姜 越,潘 婷,惠竹梅,2,*
模擬葡萄汁中可同化氮和還原糖對酵母發酵特性的影響
姜 越1,潘 婷1,惠竹梅1,2,*
(1.西北農林科技大學葡萄酒學院,陜西 楊凌 712100;2.陜西葡萄與葡萄酒工程中心,陜西 楊凌 712100)
為研究葡萄汁中可同化氮和還原糖對酵母發酵特性的影響,設計150、240、330、420、500 mg/L可同化氮質量濃度和170、200、230 g/L還原糖質量濃度,共計15 個處理,測定了模擬葡萄汁酒精發酵過程中酵母生長、還原糖消耗和可同化氮消耗的變化。結果表明,模擬汁中可同化氮質量濃度過低(150 mg/L)則不能充分滿足酵母生長的需要,同時限制了酵母的還原糖消耗速率,通過提高初始還原糖質量濃度至200 g/L可促進酒精發酵進行;酵母在初始可同化氮質量濃度高于240 mg/L的模擬汁中可以正常生長,此時初始還原糖、可同化氮質量濃度對酵母生長量均無顯著影響,還原糖含量最直接影響釀酒酵母菌株的發酵特性,決定發酵時間長短,表現為在初始還原糖質量濃度較低(170 g/L)的模擬汁中,酵母生長速率隨著模擬汁初始可同化氮質量濃度的升高而加快,在初始還原糖質量濃度較高(200~230 g/L)的模擬汁中,酵母生長速率不受初始可同化氮質量濃度的影響;當模擬汁初始可同化氮質量濃度高于330 mg/L時,酵母對可同化氮的消耗開始出現剩余,剩余量隨著模擬汁初始可同化氮質量濃度的升高而增加,此時可同化氮質量濃度能夠充分滿足酵母可同化氮代謝的需要,且酵母對可同化氮消耗量隨著初始還原糖質量濃度的增加而略有減少。
模擬葡萄汁;可同化氮;還原糖;釀酒酵母;發酵特性
葡萄汁中含有多種含氮的分子,包括無機氮和有機氮,但只有銨態氮、游離α-氨基酸(脯氨酸除外)和小分子多肽能夠被酵母同化,這類氮被稱為可同化氮[1-3]。可同化氮是酵母酒精發酵最重要的營養物質,可同化氮缺乏會影響酵母細胞的生長和發酵效率,最終影響葡萄酒中風味代謝物的形成,可同化氮的缺乏還易使葡萄酒發生微生物腐敗[4-7]。葡萄汁中可同化氮質量濃度一般在60~500 mg/L(以N計),釀造葡萄酒時,對于可同化氮質量濃度低于150 mg/L的葡萄汁,通常認為酵母在發酵中會受到氮源限制,因此會添加氮源以防止因氮素缺乏對酵母酒精發酵帶來的不利影響[3,8]。
葡萄汁中的糖對酵母來說非常重要,酵母發酵其他底物的能力有限,最重要的營養物質和新陳代謝所需能量大部分來自糖,糖為酵母的生長代謝提供能量和構建細胞組成的碳骨架,直接或間接調節著所有主要的代謝途徑,這些代謝活動會影響酵母的酒精發酵,并最終導致包括酸類、酯類、高級醇、羰基化合物和硫醇等影響葡萄酒香氣的副產物產生[2,9-13]。
目前,國內外學者關于葡萄酒釀造中可同化氮對酵母酒精發酵的影響研究較多,許多研究結果表明葡萄汁中可同化氮水平會影響酵母的酒精發酵[14-17],但關于葡萄汁中可同化氮和還原糖兩者對酵母酒精發酵的影響研究很少,本研究以模擬葡萄汁為試材,探索不同還原糖質量濃度對酵母利用可同化氮素能力的影響,尋找出有利于酵母酒精發酵的可同化氮和還原糖質量濃度,為不同含糖量的葡萄汁中添加可同化氮素提供一定的理論和參考依據。
釀酒酵母Lalvin EC1118來自法國Laffort公司,性狀穩定優良。
谷氨酰胺、色氨酸、蘇氨酸、組氨酸和亮氨酸等(均為分析純) 美國Sigma公司;葡萄糖、蘋果酸、檸檬酸、酒石酸、肌醇、泛酸鈣、煙酸、鹽酸硫胺、鹽酸吡哆醇、生物素和磷酸氫二銨等均為國產分析純。
UV-1800分光光度計 日本Shimadzu公司;Centrifuge 5804R離心機 德國Eppendorf公司;Rocker 300無油真空泵 臺灣洛科儀器股份有限公司;7890/5975B氣相色譜-質譜儀 美國安捷倫公司。
1.3.1 試驗設計
實驗在西北農林科技大學葡萄酒學院實驗室進行,研究不同質量濃度可同化氮和還原糖兩個因素對模擬葡萄汁酒精發酵的影響,共設15個處理,具體設計見表1。

表1 模擬汁中不同質量濃度的可同化氮和還原糖試驗設計Table 1 Different combinations of YAN and reducing sugar in synthetic grape must
1.3.2 模擬葡萄汁的配制
模擬葡萄汁根據Beltran[18]和Riou[19]等的方法配制。模擬汁分別由儲液Ⅰ、儲液Ⅱ、儲液Ⅲ和儲液Ⅳ組成,儲液Ⅰ為可同化氮儲液,儲液Ⅱ為葡萄糖儲液,儲液Ⅲ為有機酸儲液,儲液Ⅳ為礦物鹽和維生素儲液。將儲液Ⅰ、Ⅱ、Ⅲ和Ⅳ混合后用NaOH調節pH值至3.3,0.45 μm濾膜過濾除菌,現用現配。
1.3.3 指標測定
模擬汁在半厭氧條件下進行發酵,發酵期間(每隔24 h)及發酵結束后分別取樣進行各項指標測定。
1.3.3.1 發酵過程中各指標的測定
酵母生長量利用分光光度法在600 nm波長處測定;還原糖采用斐林試劑熱滴定法測定[20];測定可同化氮前取發酵液于11 000 r/min離心5 min,取上清液,測定時采用甲醛滴定法[21]。
1.3.3.2 發酵后基本指標的測定
總酸和揮發酸的含量測定采用NaOH滴定法[20];酒精度的測定采用比重瓶法[20]。
數據采用Excel 2010數據處理軟件進行分析處理,差異顯著性分析采用Duncan新復極差法。
2.1.1 模擬汁中可同化氮質量濃度對酵母生長的影響

圖1 可同化氮質量濃度對模擬汁發酵中酵母生長的影響Fig. 1 Effect of different YAN concentrations on the growth of S. cerevisiae
由圖1可知,在3 種還原糖質量濃度下,初始可同化氮質量濃度為150 mg/L的模擬汁中,酵母生長量在生長平穩期均顯著低于可同化氮質量濃度為240~500 mg/L的模擬汁(P<0.05),且發酵時間最長,此時240~500 mg/L 4 種可同化氮質量濃度的模擬汁中酵母生長量無顯著差異。在初始還原糖質量濃度為170 g/L的模擬汁中,酵母生長速率隨著模擬汁初始可同化氮質量濃度的升高而加快,其中初始可同化氮質量濃度為150 mg/L的模擬汁中酵母在發酵初期存在生長停滯的風險;而在初始還原糖質量濃度為200~230 g/L的模擬汁中,處于對數生長期的酵母生長速率不受初始可同化氮質量濃度的影響。說明150 mg/L可同化氮質量濃度過低,不能充分滿足酵母生長的需要;初始可同化氮質量濃度為240 mg/L已經能完全滿足酵母生長需要;高于此質量濃度時,可同化氮雖然會提高低糖模擬汁中酵母初期發酵速率,但對酵母生長量無明顯影響,這與Beltran[22]和Vilanova[23]等的研究一致。可同化氮作為酵母生長的必須營養元素,為酵母蛋白質和核苷酸的合成提供前體物質,較高質量濃度可同化氮能夠提高酵母生長量和代謝活性,刺激發酵活動[24-27]。
2.1.2 模擬汁中還原糖質量濃度對酵母生長的影響


圖2 還原糖質量濃度對模擬汁發酵中酵母生長的影響Fig. 2 Effect of different reducing sugar concentrations on the growth of S. cerevisiae
由圖2可知,當初始可同化氮質量濃度較低(150~240 mg/L)時,在還原糖質量濃度為170 g/L的模擬汁中,酵母在對數生長期的生長速率顯著低于200 g/L和230 g/L兩種還原糖質量濃度的模擬汁,甚至在初始可同化氮質量濃度為150 mg/L、初始還原糖質量濃度為170 g/L的模擬汁中酵母出現發酵初期生長停滯的現象,說明在可同化氮缺乏的模擬汁中可以通過適量提高還原糖質量濃度的方法促進發酵進行;當初始可同化氮質量濃度較高(330~500 mg/L)時,還原糖質量濃度為230 g/L的模擬汁中酵母對數生長期生長速率低于其他兩種初始還原糖質量濃度的模擬汁,說明還原糖和可同化氮質量濃度同時過高或過低均不利于酵母生長。在相同初始可同化氮質量濃度的模擬汁中,3 種還原糖質量濃度下的酵母在平穩期時生長量均無顯著性差異,均可完成發酵過程,說明在模擬汁中可同化氮源充足的情況下,初始還原糖質量濃度對酵母生長量無明顯影響。
2.2.1 模擬汁中可同化氮質量濃度對酵母還原糖消耗的影響


圖3 可同化氮質量濃度對模擬汁發酵中還原糖消耗的影響Fig. 3 Effect of different YAN concentrations on reducing sugar consumption
由圖3可知,在發酵過程中,酵母對還原糖的消耗速率表現為先快后慢。在3 種初始還原糖質量濃度的模擬汁中,酵母在可同化氮質量濃度為150 mg/L的模擬汁中完成酒精發酵的時間均最長,隨著初始可同化氮質量濃度升高,發酵時間明顯縮短,說明150 mg/L可同化氮質量濃度過低,限制了酵母的還原糖消耗速率,提高模擬汁可同化氮質量濃度能夠促進酵母的糖代謝過程[23,28-29]。也有研究表明,在沒有其他生長和發酵限制因素存在的情況下,葡萄汁中的可同化氮質量濃度在很大程度上決定了酵母的發酵速率[2,17]。Torrea等[30]研究表明,在160 mg/L可同化氮質量濃度的葡萄汁中,酵母完成發酵所需時間為13 d,中等可同化氮質量濃度時(320 mg/L)減少為7 d,高可同化氮質量濃度(480 mg/L)時只需5 d。
2.2.2 模擬汁中還原糖質量濃度對酵母還原糖消耗的影響


圖4 還原糖質量濃度對模擬汁發酵中酵母還原糖消耗的影響Fig. 4 Effect of different reducing sugar concentrations on sugar consumption
由圖4可知,當初始可同化氮質量濃度為150 mg/L時,在還原糖質量濃度為170 g/L的模擬汁中,酵母在發酵初期出現還原糖消耗停滯,而酵母在其他兩種還原糖質量濃度中糖消耗正常,說明當模擬汁中可同化氮質量濃度低時,酵母需要較高的初始還原糖質量濃度才能進行正常的酒精發酵;在240~500 mg/L 4 種初始可同化氮質量濃度的模擬汁中,酵母在相同可同化氮質量濃度下完成酒精發酵時間基本均隨還原糖質量濃度升高而延長,說明在正常的酒精發酵中,在可同化氮充足時,還原糖作為葡萄汁發酵的主要底物,對釀酒酵母菌株的發酵特性有著最直接的影響,決定了發酵時間的長短[31]。
2.3.1 模擬汁中可同化氮質量濃度對酵母可同化氮消耗的影響


圖5 可同化氮質量濃度對模擬汁發酵中可同化氮消耗的影響Fig. 5 Effect of different YAN concentrations on nitrogen consumption
由圖5可知,在初始還原糖質量濃度為170 g/L的模擬汁中,當初始可同化氮質量濃度為150 mg/L時,可同化氮消耗率小于50%,可同化氮消耗異常。在可同化氮正常消耗的14 種模擬汁中,酵母在發酵0~7 h和發酵28~45 h可同化氮消耗迅速,在發酵7~28 h和45~72 h可同化氮消耗緩慢;當初始可同化氮質量濃度為150~330 mg/L時,可同化氮均在酒精發酵72 h內被完全消耗;當初始可同化氮質量濃度為420~500 mg/L時,3 種還原糖質量濃度的模擬汁在發酵完成時均出現可同化氮剩余,剩余量隨著模擬汁初始可同化氮質量濃度的升高而增加,并在酒精發酵72 h后基本保持穩定,Mendes-Ferreira[22]和Beran[28]等研究表明酵母在模擬汁發酵中消耗掉全部可同化氮時間為48~72 h,與本實驗研究結果相似,說明酵母在發酵初期對可同化氮的利用率較高,且420~500 mg/L可同化氮質量濃度能夠充分滿足酵母可同化氮代謝的需要。
2.3.2 模擬汁中還原糖質量濃度對酵母可同化氮消耗的影響


圖6 還原糖質量濃度對模擬汁發酵中酵母可同化氮消耗的影響Fig. 6 Effect of different reducing sugar concentrations on nitrogen consumption
由圖6可知,當初始可同化氮質量濃度為150 mg/L時,在初始還原糖質量濃度為170 g/L的模擬汁中,可同化氮的消耗量遠小于其他兩個還原糖質量濃度(P<0.05);在其余14 種模擬汁中,當初始可同化氮質量濃度較低(150~240 mg/L)時,模擬汁中初始還原糖質量濃度對酵母在發酵中可同化氮消耗量的影響不明顯;當初始可同化氮質量濃度較高(330~500 mg/L)時,可同化氮剩余量隨著模擬汁中初始還原糖質量濃度的增加而升高。Jiranek等[32]研究發現在酒精發酵中酵母對可同化氮的需求量與葡萄汁中還原糖質量濃度有關,隨著初始還原糖質量濃度的升高,不同的酵母菌株對可同化氮的利用呈增加或減少的趨勢。在本實驗中,當模擬汁中初始可同化氮充足(330~500 mg/L)時,初始還原糖質量濃度對酵母可同化氮的利用有減少的趨勢,但可同化氮的消耗量無顯著性差異。
由表2可知,各處理中酒樣的基本指標均達GB/T 15038—2006《葡萄酒、果酒通用分析方法》要求,模擬酒的pH值在3.15~3.36之間,殘糖不大于4 g/L。當模擬汁中初始還原糖質量濃度相同時,發酵后模擬酒中的總酸隨初始可同化氮質量濃度的升高而增加,當模擬汁中初始可同化氮質量濃度相同時,除240 mg/L可同化氮質量濃度外,其他可同化氮質量濃度的模擬汁發酵后的總酸均隨初始還原糖質量濃度升高而增加。另外,模擬酒中的酒精度隨還原糖質量濃度的升高而增加。

表2 發酵后各模擬酒基本指標Table 2 Quality parameters of fermented synthetic grape musts
本實驗對不同初始可同化氮和還原糖質量濃度的模擬汁中酵母生長量、還原糖和可同化氮消耗量等發酵特性進行了比較分析,結果表明:當初始可同化氮質量濃度為150 mg/L、還原糖質量濃度為170 g/L時,酵母在發酵初期生長停滯,不能保證正常的酒精發酵,通過提高模擬汁中初始還原糖質量濃度或者可同化氮質量濃度可以防止此類問題出現;當可同化氮質量濃度為150 mg/L時,在3 種還原糖質量濃度的模擬汁中,酵母的生長和還原糖消耗速率均受到限制,提高可同化氮質量濃度可以顯著促進酵母生長和酒精發酵(P<0.05);330~500 mg/L可同化氮質量濃度能充分滿足酵母酒精發酵的需要,此時氮源充足,初始還原糖質量濃度對酵母生長量無明顯影響,且發酵結束后可同化氮剩余量隨初始可同化氮質量濃度升高而增加。
[1] 惠竹梅, 呂萬祥, 劉延琳. 可同化氮素對葡萄酒發酵香氣影響研究進展[J]. 中國農業科學, 2011, 44(24): 5058-5066. DOI:10.3864/j.issn.0578-1752.2011.24.011.
[2] INGLEDEW W M, MAGNUS C A, SOSULSKI F W. Influence of oxygen on proline utilization during the wine fermentation[J].American Journal of Enology and Viticulture, 1987, 38(3): 246-248.
[3] BELL S, HENSCHKE P A. Implications of nitrogen nutrition for grapes, fermentation and wine[J]. Australian Journal of Grape and Wine Research, 2005, 11(3): 242-295. DOI:10.1111/j.1755-0238.2005.tb00028.x.
[4] JúNIOR M M, BATISTOTE M, ERNANDES J R. Glucose and fructose fermentation by wine yeasts in media containing structurally complex nitrogen sources[J]. Journal of the Institute of Brewing, 2008,114(3): 199-204.
[5] BACH B, COLAS S, MASSINI L, et al. Effect of nitrogen addition during alcoholic fermentation on the final content of biogenic amines in wine[J]. Annals of Microbiology, 2011, 61(1): 185-190.DOI:10.1007/s13213-010-0119-z.
[6] JIMéNEZ-MARTí E, ARANDA A, MENDES-FERREIRA A, et al. The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds[J]. Antonie Van Leeuwenhoek, 2007, 92(1):61-75. DOI:10.1007/s10482-006-9135-1.
[7] HANNAM K D, NEILSEN G H, FORGE T, et al. The concentration of yeast assimilable nitrogen in Merlot grape juice is increased by N fertilization and reduced irrigation[J]. Canadian Journal of Plant Science, 2013, 93(1): 37-45. DOI:10.4141/CJPS2012-092.
[8] BRICE C, SANCHEZ I, TESNIèRE C, et al. Assessing the mechanisms responsible for differences between nitrogen requirements of Saccharomyces cerevisiae wine yeasts in alcoholic fermentation[J].Applied and Environmental Microbiology, 2014, 80(4): 1330-1339.DOI:10.1128/AEM.03856-13.
[9] JIRANEK V, LANGRIDGE P, HENSCHKE P A, et al. Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium[J]. Applied and Environmental Microbiology, 1995, 46(1): 75-82.
[10] BAUER F F, PRETORIUS I S. Yeast stress response and fermentation efficiency: how to survive the making of wine: a review[J]. South African Journal for Enology and Viticulture, 2000, 21: 27-51.
[11] SWIEGERS J H, BARTOWSKY E J, HENSCHKE P A, et al. Yeast and bacterial modulation of wine aroma and flavour[J]. Australian Journal of Grape and Wine Research, 2005, 11(2): 139-173.DOI:10.1111/j.1755-0238.2005.tb00285.x.
[12] JACKSON R S. Wine science: principles and applications[M].Academic Press, 2008.
[13] ARROYO-LOPEZ F N, ORLIC S, QUEROL A, et al. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid[J]. International Journal of Food Microbiology, 2009, 131(2):120-127. DOI:10.1016/j.ijfoodmicro.2009.01.035.
[14] D’AMATO D, CORBO M R, NOBILE M A D, et al. Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system[J]. International Journal of Food Science &Technology, 2006, 41(10): 1152-1157. DOI:10.1111/j.1365-2621.2005.01128.x.
[15] CARRAU F M, MEDINA K, FARINA L, et al. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains[J].FEMS Yeast Research, 2008, 8(7): 1196-1207. DOI:10.1111/j.1567-1364.2008.00412.x.
[16] HERNáNDEZ-ORTE P, IBARZ M J, CACHO J, et al. Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine[J]. Food Chemistry, 2005, 89(2): 163-174. DOI:10.1016/j.foodchem.2004.02.021.
[17] MARTíNEZ-MORENO R, MORALES P, GONZALEZ R, et al. Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source[J].FEMS Yeast Research, 2012, 12(4): 477-485. DOI:10.1111/j.1567-1364.2012.00802.x.
[18] BELTRAN G, ESTEVE-ZARZOSO B, ROZES N, et al. Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption[J].Journal of Agricultural and Food Chemistry, 2005, 53(4): 996-1002.DOI:10.1021/jf0487001.
[19] RIOU C, NICAUD J M, BARRE P, et al. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation[J].Yeast, 1997, 13(10): 903-915. DOI:10.1002/(SICI)1097-0061(199708)13:10<903::AID-YEA145>3.3.CO;2-T.
[20] 王華. 葡萄酒分析檢測[M]. 楊凌: 西北農林科技大學, 2004.
[21] GUMP B H, ZOECKLEIN B W, FUGELSANG K C. Prediction of prefermentation nutritional status of grape juice[M]//Food Microbiology Protocols. Humana Press, 2001: 283-296.
[22] BELTRAN G, NOVO M, ROZES N, et al. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentation[J].FEMS Yeast Research, 2004, 4(6): 625-632. DOI:10.1016/j.femsyr.2003.12.004.
[23] VILANOVA M, UGLIANO M, VARELA C, et al. Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts[J]. Applied Microbiology and Biotechnology,2007, 77(1): 145-157. DOI:10.1007/s00253-007-1145-z.
[24] HALLINAN C P, SAUL D J, JIRANEK V. Differential utilisation of sulfur compounds for H2S liberation by nitrogen-starved wine yeasts[J]. Australian Journal of Grape and Wine Research, 1999, 5(3):82-90. DOI:10.1111/j.1755-0238.1999.tb00291.x.
[25] BISSON L F, BUTZKE C E. Diagnosis and rectification of stuck and sluggish fermentations[J]. American Journal of Enology and Viticulture, 2000, 51(2): 168-177.
[26] SPIROPOULOS A, TANAKA J, FLERIANOS I, et al.Characterization of hydrogen sulfide formation in commercial and natural wine isolates of Saccharomyces[J]. American Journal of Enology and Viticulture, 2000, 51(3): 233-248.
[27] CASALTA E, CERVI M F, SALMON J M, et al. White wine fermentation: interaction of assimilable nitrogen and grape solids[J].Australian Journal of Grape and Wine Research, 2013, 19(1): 47-52.DOI:10.1111/j.1755-0238.2012.00205.x.
[28] MENDES-FERREIRA A, MENDES-FAIA A, LE?O C. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry[J]. Journal of Applied Microbiology, 2004, 97(3): 540-545.DOI:10.1111/j.1365-2672.2004.02331.x.
[29] VARELA C, PIZARRO F, AGOSIN E. Biomass content governs fermentation rate in nitrogen-def i cient wine musts[J]. Applied and Environmental Microbiology, 2004, 70(6): 3392-3400. DOI:10.1128/AEM.70.6.3392-3400.2004.
[30] TORREA D, VARELA C, UGLIANO M, et al. Comparison of inorganic and organic nitrogen supplementation of grape juice: effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast[J]. Food Chemistry,2011, 127(3): 1072-1083. DOI:10.1016/j.foodchem.2011.01.092.
[31] LEGODI L M. Improving wine yeast for fructose and nitrogen utilization[D]. Cape Town: Stellenbosch University, 2008.
[32] JIRANEK V, LANGRIDGE P, HENSCHKE P A. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen[J]. Applied and Environmental Microbiology, 1995, 61(2): 461-467.
Effect of Assimilable Nitrogen and Reducing Sugar Concentrations of Synthetic Grape Must on the Fermentation Characteristics of Saccharomyces cerevisiae
JIANG Yue1, PAN Ting1, XI Zhumei1,2,*
(1. College of Enology, Northwest A&F University, Yangling 712100, China;2. Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China)
In this study, fifteen combination treatments were designed using five yeast assimilable nitrogen (YAN)concentrations (150, 240, 330, 420, and 500 mg/L) and three reducing sugar concentrations (170, 200, and 230 g/L) to study the effects of different concentrations of assimilable nitrogen and reducing sugar in synthetic grape must on the fermentation characteristics of Saccharomyces cerevisiae. For this purpose, yeast growth, sugar consumption rate and nitrogen consumption were measured. The results showed that 150 mg/L of YAN nitrogen in the synthetic grape must was too low to support yeast growth and simultaneously restricted the consumption rate of reducing sugar by yeast. The rate of alcoholic fermentation was increased by increasing the initial concentration of reducing sugar to 200 g/L. Yeast could grow normally in the synthetic grape must with initial assimilable nitrogen concentrations of higher than 240 mg/L. In this case, initial reducing sugar and assimilable nitrogen concentration had no signif i cant effect on yeast growth, and reducing sugar concentration had the most direct effect on the fermentation characteristics of S. cerevisiae strains, determining the fermentation time. In the synthetic grape must with low initial reducing sugar concentration (170 g/L), the yeast growth rate increased with increasing the initial assimilable nitrogen concentration, while at high initial reducing sugar concentration(200–230 g/L), the yeast growth rate was not affected by the initial assimilable nitrogen concentration. An initial assimilable nitrogen concentration of higher than 330 mg/L was not completely consumed, and the remaining amount increased with the increase in the initial concentration of assimilable nitrogen, providing enough assimilable nitrogen for yeast to grow.Moreover, yeast could decrease assimilable nitrogen consumption with increasing the initial reducing sugar concentration.
synthetic grape must; yeast assimilable nitrogen; reducing sugar; Saccharomyces cerevisiae; fermentation characteristics
10.7506/spkx1002-6630-201802021
TS261.2
A
1002-6630(2018)02-0131-07
姜越, 潘婷, 惠竹梅. 模擬葡萄汁中可同化氮和還原糖對酵母發酵特性的影響[J]. 食品科學, 2018, 39(2): 131-137.
DOI:10.7506/spkx1002-6630-201802021. http://www.spkx.net.cn
JIANG Yue, PAN Ting, XI Zhumei. Effect of assimilable nitrogen and reducing sugar concentrations of synthetic grape must on the fermentation characteristics of Saccharomyces cerevisiae[J]. Food Science, 2018, 39(2): 131-137. (in Chinese with English abstract)
10.7506/spkx1002-6630-201802021. http://www.spkx.net.cn
2017-02-14
國家現代農業產業技術體系建設專項(CARS-30);陜西省果業局專項(K332021412)
姜越(1993—),女,碩士研究生,研究方向為葡萄與葡萄酒學。E-mail:jiangyuela@nwsuaf.edu.cn
*通信作者簡介:惠竹梅(1969—),女,教授,博士,研究方向為葡萄生理生態、葡萄與葡萄酒品質。E-mail:xizhumei@nwsuaf.edu.cn