萬 斌, 曹恒斌, 俞根華
(湖州市中心醫院 1藥學部, 2放療介入科, 浙江 湖州 313000)
二氫青蒿素通過抑制SIRT1的表達而增強5-氟尿嘧啶對胃癌的抗腫瘤活性
萬 斌1△, 曹恒斌1, 俞根華2
(湖州市中心醫院1藥學部,2放療介入科, 浙江 湖州 313000)
目的探討二氫青蒿素對5-氟尿嘧啶治療胃癌的輔助作用并研究其機制。方法實驗分為對照組、二氫青蒿素組、5-氟尿嘧啶組、5-氟尿嘧啶聯合二氫青蒿素組和5-氟尿嘧啶+二氫青蒿素+SIRT1質粒組。MTT法檢測胃癌細胞系BGC-823在5-氟尿嘧啶聯合二氫青蒿素處理下的細胞活力。Western blot實驗檢測5-氟尿嘧啶聯合二氫青蒿素對BGC-823細胞SIRT1和NADPH氧化酶表達水平,caspase-9和caspase-3活化水平及凋亡信號調節激酶1(ASK1)和c-Jun氨基末端激酶(JNK)蛋白磷酸化水平的影響。流式細胞術檢測BGC-823細胞在5-氟尿嘧啶和二氫青蒿素聯合處理下的活性氧簇(ROS)生成水平和細胞凋亡率。結果二氫青蒿素處理能顯著抑制BGC-823細胞SIRT1的表達并增加NADPH氧化酶的蛋白水平,明顯提高BGC-823細胞對5-氟尿嘧啶的敏感性,降低5-氟尿嘧啶的半數抑制濃度;轉染SIRT1表達質粒后,二氫青蒿素聯合5-氟尿嘧啶對BGC-823細胞的殺傷活性受到顯著抑制(P<0.05)。二氫青蒿素能明顯促進5-氟尿嘧啶對BGC-823細胞生成ROS的誘導效應和ASK1及JNK的磷酸化(P<0.05)。用ROS清除劑N-乙酰半胱氨酸(NAC)或JNK特異性抑制劑SP600125處理后,二氫青蒿素聯合5-氟尿嘧啶對BGC-823細胞的殺傷活性和caspase-9及caspase-3的活化均受到明顯抑制(P<0.05)。另外,NAC能顯著抑制二氫青蒿素聯合5-氟尿嘧啶對JNK磷酸化的促進作用,而SP600125卻不能影響BGC-823細胞ROS的產生,表明JNK是ROS的下游分子。結論二氫青蒿素聯合5-氟尿嘧啶通過SIRT1/NADPH氧化酶/ROS/JNK通路誘導胃癌細胞發生caspase依賴的凋亡。
二氫青蒿素; SIRT1蛋白; 5-氟尿嘧啶; BGC-823細胞; 活性氧簇; JNK信號通路
胃癌是臨床上最常見的消化道惡性腫瘤,近些年來的發病率呈上升趨勢。多數早期胃癌患者無明顯癥狀,因此很多患者在確診時已發生腫瘤的轉移和擴散[1-2]。對于這些中晚期患者而言,化療在胃癌的治療中是不可替代的重要方法。然而隨著化療藥物的反復使用,腫瘤細胞對化療的敏感性往往會逐漸降低,而且大劑量的化療藥物對患者有很大的副作用[3-4],因此采用一些輔助治療手段降低化療藥物的劑量并提高腫瘤細胞對化療的敏感性具有十分重要的意義。
5-氟尿嘧啶(5-fluorouracil,5-FU)是一種抗代謝化療藥物,在腫瘤細胞內能轉化氟尿嘧啶脫氧核苷酸,從而抑制胸腺嘧啶核苷酸合成酶的活性干擾腫瘤細胞DNA的合成[5-6]。5-FU具有廣譜的抗腫瘤活性,是目前治療胃癌的一線化療藥物。然而,5-FU的副作用較大,且持續使用會使胃癌細胞對5-FU的敏感性逐漸降低[7-8],因此,提高胃癌細胞對5-氟尿嘧啶的敏感性是提高化療效果的有效方法。
二氫青蒿素(dihydroartemisinin, DHA)是青蒿素衍生物,據報道有一定的抗腫瘤效應[9-10],然而其是否能增強5-氟尿嘧啶的抗腫瘤活性至今仍很少報道。本研究探討二氫青蒿素對5-氟尿嘧啶化療胃癌的輔助治療作用并研究其機制。
人胃癌細胞系BGC-823購于美國模式培養物保存中心(American Type Culture Collection,ATCC),在含10%胎牛血清的RPMI-1640培養基中,在37 °C恒溫培養箱中培養并通入5% CO2。
5-FU、DHA、MTT、N-乙酰半胱氨酸(N-acetylcysteine,NAC)、SP600125、二氫乙啶(dihydroethidium,DHE)和凋亡檢測試劑盒購于Sigma-Aldrich;RPMI-1640培養基購于Gibco;蛋白提取液、抗SIRT1、NADPH氧化酶p47亞基、p-ASK1、p-JNK、cleaved caspase-9、cleaved caspase-3和GAPDH抗體購于Cell Signaling Technology;ECL試劑盒購于Pierce;pcDNA3.1和Lipofectamine 2000購于Invitrogen。
3.15-氟尿嘧啶半數有效濃度(IC50)的測定 將BGC-823細胞按每孔5×103接種在96孔板上,孵育過夜,用0~4 μmol/L 5-氟尿嘧啶及50 μmol/L二氫青蒿素處理腫瘤細胞48 h,后加入20 μmol/L MTT (5 g/L), 37 ℃恒溫培養箱中培養4 h,移除孔內培養基,加入100 μL DMSO,570 nm波長下測定吸光度(A)值。細胞活力結果用5-氟尿嘧啶處理組與對照組的A值比值表示。繪制細胞活力曲線,根據曲線計算5-氟尿嘧啶對BGC-823細胞的IC50。
3.2SIRT1重組質粒構建和轉染 人SIRT1基因的開放閱讀框架序列經PCR擴增后以分子克隆的方法與pcDNA3.1連接后,構建成SIRT1重組過表達質粒。SIRT1過表達質粒用脂質體2000按試劑操作說明書步驟進行轉染,簡要步驟如下:將2 ng/L空質粒或SIRT1質粒用脂質體2000進行包裹后加入到無血清培養基進行混合。將貼壁的BGC-823細胞置于無血清培養基孵育6 h后,棄去無血清培養基,并加入新鮮的含10%胎牛血清的RPMI-1640培養基培養24 h。
3.3二氫青蒿素聯合5-氟尿嘧啶對BGC-823細胞的殺傷活性 空質粒或SIRT1質粒轉染的BGC-823細胞按每孔5×103接種在96孔板上,孵育過夜,之后加入2 μmol/L 5-氟尿嘧啶、50 μmol/L二氫青蒿素、2 mmol/L NAC和50 μmol/L SP600125處理細胞48 h,之后加入20 μL MTT (5 g/L) 37 ℃恒溫培養箱中培養4 h,移除孔內培養基,加入100 μL DMSO,570 nm波長下測定吸光度(A)值。細胞活力=A實驗組/A對照組×100%。
3.4Western blot實驗 空質粒或SIRT1質粒轉染的BGC-823細胞加入2 μmol/L 5-氟尿嘧啶、50 μmol/L二氫青蒿素、2 mmol/L NAC和50 μmol/L SP600125處理細胞48 h。之后用蛋白提取液提取BGC-823細胞中的總蛋白質。將等量的總蛋白質行12.5% SDS-PAGE。分離完畢后通過電轉方法將蛋白質從分離膠上轉到PVDF膜上,用抗SIRT1、NADPH氧化酶p47亞基、p-ASK1、p-JNK、cleaved caspase-9、cleaved caspase-3和GAPDH抗體孵育過夜,之后再用帶辣根過氧化物酶的 II 抗孵育2 h,蛋白條帶用ECL試劑盒顯色發光。
3.5ROS水平的檢測 DHE可自由透過活細胞膜進入細胞內,并被細胞內的超氧陰離子型ROS氧化,形成氧化乙啶,氧化乙啶可摻入染色體DNA中,產生紅色熒光,因此紅色熒光強度越強,則ROS水平越高[11]。在空質粒或SIRT1質粒轉染的BGC-823細胞中加入2 μmol/L 5-氟尿嘧啶、50 μmol/L二氫青蒿素、2 mmol/L NAC和50 μmol/L SP600125處理細胞48 h。細胞處理完畢后用DHE試劑按說明書步驟對BGC-823細胞進行染色,之后用生理鹽水將細胞清洗3次,用流式細胞術檢測細胞的紅色熒光強度。
3.6流式細胞術檢測細胞凋亡 在空質粒或SIRT1質粒轉染的BGC-823細胞中加入2 μmol/L 5-氟尿嘧啶、50 μmol/L二氫青蒿素、2 mmol/L NAC和50 μmol/L SP600125處理細胞48 h。之后按照凋亡試劑盒說明書步驟將碘化丙啶(PI)和Annexin V加入細胞中孵育20 min,采用流式細胞術檢測腫瘤細胞的凋亡,Annexin V陽性細胞即為凋亡細胞。
所有實驗重復3次,實驗數據用均數±標準差(mean±SD)表示,并用SPSS 15.0統計分析軟件進行處理。兩組間均數的比較采用 Student’st檢驗,多組間均數的比較采用單因素方差分析(one-way ANOVA),以P<0.05為差異有統計學意義。
MTT實驗結果顯示,二氫青蒿素聯合處理能顯著提高5-氟尿嘧啶對BGC-823細胞的殺傷活性,降低5-氟尿嘧啶對BGC-823細胞的IC50(P<0.05),見圖1A,表明二氫青蒿素輔助治療對胃癌的5-氟尿嘧啶化療有協同效應。Western blot實驗結果顯示二氫青蒿素顯著抑制BGC-823細胞中SIRT1蛋白的表達(P<0.05),見圖1B,提示二氫青蒿素發揮協同效應的機制可能和SIRT1的下調有關。MTT實驗結果顯示轉染SIRT1表達質粒后,二氫青蒿素聯合5-氟尿嘧啶對BGC-823細胞的殺傷活性明顯降低(P<0.05),見圖1C,表明二氫青蒿素通過下調SIRT1的表達增強5-氟尿嘧啶對BGC-823細胞的殺傷活性。
Western blot實驗結果顯示二氫青蒿素顯著增加BGC-823細胞中NADPH氧化酶蛋白的表達水平(P<0.05),然而轉染SIRT1質粒后,NADPH氧化酶蛋白的表達水平明顯下降,見圖2A,提示SIRT1是NADPH氧化酶的負調節因子。流式細胞實驗結果顯示,二氫青蒿素能明顯增強5-氟尿嘧啶對BGC-823細胞ROS的誘導產生,然而轉染SIRT1質粒后,二氫青蒿素和5-氟尿嘧啶聯合治療的BGC-823細胞ROS的產生明顯減少,見圖2B,表明二氫青蒿素通過下調SIRT1的表達促進5-氟尿嘧啶對BGC-823細胞ROS的誘導產生。流式細胞實驗結果顯示ROS清除劑NAC[11]處理能明顯清除BGC-823細胞中的ROS,同時,MTT實驗結果顯示BGC-823細胞用NAC處理后,二氫青蒿素聯合5-氟尿嘧啶對BGC-823細胞的殺傷活性顯著降低(P<0.05),見圖2C,表明二氫青蒿素能通過SIRT1/ROS途徑提高5-氟尿嘧啶的抗胃癌活性。另外,Western blot實驗結果顯示,二氫青蒿素聯合5-氟尿嘧啶顯著誘導BGC-823細胞caspase-9和caspase-3的活化,而SIRT1質粒或NAC均能明顯抑制它們的活化(P<0.05),見圖2D,提示二氫青蒿素能通過SIRT1/NADPH氧化酶/ROS途徑提高caspase對凋亡信號的敏感性。
Western blot結果顯示,二氫青蒿素聯合5-氟尿嘧啶能顯著誘導BGC-823細胞ASK1和其下游JNK蛋白的磷酸化,而JNK特異性抑制劑SP600125[12]和NAC均能抑制JNK的磷酸化(P<0.05),見圖3A,表明胃癌細胞中二氫青蒿素聯合5-氟尿嘧啶誘導的JNK的活化受ROS的調控。然而,流式細胞實驗結果顯示,SP600125不能明顯影響二氫青蒿素聯合5-氟尿嘧啶誘導的ROS的產生,見圖3B,表明胃癌細胞中JNK是ROS途徑的下游信號分子。MTT實驗結果顯示SP600125和NAC均能抑制二氫青蒿素聯合5-氟尿嘧啶對BGC-823細胞的殺傷活性(P<0.05),見圖3C,表明二氫青蒿素聯合5-氟尿嘧啶通過ROS/JNK通路誘導BGC-823細胞發生死亡。Western blot和流式細胞實驗結果顯示SP600125和NAC均能抑制二氫青蒿素聯合5-氟尿嘧啶誘導的caspase-9和caspase-3的活化(P<0.05)和凋亡的發生(P<0.05),見圖3D、E,表明二氫青蒿素聯合5-氟尿嘧啶通過ROS/JNK通路誘導BGC-823細胞發生caspase依賴的凋亡。
青蒿素是臨床上非常重要的抗瘧藥。近年來的研究發現青蒿素及其衍生物還具有一定的抗腫瘤作用,其中,二氫青蒿素的生物活性最強。如文獻報道二氫青蒿素能抑制鼻咽癌細胞的增殖并促進腫瘤細胞的凋亡和細胞周期的阻滯[9];又如二氫青蒿素還能抑制肺癌的發展和血管生成[13]。然而,二氫青蒿素是否對胃癌的化療有輔助治療作用,至今還未充分報道。5-氟尿嘧啶是治療消化道腫瘤的一線化療藥物,研究表明,5-氟尿嘧啶能通過誘導ROS的產生誘導腫瘤細胞發生線粒體途徑的凋亡[14-15]。然而5-氟尿嘧啶的長期使用容易使腫瘤細胞發生耐藥性,降低其療效。在本研究中,作者通過實驗發現二氫青蒿素輔助治療能明顯增強5-氟尿嘧啶對BGC-823細胞的殺傷活性,表明二氫青蒿素對胃癌的5-氟尿嘧啶化療有協同效應。

Figure 1. Dihydroartemisinin (DHA) enhanced the antitumor effect of 5-FU on BGC-823 cells by down-regulating the expression of SIRT1. A: DHA increased the cytotoxicity of 5-FU to the BGC-823 cells; B: DHA down-regulated the expression of SIRT1 in the BGC-823 cells; C: transfection with SIRT1 plasmid inhibited the cell death of BGC-823 cells co-treated with 5-FU and DHA. Mean±SD.n=3.*P<0.05vscontrol group;#P<0.05vs5-FU+DHA group.
圖1二氫青蒿素通過下調SIRT1的表達增強5-氟尿嘧啶對BGC-823細胞的殺傷活性
SIRT1是一種組蛋白脫乙酰酶。研究表明SIRT1在多種腫瘤中發揮促癌作用,它的過表達能促進骨肉瘤、胰腺癌和結直腸癌等腫瘤細胞的增殖和轉移[16-18],并且腫瘤患者的SIRT1水平與其預后成反比[19]。更為重要的是,SIRT1的過表達還能導致腫瘤的化療抵抗,在一些腫瘤細胞中對SIRT1進行基因沉默能明顯增強其對化療的敏感性[20-21],表明SIRT1可能是提高化療療效的重要靶點。

Figure 2. Dihydroartemisinin (DHA) promoted the generation of ROS induced by 5-FU in the BGC-823 cells by down-regulating the expression of SIRT1. A: DHA up-regulated the expression of NADPH oxidase p47 subunit in the BGC-823 cells; B: DHA increased the production of ROS in 5-FU-treated BGC-823 cells; C: NAC inhibited the death of BGC-823 cells induced by DHA and 5-FU co-treatment; D: DHA enhanced the activation of caspase-9 and caspase-3 in BGC-823 cells treated with 5-FU. Mean±SD.n=3.△P<0.05vscontrol group;*P<0.05vs5-FU group;#P<0.05vs5-FU+DHA group.
圖2二氫青蒿素通過下調SIRT1的表達促進5-氟尿嘧啶對BGC-823細胞ROS的產生
SIRT1在腫瘤細胞中發揮抗氧化作用,過表達的SIRT1能明顯抑制NADPH氧化酶并增加超氧化物歧化酶等抗氧化酶類的表達,從而清除腫瘤細胞中的ROS使細胞逃避線粒體途徑的凋亡[22-24]。在ROS依賴的凋亡途徑中,JNK是激活細胞凋亡的重要下游分子,ROS通過激活ASK1蛋白的磷酸化誘導JNK的活化[25-26]。JNK的活化能增加腫瘤細胞中促凋亡蛋白的表達并抑制Bcl-2抗凋亡蛋白的功能,從而使細胞進入凋亡程序[27]。這些研究提示了SIRT1的高表達能通過抑制NADPH氧化酶/ROS/ASK1/JNK通路降低腫瘤細胞對凋亡信號的敏感性。本研究的結果表明二氫青蒿素能明顯降低胃癌細胞中SIRT1蛋白的表達并增加其下游NADPH氧化酶的蛋白水平,從而使胃癌細胞在5-氟尿嘧啶的治療下能產生更多的ROS,進而誘導下游分子ASK1和JNK的磷酸化,使胃癌細胞發生caspase依賴的凋亡。
綜上所述,本研究證明了二氫青蒿素能顯著增強5-氟尿嘧啶的抗胃癌活性。這些研究為降低化療藥物的劑量并提高腫瘤細胞對化療的敏感性提供了新的策略和思路。
[1] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1):11-30.
[2] Garattini SK, Basile D, Cattaneo M, et al. Molecular classifications of gastric cancers: novel insights and possible future applications[J]. World J Gastrointest Oncol, 2017, 9(5):194-208.

Figure 3. Dihydroartemisinin (DHA) promoted 5-FU-induced apoptosis of the BGC-823 cells through ROS/ASK1/JNK signaling pathway. A: DHA promoted the phosphorylation of ASK1 and JNK in 5-FU-treated BGC-823 cells; B: SP600125 failed to inhibit the ROS production in the BGC-823 cells co-treated with 5-FU and DHA; C: both SP600125 and NAC inhibited the death of BGC-823 cells co-treated with 5-FU and DHA; D: both SP600125 and NAC inhibited the activation of caspase-9 and caspase-3 in BGC-823 cells co-treated with 5-FU and DHA; E: both SP600125 and NAC inhibited the apoptosis of BGC-823 cells co-treated with 5-FU and DHA. Mean±SD.n=3.*P<0.05vscontrol group;#P<0.05vs5-FU+DHA group.
圖3二氫青蒿素通過ROS/ASK1/JNK途徑促進5-氟尿嘧啶對BGC-823細胞凋亡的誘導
[3] Sun Z, Yue L, Shen, Z, et al. Downregulation of NPM expression by Her-2 reduces resistance of gastric cancer to oxaliplatin[J]. Oncol Lett, 2017, 13(4):2377-2384.
[4] Jiao S, Li N, Cai S, et al. Inhibition of CYFIP2 promotes gastric cancer cell proliferation and chemoresistance to 5-fluorouracil through activation of the Akt signaling pathway[J]. Oncol Lett, 2017, 13(4):2133-2140.
[5] 劉 宇, 高 東, 靳廣毅, 等. 阿司匹林與氟尿嘧啶協同抑制結腸癌細胞生長增殖的機制研究[J]. 中國病理生理雜志, 2014, 30(6):988-993.
[6] Ghiringhelli F, Apetoh L. Enhancing the anticancer effects of 5-fluorouracil: current challenges and future perspectives[J]. Biomed J, 2015, 38(2):111-116.
[7] Lin X, Tian L, Wang L, et al. Antitumor effects and the underlying mechanism of licochalcone A combined with 5-fluorouracil in gastric cancer cells[J]. Oncol Lett, 2017, 13(3):1695-1701.
[8] Kang Y, Hu W, Bai X, et al. Curcumin sensitizes human gastric cancer cells to 5-fluorouracil through inhibition of the NFκB survival-signaling pathway[J]. Onco Targets Ther, 2016, 9:7373-7384.
[9] Huang Z, Huang X, Jiang D, et al. Dihydroartemisinin inhibits cell proliferation by induced G1 arrest and apoptosis in human nasopharyngealcarcinoma cells[J]. J Cancer Res Ther, 2016, 12(1):244-247.
[10] Li Y, Wang Y, Kong R, et al. Dihydroartemisinin suppresses pancreatic cancer cells via a microRNA-mRNA regulatory network[J]. Oncotarget, 2016, 7(38):62460-62473.
[11] Jiang K, Wang W, Jin X, et al. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells[J]. Oncol Rep, 2015, 33(6):2711-2718.
[12] Li HY, Zhang J, Sun LL, et al. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: aninvitroandinvivostudy[J]. Cell Death Dis, 2015, 6:e1604.
[13] Shen R, Li J, Ye D, et al. Combination of onconase and dihydroartemisinin synergistically suppresses growth and angiogenesis of non-small-cell lung carcinoma and malignant mesothelioma[J]. Acta Biochim Biophys Sin (Shanghai), 2016, 48(10):894-901.
[14] Zou X, Liang J, Sun J, et al. Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway[J]. J Pharmacol Sci, 2016, 131(4):233-240.
[15] Su J, Cheng H, Zhang D, et al. Synergistic effects of 5-fluorouracil and gambogenic acid on A549 cells: activation of cell death caused by apoptotic and necroptotic mechanisms via the ROS-mitochondria pathway[J]. Biol Pharm Bull, 2014, 37(8):1259-1268.
[16] Zhang N, Xie T, Xian M, et al. SIRT1 promotes metastasis of human osteosarcoma cells[J]. Oncotarget, 2016, 7(48):79654-79669.
[17] Li S, Hong H, Li H, et al. SIRT 1 overexpression is associated with metastasis of pancreatic ductal adenocarcinoma (PDAC) and promotes migration and growth of PDAC cells[J]. Med Sci Monit, 2016, 22:1593-1600.
[18] Cheng F, Su L, Yao C, et al. SIRT1 promotes epithelial-mesenchymal transition and metastasis in colorectal cancer by regulating Fra-1 expression[J]. Cancer Lett, 2016, 375(2):274-283.
[19] Zhang S, Huang S, Deng C, et al. Co-ordinated overexpression of SIRT1 and STAT3 is associated with poor survival outcome in gastric cancer patients[J]. Oncotarget, 2017, 8(12):18848-18860.
[20] Shuang T, Wang M, Zhou Y, et al. Over-expression of Sirt1 contributes to chemoresistance and indicates poor prognosis in serous epithelial ovarian cancer (EOC)[J]. Med Oncol, 2015, 32(12):260.
[21] Zhang T, Rong N, Chen J, et al. SIRT1 expression is associated with the chemotherapy response and prognosis of patients with advanced NSCLC[J]. PLoS One, 2013, 8(11):e79162.
[22] Cheng Y, Takeuchi H, Sonobe Y, et al. Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes[J]. J Neuroimmunol, 2014, 269(1-2):38-43.
[23] Tang Y, Xu J, Qu W, et al. Resveratrol reduces vascular cell senescence through attenuation of oxidative stress by SIRT1/NADPH oxidase-dependent mechanisms[J]. J Nutr Biochem, 2012, 23(11):1410-1416.
[24] Jian KL, Zhang C, Kong LY, et al. Eucalrobusone C suppresses cell proliferation and induces ROS-dependent mitochondrial apoptosis via the p38 MAPK pathway in hepatocellular carcinoma cells[J]. Phytomedicine, 2017, 25:71-82.
[25] Zhang L, Fang Y, Xu XF, et al. Moscatilin induces apoptosis of pancreatic cancer cells via reactive oxygen species and the JNK/SAPK pathway[J]. Mol Med Rep, 2017, 15(3):1195-1203.
[26] Liang T, Zhang X, Xue W, et al. Curcumin induced human gastric cancer BGC-823 cells apoptosis by ROS-mediated ASK1-MKK4-JNK stress signaling pathway[J]. Int J Mol Sci, 2014, 15(9):15754-15765.
[27] Xiang Y, Ye W, Huang C, et al. Brusatol inhibits growth and induces apoptosis in pancreatic cancer cells via JNK/p38 MAPK/NF-κB/Stat3/Bcl-2 signaling pathway[J]. Biochem Biophys Res Commun, 2017, 487(4):820-826.
Dihydroartemisinin enhances antitumor effect of 5-fluorouracil against gastric cancer by down-regulating SIRT1 expression
WAN Bin1, CAO Heng-bin1, YU Gen-hua2
(1DepartmentofPharmacy,2DepartmentofInterventionalRadiology,HuzhouCentralHospital,Huzhou313000,China.E-mail:mysucess@163.com)
AIM: To investigate the effect of dihydroartemisinin (DHA) adjuvant treatment on enhancing the antitumor effect of 5-fluorouracil (5-FU) against gastric cancer.METHODSThe gastric cancer BGC-823 cells were divided into control group, DHA group, 5-FU group, 5-FU+DHA group and 5-FU+DHA+SIRT1 plasmid group. The viability of BGC-823 cells treated with DHA and 5-FU was measured by MTT assay. The expression of SIRT1 and NADPH oxidase, activation of caspase-9 and caspase-3, and phosphorylation of ASK1 and JNK in the BGC-823 cells treated with DHA and 5-FU were determined by Western blot. The production of ROS and the apoptosis of the BGC-823 cells treated with DHA and 5-FU were analyzed by flow cytometry.RESULTSDihydroartemisinin significantly inhibited the expression of SIRT1 and increased NADPH oxidase protein level (P<0.05). DHA increased the sensitivity of BGC-823 cells to 5-FU, thus decreasing the IC50of 5-FU to the gastric cancer cells. However, transfection with SIRT1 plasmid decreased the cytotoxicity of DHA and 5-FU co-treatment to the BGC-823 cells. DHA promoted the production of ROS and phosphorylation of ASK1 and JNK induced by 5-FU in the BGC-823 cells (P<0.05). However, ROS scavengerN-acetylcysteine (NAC) or JNK specific inhibitor SP600125 inhibited the cell death and activation of caspase-9 and caspase-3 induced by DHA and 5-FU co-treatment (P<0.05). In addition, NAC significantly inhibited the phosphorylation of JNK in the BGC-823 cells co-treated with DHA and 5-FU. However, treatment with SP600125 did not influence the ROS production in the BGC-823 cells, indicating that JNK was the downstream target of ROS pathway.CONCLUSIONCombination of DHA with 5-FU induces caspase-dependent apoptosis in gastric cancer cells through the SIRT1/NADPH oxidase/ROS/JNK signaling pathway.
Dihydroartemisinin; SIRT1 protein; 5-fluorouracil; BGC-823 cells; Reactive oxygen species; JNK signaling pathway
1000- 4718(2017)12- 2195- 07
2017- 06- 06
2017- 07- 22
△通訊作者 Tel: 0572-2555806; E-mail: mysucess@163.com
R735.7; R285.5
A
10.3969/j.issn.1000- 4718.2017.12.013
(責任編輯: 林白霜, 羅 森)