky M J.Confomal vector fields on four-manifolds with negative scalar curvature[J].Math.Z.,1999,232:265–273.

[6]Hu Zejun,Li Haizhong.Scalar curvature,killing vector fields and harmonic one-forms on compact Riemannian manifolds[J].Bull.London Math.Soc.,2004,36:587–598.

[7]Kazdan J.Unique continuation in geometry[J].Comm.Pure Appl.Math.,1988,41:667–681.

[8]Liu Jizhi,Cai Kairen.The duality of conformal Killingp-forms on Riemannian manifolds[J].J.Math.,1990,10(2):157–160.

[9]Tanno S,Weber W.Closed conformal vector fields[J].J.Di ff.Geom.,1969,3:361–366.

[10]Yano K.On harmonic and Killing vector fields[J].Ann.Math.,1952,55:38–45.

具有負數量曲率的緊致黎曼流形的Killing向量場

付海平1,但萍萍1,彭曉蕓2
(1.南昌大學數學系,江西南昌 330031)
(2.江西省稅務干部學校,江西南昌 330029)

本文研究了具有負數量曲率的緊致黎曼流形上的Killing向量場.利用Bochner方法,得到在此類流形上非平凡的Killing向量場的存在的必要條件.這個結果拓廣了文獻[6]中的定理1.

Killing向量場;負數量曲率;無跡Ricci曲率張量

O186.12

53C20;53C24

A

0255-7797(2017)06-1118-07

date:2016-09-02Accepted date:2016-11-17

Supported by the National Natural Science Foundations of China(11261038;11361041).

Biography:Fu Haiping(1975–),male,born at Xiajiang,Jiangxi,associate professor,major in differential geometry.

主站蜘蛛池模板: 婷婷亚洲综合五月天在线| 国产成人1024精品| 国产福利大秀91| 美女扒开下面流白浆在线试听| 国内嫩模私拍精品视频| 亚洲精品无码专区在线观看 | 欧美一级高清片欧美国产欧美| 日韩欧美国产三级| 亚洲—日韩aV在线| 97综合久久| 人妻丝袜无码视频| 无码中文字幕乱码免费2| 九九九国产| 国产a网站| 久久99国产精品成人欧美| 欧美高清视频一区二区三区| 成人精品区| 91香蕉视频下载网站| 国产精品污视频| 永久免费精品视频| 久久6免费视频| 日韩福利在线视频| 91九色国产porny| 99成人在线观看| 久久综合国产乱子免费| 好紧太爽了视频免费无码| 日本黄色不卡视频| 国产精品va| 国产凹凸视频在线观看| 亚洲欧美日韩中文字幕一区二区三区| 成人国产一区二区三区| 成人国产三级在线播放| 成人一区专区在线观看| 香蕉久久国产精品免| 欧美成一级| 综合亚洲色图| 激情乱人伦| 亚洲第一国产综合| 亚洲男人的天堂网| 91精品免费高清在线| 亚洲日韩精品伊甸| 欧美日韩高清| 91欧美在线| 四虎精品国产AV二区| 国产精品制服| 日本精品中文字幕在线不卡| 精品一区二区三区无码视频无码| 一本大道在线一本久道| 国产精品无码AV中文| 一区二区三区四区精品视频| 国产成年女人特黄特色大片免费| 国产精品99久久久久久董美香| 久草中文网| 欧美在线伊人| 国产视频 第一页| 成人精品在线观看| a网站在线观看| 国产乱肥老妇精品视频| 国内精品自在自线视频香蕉| 欧美特级AAAAAA视频免费观看| 国产精品美女在线| 免费在线不卡视频| 三区在线视频| 久久精品国产一区二区小说| 国产自产视频一区二区三区| AV在线天堂进入| 国产女人18水真多毛片18精品| 亚洲黄色片免费看| 自拍偷拍欧美| 91成人精品视频| 四虎影视国产精品| 福利一区三区| 国产丝袜91| 日韩福利在线观看| 久久99国产乱子伦精品免| 国产 在线视频无码| 91免费在线看| 日韩 欧美 小说 综合网 另类 | 成人中文在线| 国内嫩模私拍精品视频| 久久黄色免费电影| 2022精品国偷自产免费观看|