韓鵬程,劉丹紅
(天津大學數學學院,天津 300350)
帶有局部干擾的Euler-Bernoulli梁方程的穩定性分析
韓鵬程,劉丹紅
(天津大學數學學院,天津 300350)
為了豐富控制理論中關于系統穩定性問題的理論,以Euler-Bernoulli梁方程為研究對象,研究了帶有局部干擾的Euler-Bernoulli梁方程的穩定性問題。設計了一個基于輸出的反饋控制器用于抑制干擾產生的影響,采用極大單調算子理論證明非線性閉環系統的適定性,即證明閉環系統的解的存在性與唯一性。設立適當的狀態空間,定義適當的內積,進一步定義了符合此狀態空間的非線性算子,將系統轉化為抽象發展方程的形式,在此基礎上,證明了閉環系統的解的存在性與唯一性。通過構造合適的Lyapunov函數,對閉環系統的穩定性問題進行研究,證明了閉環系統的漸近穩定性。結果表明,設計出合適的抗干擾控制器是研究系統穩定性的基礎,研究帶有局部干擾的Euler-Bernoulli梁方程的穩定性能夠證明系統是具有漸進穩定性的,此方法可以推廣到對諸如波方程、Timoshenko梁方程、薛定諤方程等系統的研究。
穩定性理論;Euler-Bernoulli梁方程;局部反饋控制;局部干擾;適定性;漸近穩定性
干擾,尤其是在控制領域和工程領域中的干擾是普遍存在的,所以抗干擾問題在現代控制理論研究領域非常熱門,越來越多的數學學者和工程技術研究人員參加到了抗干擾問題的研究當中。文獻[1]利用滑模方法(SMC)進行抗干擾問題的研究;文獻[2]采用了自抗擾控制(ADRC)的方法進行抗干擾研究;文獻[3-4]中利用自適應控制方法研究了干擾問題;文獻[5-15]研究了系統中含有時滯的穩定性問題;LIANG等[16]研究了被改進Smith預估器對于帶有便捷控制的Euler-Bernoulli梁方程的穩定性;GUO等[17-18]求解了具有延遲觀測和邊界控制的定長變系數Euler-Bernoulli梁方程的鎮定問題;GUO等[19]利用自抗干擾和滑膜控制的方法研究了帶有邊界輸入擾動的Euler-Bernoulli梁方程的穩定性問題;文獻[20-22]研究了邊界帶有干擾的Euler-Bernoulli梁方程的反饋鎮定問題。
本研究考慮下面系統,系統的動態行為被Euler-Bernoulli梁方程掌控,具體描述如式(1)所示:
式中:u(x,t)是輸入;R(x,t)表示局部干擾,即R(x,t)≠0,x∈[α,1],1>α>0,t>0。因為干擾的能量是有限的,所以假設R(x,t)是有界可測的,即存在M∈R+使得|R(x,t)|≤M。
本部分給出系統(1)的控制器設計。首先,定義能量函數:
經過計算得:
設計控制器為


另外,定義sign多值函數為

因此,結合式(2)得到在控制器u(x,t)下的系統(1)可以寫成:
筆者討論閉環系統(3)的適定性,為此,首先將系統(3)放在一個合適的Hilbert狀態空間中討論。

其中Hk(0,1)是通常意義下的k階Sobolev空間[23]。
在空間中設定內積如下:對于任意的Y1=(y1,z1)∈H,y2=(y2,z2)∈H,

定義算子A:
其中D(A)={(y,z)T∈H|y(0)=y′(0)=y″(1)=y?(1)=0},那么,系統(3)可以寫成空間H中的一個非線性發展方程:
其中:Y(t)=(y(·,t),yt(·,t))T,f(t)=(0,r(·,t))T,Y(0)=(y0(t),y1(t))T。
命題1系統算子A如前定義,在反饋控制(2)下,A是Hilbert空間H中的一個極大單調算子。

證明
Step1:單調性
對于任意的Yi=(yi,zi)T∈H,i=1,2,由分部積分可以得到:
因為對于任意的z1,z2∈R,(z1-z2)(sign(z1)-sign(z2))≥0,有:

所以A是單調的。
Step2:極大性
根據極大算子的定義可知,只需要證明R(I-A)=H。即對于任意的(f,g)T∈H,存在(y,z)T∈D(A)。考慮預解方程:(I-A)(y,z)T=(f,g)T,即,
(4)
由方程(4)的第1個方程得z(x)=y(x)-f(x),代入第2個方程得到:
fxxxx(x)+(1+kp(x))y(x)+p(x)Msign(y(x)-f(x))=g(x)+(1+kp(x))f(x)。
(5)






(6)
計算如下:








所以A是極大算子。




所以{vn}是柯西序列。




所以有:
由此證明(w,w-f)∈D(A)能夠唯一滿足預解方程(4)。
因此,J(w)存在唯一的極小值點滿足式(4)。R(I-A)=H,證畢。
本研究主要通過Lyapunov方法研究系統(3)的穩定性問題。
引理1[24]對于系統(3),若存在一個連續一階可微的正定函數V(t),滿足V′(t)≤0,則系統是穩定的;若滿足V′(t)<0則系統是漸近穩定的。
定理3假設系統(3)的擾動|R(x,t)| 以Euler-Bernoulli梁方程為研究對象,對閉環系統的穩定性問題進行討論,主要研究了具有局部擾動的Euler-Bernoulli梁系統的穩定性問題。首先,為了抑制干擾帶來的影響,設計了一個非線性反饋控制器;然后,利用極大單調算子理論詳細地證明了系統的適定性;最后,利用Laypunov函數的方法,證明了系統的穩定性和漸近穩定性。通過對此系統的研究發現,在對具有干擾的系統進行研究時,抗干擾控制器的設計是尤為重要的,設計出合適的控制器是進行下一步研究的必要準備。本研究主要對具有局部干擾的Euler-Bernoulli梁系統進行了研究,證明了系統的漸近穩定性,今后將把這種研究方法推廣到其他系統,例如:波方程、Timoshenko梁方程、薛定諤方程等。 / [1] GUO B Z, JIN F F.Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subjects to disturbance in boundary input[J].IEEE Transactions on Automatic Control, 2013,58(5):1269-1274. [2] GUO B Z, JIN F F. Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-Stable wave equations subject to disturbance in boundary input[J]. IEEE Transactions on Automatic Control, 2013, 58(5):1269-1274. [3] KRSTIC M. Adaptive control of an anti-stable wave PDE[J]. American ControlConference,2009,17(6):1505-1510. [4] GUO W, GUO B Z. Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[J].IEEE Transactions on Automatic Control, 2013,58(7):1631-1643. [5] XU G Q, YUNG S P, LI L K. Stabilization of wave systems with input delay in the boundary control[J]. Esaim Control Optimization & Calculus of Variations, 2006,12(4):770-785. [6] SHANG Y F, XU G Q, CHEN Y L. Stability analysis of Euler-Bernoulli beam with input delay in the boundary control[J].Asian Journal of Control,2012,14(1):186-196. [7] SHANGY F, XU G Q. Stabilization of an Euler-Bernoulli beam with input delay in the boundary control[J].Systems & Control Letters,2012,61(11):1069-1078. [8] WANG H, XU Genqi. Exponential stabilization of 1-d wave equation with input delay[J]. Wseas Transactions on Mathematics, 2013,12(10):1001-1013. [9] XU Genqi, WANG Hongxia. Stabilization of Timoshenko beam system with delay in the boundary control[J]. International Journal of Control, 2013,86(6):1165-1178. [10] LIU X F, XU G Q. Exponential stabilization for Timoshenko beam with distributed delay in the boundary control[J]. Abstract and Applied Analysis, 2013, 2013(4):1-15. [11] HAN Z J, XU G Q. Output-based stabilization of Euler-Bernoulli beam with time-delay in boundary input[J]. Ima Journal of Mathematical Control & Information, 2014, 31(4):533-550. [12] LIU X F, XU G Q. Output-based stabilization of Timoshenko beam with the boundary control and input distributed delay[J]. Journal of Dynamical & Control Systems, 2015,56(12):1-21. [13] DAI Q, YANG Z. Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay[J].Zeitschrift für Angewandte Mathematik Und Physik,2014, 65(5):885-903. [14] NICAISE S, PIGNOTTI C. Exponential stability of abstract evolution equations with time delay[J]. Journal of Evolution Equations, 2015, 15(1):107-129. [15] XU G Q,HAN P C, LI Y F, et al.The exponential stability result of an Euler-Bernoulli beam equation with interior delays and boundary damping[J].Journal of Difference Equations,2016(10):1-10. [16] LIANG J S, CHEN Y Q, GUO B Z. A new boundary control method for beam equation with delayed boundary measurement using modified smith predictors[J].IEEE Conference on Decision and Control, 2004,1(1):809-814. [17] GUO B Z,YANG K Y. Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation[J].Automa-tica,2009,45(6):1468-1475. [18] YANG K Y, LI J J, ZHANG J. Stabilization of Euler-Bernoulli beam equations with variable coefficients under delayed boundary output feedback[J].Electronic Journal of Differential Equations,2015, 2015(75):1-14. [19] GUO B Z,JIN F F.The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance[J]. Automatica,2013,49(9):2911-2918. [20] JIN F F, GUO B Z. Lyapunov approach to output feedback stabilization for the Euler-Bernoulli beam equation with boundary input disturbance[J]. Automatica, 2015, 52(C):95-102. [21] 周華成,寇春海. Euler-Bernoulli梁方程基于邊界分數階導數反饋控制的鎮定[J].應用數學與計算數學學報,2015,29(2):211-221. ZHOU Huacheng, KOU Chunhai. Stabilization of Euler-Bernoulli beam equations via boundary fractional derivative feedback control[J]. Communication on Applied Mathematics and Computation, 2015,29(2):211-221. [22] 盧小瑞. 邊界帶有干擾的Euler-Bernoulli梁方程的輸出反饋穩定[J].中北大學學報(自然科學版).2015, 36(2):103-107. LU Xiaorui. Output feedback stability for a Euler-Bernoulli beam equation with boundary disturbance[J]. Journal of North University of China (Natural Science Edition), 2015, 36(2):103-107. [23] BARBU V. Nonlinear Differential Equations of Monotone Types in Banach Spaces[M]. New York: Springer,2010. [24] 劉豹,唐萬生. 現代控制理論[M].北京:機械工業出版社,2006. Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance HAN Pengcheng, LIU Danhong (Mathematics Department, Tianjin University, Tianjin 300350, China) In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc. theory of stability;Euler-Bernoulli beam equation; local feedback control; locally distributed disturbance; well-posedness; asymptotic stabilization 1008-1542(2017)06-0536-06 10.7535/hbkd.2017yx06005 O175.21;O231.2MSC(主題分類):34D20 A 2017-03-24; 2017-09-28;責任編輯:張 軍 國家自然科學基金(61174080) 韓鵬程(1989—),男,河北滄州人,碩士研究生,主要從事控制理論方面的研究。 劉丹紅副教授。E-mail:liudanhong@eyou.com 韓鵬程,劉丹紅.帶有局部干擾的Euler-Bernoulli梁方程的穩定性分析 [J].河北科技大學學報,2017,38(6):536-541. HAN Pengcheng,LIU Danhong.Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance[J].Journal of Hebei University of Science and Technology,2017,38(6):536-541.

4 結 論