999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

用于醫(yī)學磁共振影像的稀土上轉換發(fā)光納米材料

2018-01-12 01:18:19孟憲福劉艷顏步文博
發(fā)光學報 2018年1期

孟憲福,劉艷顏,步文博

用于醫(yī)學磁共振影像的稀土上轉換發(fā)光納米材料

孟憲福,劉艷顏,步文博*

(華東師范大學化學與分子工程學院上海市綠色化學與化工過程綠色化重點實驗室,上海 200062)

上轉換發(fā)光納米顆粒是一類遵循反斯托克斯原理的新型發(fā)光材料,具有發(fā)光強度高、發(fā)光穩(wěn)定、無組織背景熒光、無光漂白、低毒性以及較好的生物相容性等優(yōu)點,其激發(fā)光為紅外或者近紅外光,活體組織穿透深度高,在生物醫(yī)學檢測、診斷以及疾病治療等方面均具有潛在的應用價值。磁共振成像是目前醫(yī)學臨床常用的影像檢測手段之一,具有軟組織成像質量高、空間分辨率高、無輻射、無損傷等優(yōu)點,在心腦血管、腫瘤等疾病的影像診斷方面具有重要作用。本文將聚焦于近年來稀土上轉換發(fā)光納米材料在磁共振影像方面的研究進展,通過介紹磁共振成像機理、磁共振造影劑的構建、上轉換發(fā)光納米材料的設計及在磁共振醫(yī)學影像、疾病治療等方面的應用,并結合我們課題組基于UCNP醫(yī)學磁共振多模態(tài)影像的相關研究進展,對上轉換發(fā)光納米顆粒在磁共振成像方面的應用研究進行探討和展望。

上轉換發(fā)光納米顆粒;磁共振成像;多模態(tài)影像;疾病治療

1 引 言

上轉換發(fā)光納米顆粒(Upconversion nanoparticle,UCNP)是一類特殊的稀土發(fā)光材料,自Bloembergen首次提出上轉換發(fā)光的激發(fā)態(tài)吸收原理以來[1],人們對UCNP的認識和研究不斷深入。與傳統(tǒng)發(fā)光材料不同,UCNP發(fā)光機理遵循反斯托克斯(Anti-Stokes)定律,通過吸收兩個或多個低能光子,發(fā)射出一個高能光子,即將低頻率低能量的激發(fā)光轉化為高頻高能的發(fā)射光[2]。這一特殊的發(fā)光機理賦予了上轉換發(fā)光納米材料諸多優(yōu)勢:(1)激發(fā)光一般為紅外或者近紅外光,活體組織穿透深度高且光損傷小;(2)無光漂白現象,能夠有效地避免自發(fā)熒光干擾,提高診斷檢測的信噪比與靈敏度;(3)激發(fā)譜與發(fā)射譜帶窄,發(fā)光穩(wěn)定性好、強度高,材料毒性低、生物相容性良好等[3-9]。因此,UCNP在生物標記、檢測以及疾病(如腫瘤)的影像診斷、治療等方面具有巨大的應用潛力[10-11]。

當今社會,癌癥作為影響人類健康的重大殺手,已經嚴重影響了人們的健康。國際學術期刊CA Cancer JClin發(fā)表的中國2015年度癌癥統(tǒng)計數據顯示,中國2015年約有430萬腫瘤新發(fā)病例,約280萬人次死于癌癥[12]。然而,癌癥不是不可治愈的,早期癌癥患者中大約有百分之八十的患者可以完全治愈,反之,晚期癌癥患者存活率較低。因此,人們對其早期診斷越來越重視。磁共振成像(Magnetic resonance imaging,MRI)是目前臨床上常用的一種影像檢查手段,可對人體任何部位進行成像,其軟組織成像質量高,可用于精準發(fā)現體內病灶區(qū),且具有無輻射、無損傷等優(yōu)點,在醫(yī)學影像診斷方面具有重要作用,尤其對于腫瘤篩查。但目前MRI在腫瘤的早期診斷方面依然存在非常大的困難。為了提高早期腫瘤的診斷率,早發(fā)現早治療,醫(yī)務工作者通常會借助于MRI造影劑來增強病變部位的顯像,最大限度地提高病灶區(qū)與正常組織的對比度,實現對病變區(qū)靈敏精確的診斷檢測。目前,臨床上主要使用的MRI造影劑為馬根維顯(Magnevist),它可快速增強病變區(qū)顯影,提高病變區(qū)信號,在T1序列下呈現出高亮的信號圖像,主要用于心腦血管疾病以及腫瘤等疾病的檢查診斷。然而遺憾的是,馬根維顯血液半衰期短,體內代謝快,不能提供較長時間的影像效果,且其縱向弛豫率較低,臨床應用時需要較大的用量,會增加腎代謝的負擔[13]。

隨著納米科學技術的進步,弛豫率高、血液半衰期長、生物相容性好的MRI納米造影劑不斷涌現。同時,MRI技術發(fā)展也由單一的結構影像(T1/T2)逐步向結構影像與功能影像(如:彌散加權成像(DWI)、化學交換飽和轉移成像(CEST)、磁共振波譜成像(MRS)等)融合;MRI檢查手段逐步由單一模態(tài)向多模態(tài)(如:電子計算機斷層掃描(CT)、正電子發(fā)射計算機斷層掃描(PET)、熒光成像、超聲成像(US)以及光聲影像等手段)影像手段發(fā)展,從而可以更加精準、及時地發(fā)現早期病變,判斷病變區(qū)的臨床周期,更好地指導臨床用藥,及時消滅惡性腫瘤等病變。多模態(tài)納米影像探針在實現腫瘤等疾病高效診斷的同時,還可結合新型高效的腫瘤治療手段(如光熱治療、光動力學治療以及化學動力學治療等),用以構建診療一體化納米探針,實現對腫瘤影像介導下的高效精準治療。因此,發(fā)展新一代多功能MRI納米探針對于醫(yī)學臨床診斷和治療尤為重要。

UCNP作為一類新穎的發(fā)光納米材料,通過對其精確的組分調控及結構設計,可將熒光、MRI、CT以及PET等多種影像技術融為一體,結合化療、放療以及光熱、光動力等新型治療手段,可構建高性能診療一體化納米探針。本文將主要聚焦于近年來UCNP在MRI方面的研究進展,通過介紹磁共振成像機理、磁共振造影劑的構建、UCNP的設計以及在磁共振生物醫(yī)學等方面的應用,并結合我們課題組的相關研究進行綜述,對UCNP在磁共振影像學的應用研究進行探討和展望。

2 磁共振成像

2.1 MRI原理

磁共振成像的原理首先要追溯到核磁共振(Nuclear magnetic resonance,NMR)的發(fā)現。隨著NMR理論的發(fā)展和完善,磁共振成像技術如雨后春筍般涌現并迅速發(fā)展。1970年,來自美國紐約州立大學的瑞蒙·達馬迪安(Raymond Damadian),通過對患有惡性腫瘤的大鼠進行NMR測試時,發(fā)現了正常組織與腫瘤組織核磁信號有明顯差別,且當受激時,可以發(fā)現兩種不同的信號,即T1/T2,并首次實現了人體活組織T1測量,這使得MRI在醫(yī)學應用方面具有開拓性意義。隨著時間的推移,保羅·勞特伯(Paul Lauterbur)與彼得·曼斯菲爾德(Peter Mansfield)先后對MRI技術優(yōu)化改進,促使實時磁共振成像技術的誕生,使得圖像質量更好、成像過程更快。二人也因對MRI的巨大貢獻共享了2003年諾貝爾生理學或醫(yī)學獎。MRI技術理論的不斷完善,磁共振成像設備的不斷優(yōu)化,使得MRI在生物醫(yī)學領域中具有舉足輕重的作用。

MRI成像原理離不開弛豫(Relaxation)。所謂弛豫是指低能原子核受外加射頻脈沖激發(fā)后,以非輻射躍遷的方式回到低能態(tài)的過程[14-15]。自旋核的弛豫一般分為兩個過程:自旋-晶格弛豫(Spin-lattice relaxation)與自旋-自旋弛豫(Spinspin relaxation)。自旋-晶格弛豫是指高能態(tài)的受激核附近有能使其躍遷到低能態(tài)的磁場,受激核將自身能量以轉動、振動或者平移的熱能傳遞方式傳遞給低能磁場,自身弛豫到低能態(tài)。自旋-晶格弛豫過程可以看作為自旋核與環(huán)境能量交換的過程。在該過程中,自旋核從共振激發(fā)恢復到平衡態(tài)時所用時間為自旋-晶格弛豫時間,用T1來表示;T1還可以看作成磁化強度矢量M的縱向分量Mz弛豫(縱向弛豫)至穩(wěn)態(tài)值63%所需時間,如圖1(a)所示。自旋-自旋弛豫過程,是指高能態(tài)核將能量傳遞給低能態(tài)核,本身躍遷到低能態(tài),而后者則躍遷到高能態(tài),整個體系總能量并未變化。因此,自旋-自旋弛豫可以看成是一個自旋核與另一個自旋核能量交換的過程。該過程中,自旋核能量交換所用時間成為自旋-自旋弛豫時間,用T2表示;T2又可以看作磁化強度矢量M的橫向分量Mxy弛豫(橫向弛豫)至最大值37%所需時間,如圖1(b)所示[16-17]。兩種弛豫機理不同,造成在一般生物體內通常T1>T2。

圖1 縱向弛豫和橫向弛豫曲線Fig.1 Curves of longitudinal relaxation and transverse relaxation

質子在順磁性環(huán)境中縱向弛豫率R1與橫向弛豫率R2可用經典的S-B公式表示[18]:

式中,S是電子-自旋量子數;γ是磁旋比;ωi與ωs分別是核與電子的自旋角頻率;r是弛豫中的氫核到順磁性物質中心的距離;τc與τe分別是偶極-偶極耦合與標量耦合相關時間;A、h、β均為物理常數。

而其中的 τe可以定義為[19]:

式中,τr、τs與 τm分別為轉動時間、電子-自旋弛豫時間以及化學變化相關時間(水分子滯留時間)。

順磁性物質中未成對電子可以改變上述τr、τs與τm以及結合水的個數,進而可以改變縱向弛豫率R1與橫向弛豫率R2的大小,達到對比增強的目的。

一般來說,T1-MRI成像機理用內球水機理、中間層球水機理與外球水機理來解釋[20-21]。緊密結合在順磁性物質上的水分子受到的弛豫為內球水弛豫機理,中間層水分子通過氫鍵等作用力與順磁性物質結合在一起導致的弛豫為中間層球水弛豫原理,外圍自由擴散水分子受到順磁性中心的弛豫成為外球水機理。增加結合水個數,延長τr,優(yōu)化 τs與 τm可以增強造影劑的 T1弛豫性能,其中將順磁性離子固定在納米粒子表面或者形成螯合劑是一般常用的增強T1的手段[22-26]。

對于T2-MRI來說,根據經典的量子力學外球理論[27],T2造影劑會改變磁場的均勻性,使得水分子在磁場中發(fā)生相位變化,進而影響氫核弛豫時間。因此,R2也可以表示為:

其中,Ms與r分別為磁性粒子的磁化強度與半徑,γ為旋磁比,V*是體積分數,D與L分別為水分子的擴散率及磁性核外層不透水的殼層厚度。因此,可以通過優(yōu)化磁化強度、殼層厚度、粒子半徑與體積等參數來增強T2造影性能。

此外,MRI在成像過程中一開始得到的并不是圖像,而是包含空間編碼信息的原始數據。這些原始數據可以通過K空間來描繪,K空間實際則是傅里葉變換的頻率空間,通過傅里葉變換及K空間不但可以把NMR采集的數據運算簡單化,還可以有效地將數據轉變?yōu)槿藗冎庇^肉眼可見的黑白圖像,因此,MRI技術與傅里葉變換原理密不可分[15]。

2.2 MRI造影劑

目前,常用的成像原子核有1H、19F、31P等。臨床中最常用的為1H譜,是因為人體中含有許多水分,具有大量的氫質子。影響體內氫質子弛豫的有諸多因素,如結合水效應(蛋白質等生物大分子會結合具有極性的水分子,進而使水分子的運動頻率下降接近拉莫爾頻率)、順磁性或者超順磁性物質(如鐵、錳、釓與鈥等稀土元素以及自由基等)以及脂類分子等[28]。體內的許多病變也會影響磁共振信號,如癌癥、腦卒中等疾病[29-30]。腫瘤早期的病變組織與正常組織很難區(qū)分,單純MRI影像效果差,這就給醫(yī)生們在腫瘤早期診斷時帶來了困惑。因此,醫(yī)務工作者借助磁共振造影劑來對比增強二者之間的差別,進而可以更精準區(qū)分病變組織和正常組織,做到早發(fā)現、早治療。

磁共振造影劑,也叫作磁共振對比度增強劑(Contrast enhancement agents),是能夠增強磁共振圖像信息的藥物制劑,在提高組織分辨率、反映組織血流血供情況以及改變組織特征參數等方面具有重要作用[31-32]。造影劑可以分為陽性造影劑(正增強,圖像變亮,T1造影劑)和陰性造影劑(負增強,圖像變暗,T2造影劑)。順磁性物質可以影響質子的弛豫,諸多金屬離子具有明顯的順磁性,表1列舉了部分金屬離子的結構與性質。其中,金屬離子對 MRI的作用可以歸為:(1)Gd3+、Fe3+、Mn2+等可以作為弛豫增強劑;(2)Dy3+、Ho3+、Eu2+等可以作為共振頻率偏移劑;(3)Gd3+、Dy3+、Ho3+等常用作磁化率增強劑。臨床上常用的磁共振造影劑為釓劑(二亞乙基三胺五乙酸釓,Gd-DTPA),可顯著縮短組織的T1,增強組織顯像。然而,其體內代謝快,血液半衰期短,不能提供較長時間的影像效果;其次,其縱向弛豫率較低,在臨床應用時需要較大的用量,進而會增加腎代謝的負擔。

表1 部分金屬離子的結構與性質Tab.1 Structures and properties of metal ions

納米磁共振造影劑是近年來人們關注較多的一類對比劑,納米材料由于具有特殊的量子限域效應、大的比表面積等特點,在MRI造影劑方面具有極大的潛力。納米MRI造影劑血液半衰期長,表面易于改性修飾,具有毒性低、生物相容性好等優(yōu)點;其次,通過將釓、鏑、鈥等具有順磁性離子摻雜進納米材料中,或者直接合成鐵磁性、亞鐵磁性以及超順磁性的磁性納米顆粒,可以獲得較大的弛豫率,進而在較少的對比劑用量下獲得較高的對比度;最后,納米MRI造影劑可以通過修飾改性嫁接上靶向分子、藥物分子或者結合一些如放療、光熱、光動力學治療等手段,再通過與CT/PET/熒光、超聲等影像手段有機結合,可以構建多模態(tài)影像介導下的診療一體化納米探針,用于疾病的早期精確診斷和高效治療。

3 上轉換納米材料用于磁共振造影劑

3.1 UCNP的發(fā)光機理、組成與制備

UCNP是一類特殊的發(fā)光材料,其發(fā)光遵循anti-Stokes機理[33],一般激發(fā)光為低能的紅外或者近紅外光,UCNP通過吸收一個或者多個低頻率光子,發(fā)射出一個高頻率的光子,如圖2所示。目前,人們一般認為上轉換發(fā)光機理可以分為激發(fā)態(tài)吸收、能量傳遞以及光子雪崩等[34]。其中,又以能量傳遞的方式不同為原則,分為伴隨能量傳遞的激發(fā)態(tài)吸收、連續(xù)能量傳遞、交叉馳豫、協(xié)同敏化與協(xié)同增強等[34]。

圖2 上轉換發(fā)光示意圖與UCNP分別摻雜Yb3+、Er3+與Tm3+發(fā)光能級示意圖[35]。Fig.2 Luminescence scheme of UCNP and the energy level scheme of Yb3+,Er3+,Tm3+doped UCNP[35].

稀土離子具有豐富的4f電子能級,較長的熒光壽命,因此,UCNP一般是稀土離子摻雜的納米材料,由基質、敏化劑與激活劑構成。基質一般為光學惰性的磷酸物、氧化物或者氟化物構成,由于稀土離子中Y3+與La3+無4f電子,Gd3+4f電子層為半充滿,Lu3+4f電子層為全充滿,它們是光學惰性的,因而常用作基質材料的摻雜離子;Yb3+由于具有較大的吸收截面,只有一個激發(fā)態(tài),對近紅外光吸收效率高,可以將吸收的能量有效地轉移給激活劑,因此,Yb3+是UCNP中常見的敏化劑;具有多能級結構的發(fā)光中心,如Nd3+、Pr3+、Tb3+、Sm3+、Er3+、Tm3+、Ho3+等擁有豐富的發(fā)光能級,由于4f能級的電子屏蔽效應使其發(fā)光壽命較長,因而常用作激活劑[36-41]。到目前為止,NaYF4[42]與 NaLuF4[43]被認為是上轉換發(fā)光效率較高的理想發(fā)光基質,尤其是對于Yb3+-Tm3+與Yb3+-Er3+體系而言[35]。

目前,制備UCNP的方法有很多種,主要分為共沉淀法、溶膠凝膠法、熱分解法以及水/溶劑熱法。

共沉淀法是將含有一種或者幾種離子的可溶性鹽溶液加入沉淀劑生成難溶性鹽,再經過加熱煅燒等后處理手段,得到納米級的材料。Martin等首先利用共沉淀法,在低溫下合成了NaYF4∶Yb,Pr上轉換納米材料[44]。最初得到的材料為立方相(α),當反應時間從24 h延長到240 h后,材料可由α相完全轉化為六方相(β)。王猛等利用絡合能力極強的絡合劑二乙三胺五乙酸(DTPA)作為沉淀劑,合成了粒徑可調的NaYF4∶Yb,Er上轉換納米粒子[45]。共沉淀法的反應條件溫和,操作簡單,成本低,然而合成的納米粒子經常會遭遇嚴重團聚,不利于后續(xù)生物應用。

溶膠凝膠法是利用有機金屬鹽或者鹵化物為原料,首先形成溶膠,再聚合成凝膠,通過干燥煅燒等步驟得到所需納米粒子。A Biswas等利用溶膠凝膠法合成了Er3+/Yb3+共摻雜的LaF3-SiO2納米粒子[46]。雖然該方法操作簡單,但是反應時間長,需要高溫煅燒,導致納米粒子形貌、粒徑等不可控,難以進一步修飾。

熱分解法是由北京大學嚴純華教授課題組發(fā)明的一種以稀土三氟乙酸鹽為原料,制備上轉換納米粒子的新方法。他們采用該方法合成了形貌均一、粒徑可控的LaF3納米晶[47]。該方法要求條件苛刻,需高溫無水無氧操作,得到的粒子為油溶性,需要進一步改性修飾才能應用于生物研究。

溶劑熱或者水熱法制備UCNP,其原理相通,均為高溫高壓下裂解稀土前驅體,是目前常用的合成方法[40,48-52]。溶劑熱法與水熱法的區(qū)別在于二者溶劑不同,一種為油溶性溶劑,一般為油酸和十八烯體系;一種為水相體系,反應溶劑多為水或者水與其他溶劑的混合。溶劑熱法合成的UCNP形貌、粒徑可控,工藝較成熟,可以大量合成;缺點是反應條件苛刻,需高溫無水無氧,合成粒子為油溶性,如若應用于生物醫(yī)學,需要進一步改性。水熱法合成的UCNP,反應條件溫和,操作簡單,污染較低;其缺點為合成粒徑不可控,容易團聚。

綜合以上制備方法,考慮各種因素,一般常采用水熱/溶劑熱法或者熱分解法合成UCNP,再經過進一步離子摻雜、改性修飾等,得到具有MRI性能的UCNP用于生物醫(yī)學研究。

3.2 金屬離子摻雜的UCNP用于MRI

目前,公認的上轉換發(fā)光效率較高的基質為NaYF4與NaLuF4,通過摻雜激活劑與敏化劑等金屬離子,賦予UCNP良好的發(fā)光性能。La系稀土離子位于同主族,最外層電子結構相似,半徑相近,經常被用來摻雜到 UCNP中。Gd3+、Dy3+、Ho3+、Eu2+等具有順磁性,Gd3+、Eu2+[53]常用作T1造影劑[54-57],Dy3+、Ho3+具有較大的磁矩,常用作T2造影劑[58-60]。其中,Gd3+離子由于外層 7個單電子,具有最高的單電子數,較強的順磁性,經常摻雜到UCNP或者基質中賦予其良好的T1性能。另外,由表1可知,過渡金屬Fe、Mn、Co等金屬離子也具有不同的單電子數,經常作為順磁性或者鐵磁性離子摻雜到UCNP中,以提高其上轉換發(fā)光(UCL)與MRI性能。

3.2.1 Gd3+摻雜的 UCNP

由于Gd3+4f電子層具有7個單電子,具有較強的順磁性,與水分子的配位點最多,因而廣泛被用作T1加權MRI造影劑[61-71]。UCNP中 Gd3+的摻雜,不但對UCNP的發(fā)光有較大影響,還會賦予其MRI性能。但是體相釓和表面釓的摻雜會對UCNP的MRI性能有不同影響。在這方面,我們課題組做了系統(tǒng)研究。首先,我們構建了體相釓與表面釓摻雜的UCNP模型,詳細地研究了二者在T1加權成像上的區(qū)別,得知影響UCNP中MRI的關鍵因素為表面釓,而體相釓對MRI的作用幾乎可以忽略不計。此外,釓的摻雜對于UCNP的UCL與MRI具有正負晶格屏蔽效應,這對于合理構建所需磁共振熒光探針具有重要的指導意義,如圖3(a)所示[72]。約翰遜(Johnson)等合成了不同粒徑的超小NaGdF4基質,通過調控其粒徑大小可以將其弛豫率由3.0 mmol-1·L·s-1提升到7.2 mmol-1·L·s-1,得出了可以通過調控納米粒子粒徑尺寸來改善造影劑性能的結論,如圖3(b)[73]。本課題組也通過熱解法合成了~2 nm NaGdF4,通過在外層包裹磷脂PEG并嫁接DTPA用來防止Gd3+的泄露,成功實現了兔子動脈粥樣硬化斑塊磁共振造影顯像[74],如圖3(c)所示。

圖3 (a)體相釓與表面釓摻雜對于UCNP上轉換發(fā)光和MRI正負晶格屏蔽效應研究[72];(b)超小NaGdF4基質的粒徑對于 MRI性能的影響[73];(c)超小NaGdF4用于兔子動脈粥樣硬化斑塊的研究[74]。Fig.3 (a)Positive and negative lattice shielding effects co-existing in Gd(Ⅲ) ionsdoped upconversion nanoprobes[72].(b)MRI study of ultra-small NaGdF4[73].(c)Ultrasmall NaGdF4 nanodots for efficient MR angiography and atherosclerotic plaque imaging[74].

為獲得高弛豫率釓(Gd3+)基無機納米造影劑,目前常用的方法主要包括:調控造影劑的粒徑和形貌、造影劑表面修飾和包裹等;然而遺憾的是,這些調控技術對提高釓基無機納米造影劑的磁共振成像性能效果有限,在臨床3 T儀器上該類造影劑的r1值依然較低。近期,我們課題組將“缺陷調控技術”新概念創(chuàng)新性地引入到釓基無機納米造影劑磁共振性能調控研究中,通過調控釓摻雜烏青銅納米顆粒(NaxGdWO3-x)的氧空位缺陷,成功實現了造影劑磁共振性能的調控和優(yōu)化[75]。我們利用氧空位對氧原子天然的親和力,賦予氧空位獨特的結合水分子能力,進而顯著影響水分子與Gd3+的相互作用;系統(tǒng)研究了不同氧空位濃度對Gd3+的弛豫時間的內在影響,發(fā)現氧空位的引入可以顯著提高釓基無機納米顆粒的弛豫率,在 3 T 下,弛豫率高達 32 mmol-1·L·s-1,是臨床釓劑的8倍。荷瘤鼠實驗表明,該新型造影劑可以實現低劑量下高效血池造影成像與腫瘤的精準影像診斷。值得一提的是,該研究提出的“缺陷調控技術”(氧空位)不但可以調控磁共振影像性能,同時可以利用氧空位誘導產生極化子所具有的極佳光熱性能,將近紅外光高效地轉為熱量“燒死”腫瘤細胞,實現了基于MRI精準影像介導下的腫瘤高效光熱治療(PTT)。這類新型的“缺陷調控技術”將為高性能無機納米診療劑的設計提供借鑒性研究思路。

3.2.2 Mn2+摻雜的 UCNP

Mn2+最外層電子數為5,具有較強的順磁性,因此,Mn基納米材料常用作T1加權磁共振造影劑[76]。Mn2+摻雜到UCNP中,不僅可以改善其發(fā)光性能[77-81],還能給 UCNP帶來優(yōu)良的 MRI性能[82]。林君教授等采用溶劑熱法,合成了Mn2+摻雜的中空CaF2∶Yb3+/Er3+上轉換納米顆粒,通過共價嫁接Pt前藥來響應腫瘤的還原環(huán)境,實現了UCL/MRI/CT三模式介導下的腫瘤治療[83],如圖4(a)。Yang等設計合成了核殼結構的Fe3O4@Mn2+-doped NaYF4∶Yb/Tm納米粒子,Mn2+的摻雜賦予材料優(yōu)異的T1-MRI加權性能,再結合內核Fe3O4的T2-MRI加權性能以及來自UCNP的上轉換發(fā)光,得到了兼具UCL以及T1/T2雙加權的MRI影像造影劑[84],如圖4(b)所示。

圖4 (a)Mn2+摻雜的中空UCNP用于UCL/MRI/CT三模式介導下的腫瘤治療[83];(b)T1/T2-MRI以及UCL成像造影劑的制備[84]。Fig.4 (a)Mn2+doped hollow UCNP with UCL/MRI/CT trimodality imaging for tumor therapy[83].(b)Preparation of UCL/T1/T2-MRI contrast agents[84].

3.2.3 Dy3+與 Ho3+摻雜的 UCNP

Dy3+與Ho3+同屬于La系元素,具有稀土元素豐富的4f電子能級,雖然二者4f軌道單電子較少,但是二者有較大的磁矩以及相對較短的電子弛豫時間,通過改變局部磁場的均一性,使得質子失相位,產生不同的拉莫爾頻率,進而縮短T2弛豫時間[85]。

Ho3+由于具有豐富的4f電子能級,常被用來作為UCNP的激活劑[86-89],同時由于其較大的磁矩,可以用做T2加權成像造影劑[90-92]。我們課題組通過對UCNP化學組分的調控,制備出Ho3+摻雜的NaYbF4上轉換納米顆粒,并首次對UCNP中摻雜的敏化劑Yb3+和激活劑Ho3+二者的T2-MRI性能進行了系統(tǒng)性研究。此外,Yb3+和Ho3+由于重金屬元素特性,同時具有良好的CT造影性能,實現了UCNP中MR/UCL/CT三模態(tài)協(xié)同增強影像,并對荷瘤鼠原位腦膠質瘤實現了精確MRI影像診斷[93],如圖5(a)所示。

圖5 (a)Ho3+摻雜的NaYbF4上轉換納米顆粒用于MR/UCL/CT三模成像以及荷瘤鼠原位腦膠質瘤的 MRI精確影像診斷[93];(b)NaDyF4與 NaHoF4納米顆粒用于高場磁共振成像[98];(c)不同粒徑的NaHoF4納米顆粒其磁化率與場強的關系[59]。Fig.5 (a)Single Ho3+-doped upconversion nanoparticles for high-performance T2-weighted brain tumor diagnosis and MR/UCL/CT multimodal imaging[93].(b)NaDyF4 and NaHoF4 for high field magnetic resonance imaging[98].(c)PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging[59].

為滿足醫(yī)學科技發(fā)展的需要,提高場強是改善MRI圖像質量和信噪比的重要手段之一。目前,臨床所用磁場場強多為3.0 T,愈來愈多的高場強7.0 T甚至超高場強9.4 T磁共振設備已開發(fā),因而對于高場強下適用的MRI造影劑愈發(fā)需求。由于Ho3+與Dy3+具有較大磁矩和較小橫向弛豫時間,其弛豫率r2隨著場強的增高而增加,適用于高場甚至超高場T2造影劑的制備[69,94-97]。Zhang等詳細研究了NaDyF4與NaHoF4納米顆粒粒徑、形狀、表面修飾以及Zeta電位在超高場強9.4 T情況下與弛豫率的關系[98],如圖5(b)所示;結果發(fā)現,兩種造影劑均具有較大的r2/r1(分別為410和781),適合作為T2造影劑。通過調控粒徑與表面修飾,再加上理論計算得出r1在較高頻率下幾乎不受粒徑等因素影響,只有質子拉莫爾頻率在1 MHz左右時才會受影響,而r2在高場強下隨著粒徑等參數的變化會顯著改變。我們課題組也制備了不同粒徑的NaHoF4納米顆粒,系統(tǒng)研究了粒徑在超高磁場情況下對磁化率的影響[59];通過實驗和理論研究,發(fā)現r2確實隨著場強的增大而增大,且當納米粒子粒徑小于7.4 nm時,居里機制占據主導作用,此時粒子粒徑增加,r2值急劇減小;當NaHoF4納米顆粒粒徑大于7.4 nm時,極化機制占據主導作用,隨著粒子粒徑的增大,r2逐漸增大,如圖5(c)所示。

3.2.4 UCNP與其他納米材料結合構建復合納米材料用于MRI

除了將金屬離子摻雜賦予UCNP磁共振影像的功能外,還可以將其他納米材料與UCNP結合構建復合納米材料,以獲得良好的MRI性能。鐵基的納米材料一般具有順磁性、超順磁性或者鐵磁性,生物相容性好、毒性低,被廣泛應用于MRI領域[99-112]。因此,將UCNP與鐵基納米材料復合構建納米材料可以實現UCL/MRI等多模成像造影劑,擴大其在生物醫(yī)學領域的應用價值。

復旦大學李富友教授等合成了中空核殼結構的Fe3O4@NaLuF4∶Yb,Er/Tm納米復合物。其中,Fe3O4具有超順磁性,可用于 MRI造影劑;UCNP具有優(yōu)異的UCL發(fā)光性能,且由于高原子序數Lu的引入,進而賦予了該材料良好的CT影像功能。通過巧妙地構建復合納米材料,可以實現同一探針 UCL/MRI/CT三模成像功能[113],如圖6(a)所示。我們課題組也利用“頸部融合”方法,合成了上轉換熒光/磁共振成像雙模式復合新型探針,將上轉換熒光與磁共振成像高效結合[114]。所用工藝簡單,產物可達克級量產,重復性好,可以實現腫瘤細胞及小鼠活體UCL/MRI雙模成像,如圖6(b)所示。進一步,我們深入研究了Fe3O4納米顆粒對UCNP發(fā)光性能的影響,通過實驗發(fā)現當二者摩爾比在很小的范圍內時,Fe3O4納米顆粒不但不會猝滅UCNP的發(fā)光,反而會增強其發(fā)光;另外,通過引入SiO2層,可以更好地防止Fe3O4納米顆粒對UCNP熒光猝滅[115],如圖6(c)所示。Yang等也構建了 Fe3O4@g-C3N4-UCNPs-PEG納米復合材料,其中UCNPs內核中摻雜Gd3+,賦予體系T1加權MRI成像性能,Fe3O4的順磁性也賦予體系T2影像功能;為了防止Fe3O4猝滅UCNPs的發(fā)光,在二者夾層中間引入C3N4,形成了三明治結構。半導體C3N4不但可以抑制Fe3O4對UCNPs的猝滅,其本身可以吸收UCNPs發(fā)出的光,進而產生活性氧,實現了對腫瘤的光動力治療。該體系融合磁靶向與UCL,成功構建了多功能影像介導的光動力學治療體系[116],如圖 6(d)所示。

圖6 (a)Fe3 O4@NaLuF4∶Yb,Er/Tm用于UCL/MRI/CT三模成像[113];(b)通過“頸部融合”的方法構建上轉換熒光/磁共振成像雙模式復合新型探針[114];(c)研究Fe3O4對于UCNP熒光性能的影響[115];(d)核殼-衛(wèi)星結構的Fe3O4@g-C3N4-UCNPs-PEG納米復合材料用于T1/T2雙模影像介導的磁靶向光動力治療[116]。Fig.6 (a)Fe3 O4@NaLuF4∶Yb,Er/Tm for UCL/MRI/CT trimodality imaging[113].(b)A“neck-formation”strategy for UCL/MRI bimodal cancer probe[114].(c)Investigation of which Fe3 O4 affects the luminescence of UCNP[115].(d) “Core-satellite”Fe3 O4@g-C3N4-UCNPs-PEG nanomaterials for T1/T2-MRI guided photodynamic cancer therapy[116].

3.3 UCNP的表面修飾改性用于MRI

溶劑熱法或者熱裂解法合成的UCNP具有粒徑可控、發(fā)光強等優(yōu)點,然而最初合成的UCNP水溶性差,若想UCNP進一步應用于生物醫(yī)學MRI上,需先對其表面進行功能化修飾,使其變?yōu)樗苄约吧锵嗳菪粤己玫牟牧稀CNP的表面改性不僅可以改善其生物相容性,還可以改善其MRI性能以及發(fā)光等特性,促使其在生物醫(yī)學中發(fā)揮更大的作用。

目前,UCNP常用的改性方法有:(1)表面硅層修飾法[117],包括實心二氧化硅包覆[118-119]、介孔二氧化硅包覆[120-122]以及空心二氧化硅包覆[123]等;(2) 有機配體修飾,包括 PEG[124-125]、PEI[126]、聚多巴胺[127-128]以及磷脂分子[129-130]等。以上兩種改性方法在改善UCNP生物相容性的同時或可增強UCNP發(fā)光性能,或影響其MRI性能,或賦予 UCNP新的影像、治療等功能[131],從而滿足現代醫(yī)學發(fā)展要求[132-133]。

3.3.1 UCNP的表面硅層修飾改性用于MRI

二氧化硅生物相容性好,易于可控合成與修飾,被廣泛應用于無機納米粒子的改性[134-138]。UCNP表面的硅烷化修飾,包括用經典Stober方法或者反微乳液法,在其外層包覆一層介孔或者非介孔二氧化硅[93,139-142],在改善 UCNP 生物相容性的同時,一定程度上還可以影響其MRI性能。

Jin等合成了實心二氧化硅包覆NaYF4∶Yb,Tm@NaGdF4,通過共價嫁接光敏劑分子竹紅霉素以及靶向分子葉酸,賦予了UCNP靶向光動力學治療的性能。由于UCNP外層Gd3+的摻雜,賦予體系磁共振成像性能,從而可以實現UCL/MRI雙模成像介導下的腫瘤光動力靶向治療,如圖7(a)所示[143]。我們課題組系統(tǒng)地研究了實心二氧化硅與介孔二氧化硅包覆UCNP對于MRI性能的影響,如圖7(b)所示。通過構建不同厚度實心與介孔二氧化硅包裹的UCNP以及無表面配體的釓摻雜UCNP結構模型,研究了MRI成像機理與Gd3+摻雜的UCNP表面硅修飾的關系。由實驗得知,對于無表面配體的釓摻雜UCNP來說,由于表面釓離子具有直接螯合水分子的能力,其成像原理由外球水和內球水機理共同主導,且二者貢獻相當;對于表面硅層修飾的UCNP,由于表面的Gd3+被Si—O鍵螯合,極大地減小了螯合水分子的能力,致使此時的UCNP的MRI成像原理為外球水所主導[144]。

圖7 (a)NaYF4∶Yb,Tm@NaGdF4@d-SiO2用于UCL/MRI介導的光動力學治療[143];(b)Gd3+摻雜的UCNP弛豫機理的探究及靈敏度優(yōu)化[144]。Fig.7 (a)NaYF4∶Yb,Tm@NaGdF4@d-SiO2 for UCL/MRI guided photodynamic therapy[143].(b)Gd3+-ion-doped upconversion nanoprobes:relaxivity mechanism probing and sensitivity optimization[144].

3.3.2 有機配體修飾UCNP用于MRI

有機配體對于無機納米材料的表面修飾至關重要[145-146],對于將油溶性的UCNP改為水溶性更是起到不可或缺的作用[147-149]。UCNP表面有機配體修飾方法,主要有配體吸附法[51]、配體交換法[150-151]、配體組裝法[152]和配體氧化法[153-154]等。

Adah Almutairi等通過磷脂聚乙二醇(DSPEPEG)膠束包裹在超小NaGdF4外層,將油溶性的NaGdF4轉變?yōu)樗啵龑肿涌梢皂樌高^接觸到表面的Gd3+并被束縛,縮短質子弛豫時間,在臨床1.5 T磁共振儀器上測得單個Gd3+的T1弛豫率高達 80 mmol-1·L·s-1,是臨床釓劑的近25倍,如圖8(a)所示。此外,他們還通過控制磷脂PEG的分子量來調控材料的弛豫率[25]。北京大學嚴純華教授等通過NaGdF4外層包裹聚丙烯酸(PAA),展示了優(yōu)于聚乙烯亞胺(PEI)以及聚乙二醇(PEG)修飾的弛豫率,其原因主要是因為PAA對水分子具有更強的氫鍵束縛作用,有效縮短質子的弛豫時間,導致r2/r1的比值非常接近于1,可以用來作為T1加權磁共振造影劑[155],如圖8(b)。在此基礎上,他們又合成了含Gd量子點,在0.5 T磁共振儀器下,r1高達47 mmol-1·L·s-1,即使在超高場 7 T 磁場下,r1也可達到 25.2 mmol-1·L·s-1。

圖8 (a)NaGdF4@DSPE-PEG用于超高T1弛豫率磁共振造影劑研究[25];(b)NaGdF4表面修飾PAA通過超強氫鍵來增強弛豫率[155]。Fig.8 (a)High T1 relaxivity of NaGdF4@DSPE-PEG[25].z(b)Hydrogen bonds of NaGdF4@PAA for enhancing relaxivity[155].

4 UCNP作為 MRI造影劑的生物應用

UCNP作為新一代發(fā)光材料,在諸如生物示蹤標記、生物影像以及癌癥治療等方面具有重要的研究意義和臨床價值[153,156-167]。MRI作為臨床影像診斷中重要的手段之一,具有較高的軟組織分辨率以及無放射性、無損傷等優(yōu)點[168-169]。因此,將UCNP作為磁共振造影劑應用于生物檢測、影像診斷以及疾病治療等方面具有重要的意義。

4.1 UCNP用于生物影像

UCNP具有毒性低、發(fā)光穩(wěn)定性好、強度高等優(yōu)點,其激發(fā)光一般為紅外或近紅外光,組織穿透深度高,無光漂白,具有較高的靈敏度和信噪比,廣泛用于細胞成像與活體成像。另外,通過合理的組分調控、結構設計以及恰當的表面修飾,可以賦予 UCNP 其他影像功能,如 MRI、PET、CT、US以及PAI(光聲成像)等,進而可以構建基于UCNP的多模態(tài)影像探針用于生物醫(yī)學影像。

我們課題組基于UCNP構建了具有MRI/UCL雙模態(tài)影像功能的探針UCNP@hmSiO2,用于監(jiān)控抗癌藥物DOX的釋放[170]。首先,制備搖鈴結構的納米探針,將Gd3+摻雜的UCNP與藥物DOX分別置于空腔與介孔孔道內,借助于發(fā)光共振能量轉移(LRET)與T1加權磁共振成像技術,達到了實時、可視地監(jiān)控在NIR光照下DOX釋放的動態(tài)變化過程,如圖9(a)所示。Tang等將UCNP與金屬有機框架材料(MOF)結合,合成了具有核殼結構的納米材料UCNP@Fe-MIL-101-NH2。再通過PEG的修飾改性以及共價嫁接葉酸(FA)分子,得到了特異性靶向腫瘤KB細胞的UCL/T2-MRI雙模影像探針,成功實現了荷KB瘤小鼠的體內雙模成像,為UCNP作為多模影像探針用于腫瘤影像提供了新的指導思路[171],如圖9(b)所示。Li等首先合成了 NaLuF4∶Yb,Tm 的發(fā)光內核,再在外層包覆了一層 Sm3+摻雜的NaGdF4惰性層,不但提高了發(fā)光效率(減少了表面缺陷),還由于Gd3+和Sm3+的引入,賦予材料MRI以及單電子發(fā)射CT影像(SPECT)功能。此外,內核基質NaLuF4可以增強對X射線吸收,實現CT成像。因此,通過對UCNP合理的設計,可以構建集UCL/CT/MRI/SPECT四模成像于一體的多功能納米探針,實現荷瘤鼠體內成像[172],如圖9(c)所示。Nie等設計合成了由800 nm激光激發(fā)的具有多層殼結構的UCNP∶NaYF4∶Yb∶Er@NaYF4∶Yb@NaNdF4∶Yb@NaYF4@NaGdF4。構建多層殼的目的是增強體系的上轉換發(fā)光,減少Er與Nd的能量交換以及溶劑猝滅效應,同時可以實現材料的MRI功能;再通過嫁接吲哚菁綠(ICG),賦予了材料較強的光聲成像能力,如圖9(d)。該復合納米材料不但具有較高的上轉換量子效率、較強的PAI活體組織影像功能,還具有小鼠全身高分辨率MRI影像功能,可以提供更加詳細的小鼠組織結構信息,如對小鼠微血管以及腫瘤邊界的觀察[173]。

圖9 (a)UCL/MRI雙模態(tài)探針UCNP用于監(jiān)控藥物釋放[170];(b)UCNP@MOF用于荷KB瘤小鼠的UCL/MRI雙模成像[171];(c)基于UCNP的UCL/CT/MRI/SPECT四模影像探針的構建[172];(d)構建高效的上轉換納米復合物用于 UCL/MRI/PAI多模成像[173]。Fig.9 (a)UCNPwith UCL/MRIdual-modal imaging for monitoring the releasing of DOX[170].(b)UCL/MRI of UCNP@MOF for KB tumor-bearing mice[171].(c)Construction of UCL/CT/MRI/SPECT four-modal probes based on UCNP[172].(d)Upconversion nanomaterials of high performance for UCL/MRI/PAI[173].

4.2 UCNP用于構建影像介導的多功能診療劑

UCNP不但具有影像功能,還由于其發(fā)光特性可以結合光敏劑或者光熱材料,進而實現光動力學治療 (PDT)[54,174-176]或者光熱治療(PTT)[177-179];UCNP通過組分調控可作為新一代放療增敏劑(RT)[180-181],表面再經過合理的修飾改性,可以作為化療藥物載體[182-183]。因此,以UCNP為基礎可以構建集影像診斷、治療于一體的多功能納米診療劑。

蘇州大學的劉莊教授等構建了基于UCNP的多模式介導下的光熱診療探針[183]。首先,他們通過層層自組裝的方法將Fe3O4包裹在UCNP外面,再通過種子生長法在復合材料外層生長Au殼,形成三明治結構,有效防止Au殼吸收UCNP的上轉換熒光。隨后,在材料外層表面修飾PEG與葉酸分子,成功實現了UCL/MRI雙模式下葉酸靶向與磁靶向雙靶向介導的腫瘤光熱治療,如圖10(a)所示。Wang等構建了一種多功能生物安全性高的納米診療劑,具有5種特定功能:UCL/MRI/CT 與 PTT、化療[182]。該診療劑組成為:UCNP@PDA5-PEG-DOX,其中,UCNP可以提供 UCL/MRI/CT三模態(tài)成像,聚多巴胺(PDA)在808 nm激光照射下可以產生明顯的光熱效果,過熱溫度殺傷腫瘤的同時促進化療藥物DOX的釋放,進一步加強DOX對腫瘤的殺傷作用,從而實現UCL/MRI/CT多模式影像介導的腫瘤PTT與化療協(xié)同治療,如圖10(b)所示。

光動力學治療是一種新型治療腫瘤方法,光敏劑通過吸收合適波長的光后與周圍的含氧物質(氧氣、水以及過氧化氫等)結合,使其轉化為稱作活性氧的一類物質,用以高效殺死腫瘤[54,185-188]。Xu 等通過巧妙的設計,構建了金納米棒二聚體與UCNP異質結合的核-衛(wèi)星狀納米復合物[189],如圖10(c)所示。二聚體的金納米棒在808 nm激光的照射下,會迅速產生高熱用來殺死腫瘤,實現PTT效果;UCNP負載光敏劑Ce6,通過與DNA的點擊反應與金納米棒結合,當980 nm激光照射時,Ce6吸收UCNP發(fā)出的紅光再結合周圍的氧分子,產生單線態(tài)氧來殺傷腫瘤。此外,金納米棒與UCNP組成的納米復合結構還提供了UCL/MRI/CT/PAI等多模影像手段,這為UCNP構建有效的多功能納米診療劑提供了有力的支撐。

我們課題組在以UCNP為基礎構建多功能納米診療劑方面也做了一些研究。光熱治療可以通過高熱快速殺死腫瘤,然而受限于激發(fā)光源在活體組織中的穿透深度,目前只能治療體表腫瘤,對于深部腫瘤治療效果較差[190]。放療不受組織穿透深度限制,是目前臨床上治療癌癥的主要手段之一。為了在放療時對腫瘤達到高效治療并降低對正常組織的傷害,一般采取低劑量X射線,再通過納米重金屬增敏劑來增強治療效果[191-192]。因此,我們課題組構建了一種多功能“核-衛(wèi)星”納米診療劑,如圖10(d)所示,其中,內核UCNP不但具有UCL/MRI/CT三模態(tài)成像的功能,同時由于UCNP中含有高原子序數元素,顯著增強了X射線在病灶區(qū)的能量沉積,在低劑量X射線照射下可以高效殺傷腫瘤,起到放療增敏的效果。另外,在UCNP外層點綴上衛(wèi)星狀CuS,經近紅外光照射下產生大量的熱,過熱的溫度可以進一步殺死腫瘤,實現UCL/MRI/CT介導下的放療與光熱治療協(xié)同治療[180]。

圖10 (a)UCNP在UCL/MRI雙模式下用于雙靶向光熱治療腫瘤[184];(b)UCNP在UCL/MRI/CT三模介導下的光熱治療與化療協(xié)同治療癌癥[182];(c)通過DNA鏈構建金納米棒與UCNP的納米復合材料用于UCL/MRI/CT/PAI等多模影像手段介導下的腫瘤光治療[189];(d)基于UCNP構建“核-衛(wèi)星”結構的納米診療劑,實現UCL/MRI/CT多模式影像手段介導下的腫瘤放療與光熱治療協(xié)同治療[180]。Fig.10 (a)UCNPfor UCL/MRIguided dual-targeted photothermal cancer therapy[184].(b)UCNPfor UCL/MRI/CTguided chemophotothermal synergistic therapy of cancer[182].(c)Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy[189].(d)A core/satellite multifunctional nanotheranostic based on UCNPfor in vivo UCL/MRI/CT imaging and tumor eradication by radiation/photothermal synergistic therapy[180].

5 總結與展望

本文主要通過介紹MRI機理、磁共振造影劑的構建、UCNP的設計以及其在磁共振生物醫(yī)學等方面的應用,并結合我們課題組相關研究進行綜述。通過對UCNP合理的組分調控和結構設計以及恰當的表面修飾,構建高性能MRI影像探針,并聯(lián)合其他影像模式以及治療模式構建基于UCNP的多功能診療一體化納米探針。可以預見,由于UCNP極好的發(fā)光特性、較低的生物毒性以及多功能影像等特點,其在未來的生物醫(yī)學領域一定會大放異彩。

然而,若想使UCNP更好地從研究領域盡快轉化到臨床醫(yī)學應用上,還需要更進一步的系統(tǒng)研究:(1)對比其他無機造影劑如Fe3O4[193]等,UCNP作為MRI多功能造影劑應用于生物醫(yī)學領域之前,應詳細研究其生物相容性、體內代謝、組織血液的分布情況,以及在大型動物如靈長類動物身上的短期、長期毒性病理評價;(2)磁共振結構影像是指在MRI下可以反映組織結構信息的圖像,如我們常說的T1加權成像以及T2&T2*加權成像;磁共振功能影像則是可以反映體內器官、組織的功能狀態(tài),揭示生物體內的生理學信息,如彌散加權成像(DWI)、腦功能成像(fMRI)、磁共振波譜成像(MRS)、灌注加權成像(PWI)以及化學交換飽和位移成像(CEST)等[194-196]。目前,UCNP用于MRI的研究多聚焦于MRI結構影像,對于MRI功能影像涉及甚少。因此,研究設計基于UCNP的MRI造影劑用于MRI結構成像與功能成像,實現MRI多模態(tài)同機融合技術檢測體內生理病變信息以及精細結構信息十分必要[197];(3)針對醫(yī)學領域實行個體化治療方案,可以研究基于UCNP多功能納米探針的個體化腫瘤治療,針對不同種類腫瘤采用不同的UCNP基多功能納米診療劑,發(fā)揮其最大的應用價值;(4)開發(fā)可以量產、制備簡單、容易改性、低毒性、高MRI造影性能的UCNP合成工藝,優(yōu)化組分調控、結構設計以及表面修飾來提高UCNP的量子效率及其他影像、治療功能,開發(fā)新型發(fā)光基質解決光源體內穿透深度低的限制等[198]。

[1 ]BLOEMBERGEN N.Solid state infrared quantum counters[J].Phys.Rev.Lett.,1959,2(3):84-85.

[2]WU S,HAN G,MILLIRON D J,et al..Non-blinking and photostable upconverted luminescence from single lanthanidedoped nanocrystals[J].Proc.National Acad.Sci.,2009,106(27):10917-10921.

[3]CHAN E M.Combinatorial approaches for developing upconverting nanomaterials:high-throughput screening,modeling,and applications[J].Chem.Soc.Rev.,2015,44(6):1653-1679.

[4]FAN W,HUANG P,CHEN X.Overcoming the Achilles'heel of photodynamic therapy[J].Chem.Soc.Rev.,2016,45(23):6488-6519.

[5]LI X,ZHANG F,ZHAO D.Lab on upconversion nanoparticles:optical properties and applications engineering via designed nanostructure[J].Chem.Soc.Rev.,2015,44(6):1346-1378.

[6]PARK Y I,LEE K T,SUH Y D,et al..Upconverting nanoparticles:a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging[J].Chem.Soc.Rev.,2015,44(6):1302-1317.

[7]SEDLMEIER A,GORRISH H.Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications[J].Chem.Soc.Rev.,2015,44(6):1526-1560.

[8]SHANMUGAM V,SELVAKUMAR S,YEH C S.Near-infrared light-responsive nanomaterials in cancer therapeutics[J].Chem.Soc.Rev.,2014,43(17):6254-6287.

[9]YANG D,MA P A,HOU Z,et al..Current advances in lanthanide ion(Ln3+)-based upconversion nanomaterials for drug delivery[J].Chem.Soc.Rev.,2015,44(6):1416-1448.

[10]CHEN F,BU W,CAI W,et al..Functionalized upconversion nanoparticles:versatile nanoplatforms for translational research [J].Curr.Mol.Med.,2013,13(10):1613-1632.

[11]RAMASAMY P,CHANDRA P,RHEE SW,et al..Enhanced upconversion luminescence in NaGdF4∶Yb,Er nanocrystals by Fe3+doping and their application in bioimaging[J].Nanoscale,2013,5(18):8711-8717.

[12]CHEN W,ZHENG R,BAADE PD,et al..Cancer statistics in China,2015[J].CACancer J.Clin.,2016,66(2):115-132.

[13]PENFIELD J G,REILLY JR R F.What nephrologists need to know about gadolinium[J].Nat.Rev.Nephrol.,2007,3(12):654.

[14]LEE SH,KIM B H,NA H B,et al..Paramagnetic inorganic nanoparticles as T1MRI contrast agents[J].Wiley Interdiscip.Rev.:Nanomed.Nanobiotechnol.,2014,6(2):196-209.

[15]趙喜平.磁共振成像系統(tǒng)的原理及其應用[M].北京:科學出版社,2000.ZHAO X P.The Principle and Application of Magnetic Resonance Imaging System[M].Beijing:Science Press,2000.(in Chinese)

[16]趙喜平.磁共振成像[M].北京:科學出版社,2004.

ZHAO X P.Magnetic Resonance Imaging[M].Beijing:Science Press,2004.(in Chinese)

[17]黃繼英.磁共振成像原理[M].西安:陜西科學技術出版社,1998.HUANG JY.The Principle of Magnetic Resonance Imaging[M].Xi'an:Shaanxi Science and Technology Press,1998.(in Chinese)

[18]AIME S,BOTTA M,FASANOM,et al..Lanthanide(Ⅲ)chelates for NMR biomedical applications[J].Chem.Soc.Rev.,1998,27(1):19-29.

[19]DEBROYE E,PARAC-VOGT T N.Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging[J].Chem.Soc.Rev.,2014,43(23):8178-8192.

[20]CARAVAN P,ELLISON JJ,MCMURRY T J,et al..Gadolinium(Ⅲ)chelates as MRI contrast agents:structure,dynamics,and applications[J].Chem.Rev.,1999,99(9):2293-352.

[21]熊國欣,李立本.核磁共振成像原理[M].北京:科學出版社,2007.XIONG G X,LI L B.Principle of Nuclear Magnetic Resonance Imaging[M].Beijing:Science Press,2007.(in Chinese)

[22]NICHOLLSF J,ROTZ M W,GHUMAN H,et al..DNA-gadolinium-gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells[J].Biomaterials,2016,77:291-306.

[23]RAMMOHAN N,MACRENARIS K W,MOORE L K,et al..Nanodiamond-gadolinium(Ⅲ)aggregates for tracking cancer growth in vivo at high field [J].Nano Lett.,2016,16(12):7551-7564.

[24]YANG CT,PADMANABHAN P,GULY S B Z.Gadolinium(Ⅲ)based nanoparticles for T1-weighted magnetic resonance imaging probes[J].RSC Adv.,2016,6(65):60945-60966.

[25]JOHNSON NJ,HES,NGUYENHUUV A,et al..Compact micellization:a strategy for ultrahigh T1magnetic resonance contrast with gadolinium-based nanocrystals[J].ACSNano,2016,10(9):8299-8307.

[26]RAMMOHAN N.Modular Carbon and Gold Nanoparticles for High Field MR Imaging and Theranostics[D].Evanston:Northwestern University,2016.

[27]TONGS,HOU S,ZHENGZ,et al..Coating optimization of superparamagnetic iron oxide nanoparticles for high T2relaxivity[J].Nano Lett.,2010,10(11):4607-13.

[28]SHOKROLLAHI H.Contrast agents for MRI[J].Mater.Sci.Eng.C,2013,33(8):4485-4497.

[29]龔洪翰.MRI磁共振成像原理與臨床應用[M].南昌:江西科學技術出版社,2006.GONG H H.The Principle and Clinical Application of MRIMagnetic Resonance Imaging[M].Nanchang:Jiangxi Science and Technology Press,2006.(in Chinese)

[30]余小多.磁共振成像原理及腫瘤方面應用[J].抗癌之窗,2014(3):6-10.YU X D.The principle of magnetic resonance imaging and the application of tumor[J].Anti-cancer Window,2014(3):6-10.(in Chinese)

[31]許乙凱.磁共振造影劑及臨床應用[M].北京:人民衛(wèi)生出版社,2003.XU Y K.Magnetic Resonance Contrast Agent and Its Clinical Application[M].Beijing:People's Health Press,2003.(in Chinese)

[32]VAN BOCHOVE G S,PAULIS L E,SEGERS D,et al..Contrast enhancement by differently sized paramagnetic MRI contrast agents in mice with two phenotypes of atherosclerotic plaque [J].Contrast Media Mol.Imaging,2011,6(1):35.

[33]AUZEL F.Upconversion and anti-Stokes processes with f and d ions in solids[J].Chem.Rev.,2004,104(1):139-174.

[34]JOUBERT M F.Photon avalanche upconversion in rare earth laser materials[J].Opt.Mater.,1999,11(2):181-203.

[35]GREBENIK E A,KOSTYUK A B,DEYEV SM.Upconversion nanoparticles and their hybrid assemblies for biomedical applications[J].Russ.Chem.Rev.,2016,85(12):1277-1296.

[36]GAMELIN D R,GDEL H U.Design of luminescent inorganic materials:new photophysical processes studied by optical spectroscopy[J].ACC Chem.Res.,2000,33(4):235-242.

[37]GAMELIN D R,GUDEL H U.Transition Metal and Rare Earth Compounds[M].Berlin:Springer.2001:1-56.

[38]YANGY,ZHAOQ,FENGW,et al..Luminescent chemodosimeters for bioimaging[J].Chem.Rev.,2013,113(1):192-270.

[39]ZHOU J,LIU Z,LI F.Upconversion nanophosphors for small-animal imaging[J].Chem.Soc.Rev.,2012,41(3):1323-1349.

[40]WANG F,HANY,LIM CS,et al..Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J].Nature,2010,463(7284):1061.

[41]WANG F,LIU X.Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J].Chem.Soc.Rev.,2009,38(4):976-89.

[42]KR MER K W,BINER D,FREI G,et al..Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors[J].Chem.Mater.,2004,16(7):1244-1251.

[43]LIU Q,SUN Y,YANGT,et al..Sub-10 nm hexagonal lanthanide-doped NaLuF4upconversion nanocrystals for sensitive bioimaging in vivo[J].J.Am.Chem.Soc.,2011,133(43):17122-17125.

[44]MARTIN N,BOUTINAUD P,MAHIOU R,et al..Preparation of fluorides at 80℃ in the NaF-(Y,Yb,Pr)F3system[J].J.Mater.Chem.,1999,9(1):125-128.

[45]王猛,密叢叢,王單,等.NaYF4∶Yb,Er上轉換熒光納米顆粒的共沉淀法合成及表征[J].光譜學與光譜分析,2009,29(12):3327-3331.WANG M,MICC,WANGD,et al..Synthesis and characterization of NaYF4∶Yb,Er upconversion fluorescent nanoparticles by coprecipitation method [J].Spectrosc.Spect.Anal.,2009,29(12):3327-3331.(in Chinese)

[46]BISWASA,MACIEL G,FRIEND C,et al..Upconversion properties of a transparent Er3+-Yb3+co-doped LaF3-SiO2glass-ceramics prepared by sol-gel method [J].J.Non-Cryst.Solids,2003,316(2):393-397.

[47]ZHANG Y W,SUN X,SI R,et al..Single-crystalline and monodisperse LaF3triangular nanoplates from a single-source precursor[J].J.Am.Chem.Soc.,2005,127(10):3260-3261.

[48]WANG F,LIU X.Upconversion multicolor fine-tuning:visible to near-infrared emission from lanthanide-doped NaYF4nanoparticles[J].J.Am.Chem.Soc.,2008,130(17):5642-5643.

[49]WANG F,DENG R,WANG J,et al..Tuning upconversion through energy migration in core-shell nanoparticles[J].Nat.Mater.,2011,10(12):968.

[50]LI Z,ZHANG Y,JIANG S.Multicolor core/shell-structured upconversion fluorescent nanoparticles[J].Adv.Mater.,2008,20(24):4765-4769.

[51]YI G S,CHOW G M.Water-soluble NaYF4∶Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence[J].Chem.Mater.,2007,19(3):341-343.

[52]WANG L,LI Y.Na(Y1.5Na0.5)F6single-crystal nanorods as multicolor luminescent materials[J].Nano Lett.,2006,6(8):1645-1649.

[53]GARCIA J,KUDAWEDAGEDARA A N,ALLEN M J.Physical properties of Eu2+-containing cryptates as contrast agents for ultrahigh-field magnetic resonance imaging[J].Eur.J.Inorg.Chem.,2012,2012(12):2135-2140.

[54]PARK Y I,KIM H M,KIM J H,et al..Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy[J].Adv.Mater.,2012,24(42):5755-5761.

[55]CHEN F,ZHANG S,BU W,et al..A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser[J].Chem.AEur.J.,2012,18(23):7082-7090.

[56]NACCACHE R,CHEVALLIER P,LAGUEUX J,et al..High relaxivities and strong vascular signal enhancement for NaGdF4nanoparticles designed for dual MR/optical imaging[J].Adv.Healthcare Mater.,2013,2(11):1478-1488.

[57]KUMAR R,NYK M,OHULCHANSKYY T Y,et al..Combined optical and MR bioimaging using rare earth ion doped NaYF4nanocrystals[J].Adv.Funct.Mater.,2009,19(6):853-859.

[58]ZHANG X,BLASIAK B,MARENCO A J,et al..Design and regulation of NaHoF4and NaDyF4nanoparticles for highfield magnetic resonance imaging[J].Chem.Mater.,2016,28(9):3060-3072.

[59]NI D,ZHANGJ,BU W,et al..PEGylated NaHoF4nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging[J].Biomaterials,2016,76:218-225.

[60]DASG K,JOHNSON N J,CRAMEN J,et al..NaDyF4nanoparticles as T2contrast agents for ultrahigh field magnetic resonance imaging[J].J.Phys.Chem.Lett.,2012,3(4):524-529.

[61]HU F,ZHAO Y S.Inorganic nanoparticle-based T1and T1/T2magnetic resonance contrast probes[J].Nanoscale,2012,4(20):6235-6243.

[62]XIAOQ,BU W,REN Q,et al..Radiopaque fluorescence-transparent TaOxdecorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging[J].Biomaterials,2012,33(30):7530-7539.

[63]LIU C,GAO Z,ZENG J,et al..Magnetic/upconversion fluorescent NaGdF4∶Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo[J].ACSNano,2013,7(8):7227.

[64]SUPKOWSKI R M,HORROCKSW D.Displacement of inner-sphere water molecules from Eu3+analogues of Gd3+MRI contrast agents by carbonate and phosphate anions:dissociation constants from luminescence data in the rapid-exchange limit[J].Inorg.Chem.,1999,38(24):5616-5619.

[65]NIVOROZHKIN A L,KOLODZIEJA F,CARAVAN P,et al..Enzyme-activated Gd3+magnetic resonance imaging contrast agents with a prominent receptor-induced magnetization enhancement[J].Angew.Chem.Int.Ed.,2001,40(15):2903-2906.

[66]SITHARAMAN B,KISSELL K R,HARTMAN K B,et al..Superparamagnetic gadonanotubes are high-performance MRI contrast agents[J].Chem.Commun.,2005,31:3915-3917.

[67]MI P,KOKURYO D,CABRAL H,et al..Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors[J].J.Control.Release,2014,174:63-71.

[68]KIRCHER M F,DE LA ZERDA A,JOKERST JV,et al..A brain tumor molecular imaging strategy using a new triplemodality MRI-photoacoustic-Raman nanoparticle[J].Nat.Med.,2012,18(5):829-834.

[69]KATTEL K,PARK JY,XU W,et al..A facile synthesis,in vitro and in vivo MR studies of D-glucuronic acid-coated ultrasmall Ln2O3(Ln=Eu,Gd,Dy,Ho,and Er)nanoparticles as a new potential MRI contrast agent[J].ACSAppl.Mater.Interf.,2011,3(9):3325-3334.

[70]KIM T,MOMIN E,CHOI J,et al..Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells[J].J.Am.Chem.Soc.,2011,133(9):2955-2961.

[71]ALRIC C,TALEB J,DUC G L,et al..Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging[J].J.Am.Chem.Soc.,2008,130(18):5908-5915.

[72]CHEN F,BU W,ZHANG S,et al..Positive and negative lattice shielding effects co-existing in Gd(Ⅲ)ion doped bifunctional upconversion nanoprobes[J].Adv.Funct.Mater.,2011,21(22):4285-4294.

[73]JOHNSON N J,OAKDEN W,STANISZ G J,et al..Size-tunable,ultrasmall NaGdF4nanoparticles:insights into their T1 MRI contrast enhancement[J].Chem.Mater.,2011,23(16):3714-3722.

[74]XING H,ZHANGS,BU W,et al..Ultrasmall NaGdF4nanodots for efficient MR angiography and atherosclerotic plaque imaging[J].Adv.Mater.,2014,26(23):3867-3872.

[75]NI D,ZHANGJ,WANGJ,et al..Oxygen vacancy enables markedly enhanced magnetic resonance imaging-guided photothermal therapy of a Gd3+-doped contrast agent[J].ACSNano,2017,11(4):4256.

[76]THUEN M,BERRY M,PEDERSEN T B,et al..Manganese-enhanced MRI of the rat visual pathway:acute neural toxicity,contrast enhancement,axon resolution,axonal transport,and clearance of Mn2+[J].J.Magn.Reson.Imaging,2008,28(4):855-865.

[77]DONG H,SUN L D,YAN CH.Basic understanding of the lanthanide related upconversion emissions[J].Nanoscale,2013,5(13):5703-5714.

[78]LI Z P,DONGB,HE Y Y,et al..Selective enhancement of green upconversion emissions of Er3+∶Yb3Al5O12nanocrystals by high excited state energy transfer with Yb3+-Mn2+dimer sensitizing[J].J.Lumin.,2012,132(7):1646-168.

[79]LI X,XUE Z,LIU H.Hydro-thermal synthesis of PEGylated Mn2+dopant controlled NaYF4∶Yb/Er up-conversion nanoparticles for multi-color tuning[J].J.Alloys Compd.,2016,681:379-383.

[80]莊宇,毛春生,趙麗君.Mn2+摻雜NaFY4∶Yb,Er晶體的形貌及發(fā)光性能研究[J].電子顯微學報,2013,32(6):474-478.ZHUANG Y,MAOCS,ZHAOL J.Study on the morphology and luminescence properties of Mn2+doped NaFY4∶Yb,Er crystal[J].J.Electron Microsc.,2013,32(6):474-478.(in Chinese)

[81]SHARMA N,SHARMA V,BOHRA R,et al..Functionalized upconversion nanoparticles:versatile nanoplatforms for translational research [J].Cur.Mol.Med.,2013,13(10):1613-1632.

[82]TIAN G,GU Z,ZHOU L,et al..Mn2+dopant-controlled synthesis of NaYF4∶Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery[J].Adv.Mater.,2012,24(9):1226-1231.

[83]DENG X,DAI Y,LIU J,et al..Multifunctional hollow CaF2∶Yb3+/Er3+/Mn2+-poly(2-aminoethyl methacrylate)microspheres for Pt(Ⅳ)pro-drug delivery and tri-modal imaging[J].Biomaterials,2015,50(Supplement C):154-163.

[84]LUO Y,DU S,ZHANG W,et al..Core@shell Fe3O4@Mn2+-doped NaYF4∶Yb/Tm nanoparticles for triple-modality T1/T2-weighted MRI and NIR-to-NIR upconversion luminescence imaging agents [J].RSC Adv.,2017,7(60):37929-37937.

[85]SOESBE T C,RATNAKAR SJ,MILNE M,et al..Maximizing T2-exchange in Dy3+DOTA-(amide)X chelates:finetuning the water molecule exchange rate for enhanced T2contrast in MRI[J].Magn.Reson.Med.,2014,71(3):1179-1185.

[86]TYMINSKI A,GRZYB T,LISS.RE VO4-based nanomaterials(RE=Y,La,Gd,and Lu)as hosts for Yb3+/Ho3+,Yb3+/Er3+,and Yb3+/Tm3+ions:structural and up-conversion luminescence studies[J].J.Am.Ceram.Soc.,2016,99(10):3300-3308.

[87]CHEN D,LIU L,HUANG P,et al..Nd3+-sensitized Ho3+single-band red upconversion luminescence in coreshell nanoarchitecture[J].J.Phys.Chem.Lett.,2015,6(14):2833-2840.

[88]CHEN B,LIU Y,XIAOY,et al..Amplifying excitation-power sensitivity of photon upconversion in a NaYbF4∶Ho nanostructure for direct visualization of electromagnetic hotspots[J].J.Phys.Chem.Lett.,2016,7(23):4916-4921.

[89]ZHAN Q,QIAN J,LIANGH,et al..Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation [J].ACS Nano,2011,5(5):3744-3757.

[90]鄭曉宇,時朔,孫聆東,等.應用于高磁場強度磁共振成像的稀土納米顆粒造影劑[C].中國化學會第29屆學術年會摘要集,北京,2014.ZHENG X Y,SHI S,SUN L D,et al..Rare earth nanoparticle contrast agent used in high magnetic field intensity magnetic resonance imaging[C].Summary of The Twenty-ninth Annual Conference of The Chinese Chemical Association,Beijing,China,2014.(in Chinese)

[91]LIH,LIU G,WANGJ,et al..Hydrothermal synthesis,down-/enhanced up-converting,color tuning luminescence,energy transfer and paramagnetic properties of Ln3+(Ln=Eu/Dy,Yb/Ho)-doped Ba2GdF7multifunctional nanophosphors[J].New J.Chem.,2017,41(4):1609-1617.

[92]FENG Y,XIAO Q,ZHANGY,et al..Neodymium-doped NaHoF4nanoparticles as near-infrared luminescent/T2-weighted MR dual-modal imaging agents in vivo[J].J.Mater.Chem.B,2017,5(3):504-510.

[93]NI D,BU W,ZHANG S,et al..Single Ho3+-Doped upconversion nanoparticles for high-performance T2-weighted brain tumor diagnosis and MR/UCL/CT multimodal imaging[J].Adv.Funct.Mater.,2014,24(42):6613-6620.

[94]NOREK M,KAMPERT E,ZEITLER U,et al..Tuning of the size of Dy2O3nanoparticles for optimal performance as an MRI contrast agent[J].J.Am.Chem.Soc.,2008,130(15):5335-5340.

[95]KATTEL K,PARK JY,XU W,et al..Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2MRI contrast agents[J].Biomaterials,2012,33(11):3254-3261.

[96]NOREK M,PEREIRA GA,GERALDESCF,et al..NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles[J].J.Phys.Chem.C,2007,111(28):10240-10246.

[97]DASG K,ZHANG Y,D'SILVA L,et al..Single-phase Dy2O3∶Tb3+nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging[J].Chem.Mater.,2011,23(9):2439-2446.

[98]ZHANG X,BLASIAK B,MARENCO A J,et al..Design and regulation of NaHoF4and NaDyF4nanoparticles for highfield magnetic resonance imaging[J].Chem.Mater.,2016,28(9):3060-3072.

[99]ARSALANI N,FATTAHI H,NAZARPOOR M.Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4nanoparticles as an MRI contrast agent[J].Express Polym.Lett.,2010,4(6):329-338.

[100]ZHANG Y,LIU J Y,MA S,et al..Synthesis of PVP-coated ultra-small Fe3O4nanoparticles as a MRI contrast agent[J].J.Mater.Sci.:Mater.Med.,2010,21(4):1205-1210.

[101]ZENG J,JING L,HOU Y,et al..Anchoring group effects of surface ligands on magnetic properties of Fe3O4nanoparticles:towards high performance MRI contrast agents[J].Adv.Mater.,2014,26(17):2694-2698.

[102]HU F,WEI L,ZHOU Z,et al..Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer[J].Adv.Mater.,2006,18(19):2553-2556.

[103]WANG C,CHEN J,TALAVAGE T,et al..Gold nanorod/Fe3O4nanoparticle“nano-pearl-necklaces”for simultaneous targeting,dual-mode imaging,and photothermal ablation of cancer cells[J].Angew.Chem.Int.Ed.,2009,48(15):2759-2763.

[104]CHEN F,BU W,CHEN Y,et al..A sub-50-nm monosized superparamagnetic Fe3O4@SiO2T2-weighted MRI contrast agent:highly reproducible synthesis of uniform single-loaded core-shell nanostructures[J].Chem.An Asian J.,2009,4(12):1809-1816.

[105]CHEN F,BU W,LU C,et al..Hydrothermal synthesis of a highly sensitive T2-weigthed MRI contrast agent:zinc-doped superparamagnetic iron oxide nanocrystals[J].J.Nanosci.Nanotechnol.,2011,11(12):10438-10443.

[106]XIE J,CHEN K,LEE H Y,et al..Ultrasmall c(RGDyK)-coated Fe3O4nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells[J].J.Am.Chem.Soc.,2008,130(24):7542-7543.

[107]TIAN Q,HU J,ZHU Y,et al..Sub-10 nm Fe3O4@Cu2-xScore-shell nanoparticles for dual-modal imaging and photothermal therapy[J].J.Am.Chem.Soc.,2013,135(23):8571-8577.

[108]YANGH,ZHUANGY,SUN Y,et al..Targeted dual-contrast T1-and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles[J].Biomaterials,2011,32(20):4584-4593.

[109]PANKHURST Q A,CONNOLLY J,JONESSK,et al..Applications of magnetic nanoparticles in biomedicine[J].J.Phys.D,2003,36(13):R167-R181.

[110]FY C,CH S,YSY,et al..Characterization of aqueous dispersions of Fe3O4nanoparticles and their biomedical applications[J].Biomaterials,2005,26(7):729.

[111]ZENG H,LI J,WANG Z L,et al..Bimagnetic core/shell FePt/Fe3O4nanoparticles[J].Nano Lett.,2015,4(1):187-190.

[112]XIE J,XU C,KOHLER N,et al..Controlled PEGylation of monodisperse Fe3O4nanoparticles for reduced non-specific uptake by macrophage cells[J].Adv.Mater.,2007,19(20):3163-3166.

[113]ZHU X,ZHOU J,CHEN M,et al..Core-shell Fe3O4@NaLuF4∶Yb,Er/Tm nanostructure for MRI,CT and upconversion luminescence tri-modality imaging[J].Biomaterials,2012,33(18):4618-4627.

[114]CHEN F,ZHANG S,BU W,et al..A“neck-formation”strategy for an antiquenching magnetic/upconversion fluorescent bimodal cancer probe[J].Chem.A Eur.J.,2010,16(37):11254-11260.

[115]CHEN F,BU W,ZHANG L,et al..Is black iron oxide nanoparticle always a light absorber? [J].J.Mater.Chem.,2011,21(22):7990-7995.

[116]FENG L,DAN Y,FEIH,et al..A core-shell-satellite structured Fe3O4@g-C3N4-UCNPs-PEGfor T1/T2-weighted dualmodal MRI-guided photodynamic therapy[J].Adv.Healthcare Mater.,2017,32(5):1265-1271.

[117]LIU JN,BUWB,SHIJL.Silica coated upconversion nanoparticles:a versatile platform for the development of efficient theranostics[J].ACC Chem.Res.,2015,48(7):1797-1805.

[118]LIU F,ZHAO Q,YOU H,et al..Synthesis of stable carboxy-terminated NaYF4∶Yb3+,Er3+@SiO2nanoparticles with ultrathin shell for biolabeling applications[J].Nanoscale,2013,5(3):1047-1053.

[119]XIA A,CHEN M,GAOY,et al..Gd3+complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence,X-ray computed tomography and magnetic resonance[J].Biomaterials,2012,33(21):5394-5405.

[120]CHEN Y Y,MA PA,YANGD M,et al..Multifunctional core-shell structured nanocarriers for synchronous tumor diagnosis and treatment in vivo[J].Chem.An Asian J.,2014,9(2):506-513.

[121]HAN R,SHIJ,LIUZ,et al..Fabrication of mesoporous silica-coated upconverting nanoparticles with ultrafast photosensitizer loading and 808 nm NIR light triggering capability for photodynamic therapy[J].Chem.An Asian J.,2017,12(3):613-621.

[122]XU Y,LI H,MENGX,et al..Rhodamine-modified upconversion nanoprobe for distinguishing Cu2+from Hg2+and live cell imaging[J].New J.Chem.,2016,40(4):3543-3551.

[123]ZHAOL,PENGJ,CHEN M,et al..Yolk-shell upconversion nanocomposites for LRETsensing of cysteine/homocysteine[J].ACSAppl.Mater.Interf.,2014,6(14):11190-11197.

[124]何璐.多層雙聚合物修飾的稀土上轉換發(fā)光納米材料用于多模態(tài)成像及血清存在下提高轉染效率的研究[D].蘇州:蘇州大學,2014.HE L.Multilayered Double Polymer Modified Up Conversion Luminescent Nanomaterials for Multimodal Imaging and The Improvement of Transfection Efficiency in The Presence of Serum[D].Suzhou:Suzhou University,2014.(in Chinese)

[125]WANG C,CHENGL,LIUY,et al..Biomedical applications:imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light[J].Adv.Funct.Mater.,2013,23(24):3077-3086.

[126]王欣.稀土上轉換發(fā)光納米材料用于近紅外光激發(fā)的光動力治療聯(lián)合腫瘤基因治療的研究[D].蘇州:蘇州大學,2015.WANG X.Study of Rare-earth Upconversion Luminescent Nanomaterials for Photodynamic Therapy Combined with Tumor Gene Therapy Excited by Near Infrared Light[D].Suzhou:Suzhou University,2015.(in Chinese)

[127]LIU F,HE X,LEI Z,et al..Cancer theranostics:facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy [J].Adv.Healthcare Mater.,2015,4(4):559.

[128]LIU B,LI C,XING B,et al..Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy[J].J.Mater.Chem.B,2016,4(28):1232-1238.

[129]李穎.多功能稀土上轉換發(fā)光納米材料的合成及生物成像應用[D].上海:上海師范大學,2016.LI Y.Synthesis and Bioimaging Application of Multifunction Rare Earth Upconversion Luminescent Nanomaterials[D].Shanghai:Shanghai Normal University,2016.(in Chinese)

[130]LIU Y,CHEN M,CAO T,et al..A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury[J].J.Am.Chem.Soc.,2013,135(26):9869-9876.

[131]GAI S,LI C,YANG P,et al..Recent progress in rare earth micro/nanocrystals:soft chemical synthesis,luminescent properties,and biomedical applications[J].Chem.Rev.,2013,114(4):2343-2389.

[132]CHEN G,GREN H,OHULCHANSKYY T Y,et al..Light upconverting core-shell nanostructures:nanophotonic control for emerging applications[J].Chem.Soc.Rev.,2015,44(6):1680-1713.

[133]SUN L D,WANG Y F,YAN C H.Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles:small size and tunable emission/excitation spectra[J].ACC Chem.Res.,2014,47(4):1001-1009.

[134]LI W,ZHAO D.Extension of the Stber method to construct mesoporous SiO2and TiO2shells for uniform multifunctional core-shell structures[J].Adv.Mater.,2013,25(1):142-149.

[135]ZHANG F,BRAUN G B,SHI Y,et al...Fabrication of Ag@SiO2@Y2O3∶Er nanostructures for bioimaging:tuning of the upconversion fluorescence with silver nanoparticles[J].J.Am.Chem.Soc.,2010,132(9):2850-2851.

[136]ZHANG S,WEN L,YANG J,et al..Facile fabrication of dendritic mesoporous SiO2@CdTe@SiO2fluorescent nanoparticles for bioimaging[J].Particle Particle Systems Charact.,2016,33(5):261-270.

[137]CHEN F,BU W,CHEN Y,et al..A sub-50-nm monosized superparamagnetic Fe3O4@SiO2T2-weighted MRI contrast agent:highly reproducible synthesis of uniform single-loaded core-shell nanostructures[J].Chem.Asian J.,2009,4(12):1809.

[138]CHEN Y,CHEN H,MA M,et al..Double mesoporous silica shelled spherical/ellipsoidal nanostructures:synthesis and hydrophilic/hydrophobic anticancer drug delivery[J].J.Mater.Chem.,2011,21(14):5290-5298.

[139]MA J,HUANGP,HEM,et al..Folic acid-conjugated LaF3∶Yb,Tm@SiO2nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography[J].J.Phys.Chem.B,2012,116(48):14062-14070.

[140]WANG F,ZHAI D,WU C,et al..Multifunctional mesoporous bioactive glass/upconversion nanoparticle nanocomposites with strong red emission to monitor drug delivery and stimulate osteogenic differentiation of stem cells[J].Nano Res.,2016,9(4):1193-1208.

[141]陳穎,李菲菲,李春光,等.稀土上轉換發(fā)光材料標記抗體的制備及在免疫組化中的應用[J].高等學校化學學報,2013,34(4):788-793.CHENY,LIFF,LICG,et al..Preparation and application of rare-earth up-conversion luminescent material labeled antibody and its application in immunohistochemistry[J].Chem.J.Chin.Univ.,2013,34(4):788-793.(in Chinese)

[142]丁曉英,范慧俐,徐曉偉,等.SiO2包覆上轉換發(fā)光材料 NaY0.57Yb0.39Er0.04F4的研究[J].發(fā)光學報,2006,27(3):353-357.DING H Y,FAN H L,XU X W,et al..Study on NaY0.57Yb0.39Er0.04F4of SiO2coated upconversion luminescent material[J].Chin.J.Lumin.,2006,27(3):353-357.(in Chinese)

[143]YANG C,LIU Q,HE D,et al..Dual-modal imaging and photodynamic therapy using upconversion nanoparticles for tumor cells[J].Analyst,2014,139(24):6414-6420.

[144]CHEN F,BU W,ZHANGS,et al..Gd3+-ion-doped upconversion nanoprobes:relaxivity mechanism probing and sensitivity optimization [J].Adv.Funct.Mater.,2013,23(3):298-307.

[145]ZHANGC,BU W,NID,et al..A polyoxometalate cluster paradigm with self-adaptive electronic structure for acidity/reducibility-specific photothermal conversion[J].J.Am.Chem.Soc.,2016,138(26):8156-8164.

[146]ZHANG C,BU W,NI D,et al..Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction[J].Angew.Chem.,2016,128(6):2141-2146.

[147]LI P,LIU L,ZHOU J,et al..pH-sensitive polymer functionalized upconversion nanoparticles(UCNPs)as biomarkers[J].J.Control.Release,2017,259:e106.

[148]LIU B,DENG X,XIE Z,et al..Thiol-ene click reaction as a facile and general approach for surface functionalization of colloidal nanocrystals[J].Adv.Mater.,2017,29(36):1604878.

[149]XIE Z,DENG X,LIU B,et al..Construction of hierarchical polymer brushes on upconversion nanoparticles via NIR-light-initiated RAFT polymerization [J].ACSAppl.Mater.Interf.,2017,9(36):30414.

[150]ZHANGQ,SONGK,ZHAOJ,et al..Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4∶Yb/Er(or Yb/Tm)up-converting nanoparticles from hydrophobic to hydrophilic [J].J .Colloid Interf.Sci.,2009,336(1):17117-17125.

[151]YI G S,CHOW G M.Synthesis of hexagonal-phase NaYF4∶Yb,Er and NaYF4∶Yb,Tm nanocrystals with efficient upconversion fluorescence[J].Adv.Funct.Mater.,2006,16(18):2324-2329.

[152]WANG L,YAN R,HUO Z,et al..Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles[J].Angew.Chem.Int.Ed.Engl.,2005,44(37):6054.

[153]CHEN Z,CHEN H,HU H,et al..Versatile synthesis strategy for carboxylic acid-unctionalized upconverting nanophosphors as biological labels[J].J.Am.Chem.Soc.,2008,130(10):3023-3029.

[154]HU H,YU M,LI F,et al..Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels[J].Chem.Mater.,2008,20(22):7003-7009.

[155]ZHENG X Y,ZHAO K,TANG J,et al..Gd-dots with strong ligand-water interaction for ultrasensitive magnetic resonance renography[J].ACSNano,2017,11(4):3642-3650.

[156]ZHOU J,LIU Z,LI F.Upconversion nanophosphors for small-animal imaging[J].Chem.Soc.Rev.,2012,41(3):1323.

[157]LIU J,CHENG J,ZHANG Y.Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence[J].Biosens.Bioelectron.,2013,43(1):252.

[158]WANG F,BANERJEE D,LIU Y,et al..Upconversion nanoparticles in biological labeling,imaging,and therapy[J].Analyst,2010,135(8):1839-1854.

[159]WANG C,CHENG L,LIU Z.Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy[J].Biomaterials,2011,32(4):1110.

[160]GU Z,YAN L,TIAN G,et al..Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications[J].Adv.Mater.,2013,25(28):3758-3779.

[161]JIANG S,ZHANG Y.Use of IR-to-visible upconversion fluorescent nanoparticles for tracking of siRNA delivery[C].Proceedings of The Sixth IASTED International Conference on Biomedical Engineering,Innsbruck,Austria,2008:368-371.

[162]IDRISNM,GNANASAMMANDHAN M K,ZHANGJ,et al..In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J].Nat.Med.,2012,18(10):1580-1585.

[163]LI Z,LIANG T,LV S,et al..A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical[J].J.Am.Chem.Soc.,2015,137(34):11179-11185.

[164]WANG C,CHENG L,LIU Z.Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics[J].Theranostics,2013,3(5):317-330.

[165]CHEN Z,ZHEN L,LI Z,et al..Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis[J].Biomaterials,2015,39:15-22.

[166]ZHOU L,CHEN Z,DONG K,et al..DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release[J].Adv.Mater.,2014,26(15):2424-2430.

[167]DING X,LIU J,LIU D,et al..Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite:a single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy[J].Nano Res.,2017,10(10):3434-3446.

[168]BASSER PJ,PIERPAOLI C.Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI[J].J.Magn.Reson.,2011,213(2):560.

[169]CLIFFORD R J,RONALD C P,YUE C X,et al..Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease[J].Neurology,1997,49(3):786-794.

[170]LIU J,BU J,BU W,et al..Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging[J].Angew.Chem.Int.Ed.,2014,53(18):4551-4555.

[171]LI Y,TANG J,HE L,et al..Core-shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging[J].Adv.Mater.,2015,27(27):4075-4080.

[172]SUN Y,ZHU X,PENG J,et al..Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging[J].ACSNano,2013,7(12):11290-11300.

[173]LIU Y,KANG N,LV J,et al..Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites[J].Adv.Mater.,2016,28(30):6411-6419.

[174]ZHAO Z,HAN Y,LIN C,et al..Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells[J].Chem.An Asian J.,2012,7(4):830-837.

[175]GUAN M,DONG H,GE J,et al..Multifunctional upconversion-nanoparticles-trismethylpyridylporphyrin-fullerene nanocomposite:a near-infrared light-triggered theranostic platform for imaging-guided photodynamic therapy[J].NPG Asia Mater.,2015,7:e205.

[176]WANG C,CHENG L,LIU Y,et al..Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light[J].Adv.Funct.Mater.,2013,23(24):3077-3086.

[177]CHENG L,YANGK,LI Y,et al..Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy[J].Biomaterials,2012,33(7):2215-2222.

[178]GE W,CHEN T,LI Z,et al..Plasmonic-enhanced and Nd3+-sensitized upconversion nanoparticles for magnetically targeted MRI/UCL dual-mode imaging and photothermal therapy[J].Nanosci.Nanotechnol.Lett.,2017,9(4):416-424.

[179]CHEN Q,WEN J,LI H,et al..Recent advances in different modal imaging-guided photothermal therapy[J].Biomaterials,2016,106:144-166.

[180]XIAO Q,ZHENG X,BU W,et al..A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy[J].J.Am.Chem.Soc.,2013,135(35):13041-13048.

[181]FAN W,SHEN B,BU W,et al..Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging[J].J.Am.Chem.Soc.,2013,135(17):6494-6503.

[182]LIU F,HE X,LEI Z,et al..Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy [J].Adv.Healthcare Mater.,2015,4(4):559-568.

[183]DAI Y,XIAO H,LIU J,et al..In vivo multimodality imaging and cancer therapy by near-infrared light-triggered transplatinum pro-drug-conjugated upconverison nanoparticles[J].J.Am.Chem.Soc.,2013,135(50):18920-18929.

[184]CHENGL,YANGK,LI Y,et al..Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J].Angew.Chem.,2011,123(32):7523-7528.

[185]LIU Y,ZHANGJ,ZUOC,et al..Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cytc fluorescence monitoring[J].Nano Res.,2016,9(11):3257-3266.

[186]LIU Y,LIU Y,BU W,et al..Hypoxia induced by upconversion-based photodynamic therapy:towards highly effective synergistic bioreductive therapy in tumors[J].Angew.Chem.Int.Ed.,2015,54(28):8105810.

[187]LIU X,ZHENG M,KONGX,et al..Separately doped upconversion-C60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells[J].Chem.Commun.,2013,49(31):3224-3226.

[188]WANG C,CHENG L,LIU Z.Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics[J].Theranostics,2013,3(5):317.

[189]SUN M,XU L,MA W,et al..Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy[J].Adv.Mater.,2016,28(5):898-904.

[190]ALVAREZ-LORENZOC,BROMBERGL,CONCHEIROA.Light-sensitive intelligent drug delivery systems[J].Photochem.Photobiol.,2009,85(4):848-860.

[191]CHITHRANI D B,JELVEH S,JALALI F,et al..Gold nanoparticles as radiation sensitizers in cancer therapy[J].Radiat.Res.,2010,173(6):719-728.

[192]KOBAYASHI K,USAMI N,PORCEL E,et al..Enhancement of radiation effect by heavy elements[J].Mutat.Res./Rev.Mutation Res.,2010,704(1):123-131.

[193]LU Y,XU Y J,ZHANG G B,et al..Iron oxide nanoclusters for T1magnetic resonance imaging of non-human primates[J].Nat.Biomed.Eng.,2017,1(8):637.

[194]王小玲,趙振華,王伯胤,等.MRI功能成像對肝動脈化療栓塞治療肝細胞肝癌的療效評價[J].臨床放射學雜志,2017(5):700-704.WANG X L,ZHAO Z H,WANG B Y,et al..Evaluation of MRI functional imaging for hepatic arterial chemoembolization in the treatment of hepatocellular carcinoma[J].J.Clin.Radiol.,2017(5):700-704.(in Chinese)

[195]袁紅梅,余建群.MRI功能成像在乳腺良惡性腫瘤診斷中的應用[J].生物醫(yī)學工程學雜志,2009(2):421-424.YUAN H M,YU JQ.The application of MRI functional imaging in the diagnosis of benign and malignant breast tumors[J].Biomed.Eng.J.,2009(2):421-424.(in Chinese)

[196]岳倩倩,王新怡.MRI功能成像在小肝癌診斷中的應用進展[J].中華消化病與影像雜志(電子版),2016(4):180-183.YUE Q Q,WANGX Y.Progress in the application of MRIfunctional imaging in the diagnosis of small hepatocellular carcinoma[J].Chin.J.Digest.Imaging(Electron.Ed.),2016(4):180-183.(in Chinese)

[197]NI D,SHEN Z,ZHANG J,et al..Integrating anatomic and functional dual-mode magnetic resonance imaging:design and applicability of a bifunctional contrast agent[J].ACSNano,2016,10(3):3783-3790.

[198]ZHANG C,ZHAO K,BU W,et al..Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence[J].Angew.Chem.Int.Ed.,2015,54(6):1770-1774.

Rare-earth Upconversion Nanomaterials for Medical Magnetic Resonance Imaging

MENG Xian-fu,LIU Yan-yan,BU Wen-bo*

(Shanghai Key Laboratory of Green Chemistry and Chemical Processes,College of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200062,China)*Corresponding Author,E-mail:wbbu@chem.ecnu.edu.cn

Upconversion nanoparticle(UCNP)following anti-Stokes principle is a novel type of luminescence materials,which possesses many unique merits such as high luminescence intensity,luminous stability,no background fluorescence,no bleaching,low toxicity and good biocompatibility.The infrared or near infrared excitation light endows UCNPwith deep penetration in living tissues for potential applications in biomedical detection,diagnose and treatment.Magnetic resonance imaging(MRI),as one of the commonly used techniques in clinical,has many special advantages like high quality of soft tissue imaging,high spatial resolution,no radiation and no damage,which plays a significant role in diagnosis of cardiovascular and cerebrovascular diseases.In this review,we focus on the recent researches in regard to rare-earth upconversion nanomaterials for MRI diagnosis and application.The mechanism of magnetic resonance imaging,the construction of MRI contrast agents,and the design and synthesis of UCNP-based multi-functional nanomaterials for MRI diagnosis and disease therapy have been introduced in detail,on the other hand,by means of the relevant researches reported by our group,which are based on UCNP for medical MRI and multimodal imaging,the prospects of UCNP in the application of MRI have also been discussed in this review.

2017-10-12;

2017-12-10

國家杰出青年科學基金(51725202);上海市優(yōu)秀學術帶頭人計劃(16XD1404000)資助項目Supported by China National Funds for Distinguished Young Scientists(51725202);Shanghai Excellent Academic Leaders Program(16XD1404000)

upconversion nanoparticle;magnetic resonance imaging(MRI);multi-modality imaging;disease therapy

O482.31

A

10.3788/fgxb20183901.0069

1000-7032(2018)01-0069-23

孟憲福(1991-),男,河北泊頭人,博士研究生,2016年于上海大學獲得碩士學位,主要從事新型無機納米探針用于腫瘤影像診斷的研究。

E-mail:861380023@qq.com

步文博(1973-),男,山東成武人,教授,博士生導師,2012年于南京工業(yè)大學獲得博士學位,主要從事稀土多功能材料的結構設計、化學可控合成及其生物醫(yī)學應用的研究。

Email:wbbu@chem.ecnu.edu.cn

劉艷顏(1988-),女,山東德州人,博士,講師,2016于上海硅酸鹽研究所獲得博士學位,主要從事稀土功能納米材料的研究

E-mail:244212898@qq.com

主站蜘蛛池模板: 国产麻豆精品在线观看| 国产免费人成视频网| 国产区成人精品视频| 亚洲色婷婷一区二区| 99热这里都是国产精品| 国产经典免费播放视频| 成人av专区精品无码国产| 久久精品这里只有精99品| 思思热精品在线8| 欧美国产综合视频| 国产麻豆福利av在线播放 | 国产成人1024精品| 99热这里只有免费国产精品 | 国产一区二区福利| 婷婷开心中文字幕| 国产精品一区在线麻豆| 在线中文字幕网| 亚洲精品va| 农村乱人伦一区二区| 国产毛片高清一级国语 | 亚洲成人黄色在线观看| 性网站在线观看| 国产精品制服| 2021最新国产精品网站| 国产欧美视频综合二区| 亚洲 欧美 偷自乱 图片 | 国产簧片免费在线播放| 国产女同自拍视频| 岛国精品一区免费视频在线观看| 欧美国产日韩在线观看| 在线观看的黄网| 色悠久久久| 精品伊人久久大香线蕉网站| 亚洲视屏在线观看| 日本伊人色综合网| 91精品人妻一区二区| 欧美成人午夜视频免看| 亚洲日产2021三区在线| 无码aⅴ精品一区二区三区| 第九色区aⅴ天堂久久香| 99久久99视频| 91口爆吞精国产对白第三集| 国产精品免费电影| 亚洲人成人伊人成综合网无码| 国产无遮挡猛进猛出免费软件| 少妇人妻无码首页| 中文国产成人精品久久| 国产精品私拍在线爆乳| 狠狠色丁香婷婷综合| 亚洲成aⅴ人在线观看| 久一在线视频| 中文字幕有乳无码| 国产精品网拍在线| 国产在线精品人成导航| 国产成人精品综合| 亚洲无码视频一区二区三区 | 精品欧美一区二区三区久久久| av午夜福利一片免费看| 成年片色大黄全免费网站久久| 日韩精品一区二区三区中文无码| 91精品国产91久无码网站| 伊人久热这里只有精品视频99| 亚洲福利视频一区二区| 久久福利网| 五月激激激综合网色播免费| 中日无码在线观看| 在线观看无码av免费不卡网站| 欧美午夜性视频| 97在线视频免费观看| 久久国产精品无码hdav| 日本免费福利视频| 精品国产自在在线在线观看| 亚洲欧美日本国产专区一区| 午夜不卡福利| 国产成熟女人性满足视频| 亚洲国产午夜精华无码福利| 国产哺乳奶水91在线播放| 国产欧美日韩va另类在线播放| 亚洲AV无码乱码在线观看裸奔 | 中文字幕天无码久久精品视频免费 | 福利在线一区| 免费国产一级 片内射老|