劉林超 肖琪聃 閆啟方 劉滕
摘要:
在一維波動模型的基礎(chǔ)上得到了簡諧SH波作用下樁周土和樁芯土的位移。在三維軸對稱的情況下,運用勢函數(shù)和分離變量法求解了簡諧水平集中荷載和SH波引起的管樁樁周土和樁芯土的振動問題,得到了樁周土和樁芯土的徑向位移和環(huán)向位移。考慮管樁土動力相互作用和管樁土的連續(xù)性邊界條件對簡諧水平集中荷載和SH波作用下管樁的振動進行了研究,得到了管樁樁頂?shù)膭恿Ψ糯笠蜃印Mㄟ^數(shù)值算例分析可知,簡諧SH波作用下管樁存在共振現(xiàn)象;管樁管壁過薄宜導(dǎo)致樁基失穩(wěn);相同外徑情況下采用管樁要比實芯樁的抗震性能更好。
關(guān)鍵詞:
管樁;SH波;振動特性;動力放大因子
中圖分類號:TU435
文獻標志碼:A文章編號:16744764(2016)06003808
Abstract:
The displacements of soil around pile and pile core soil under harmonic SH waves are obtained based on onedimensional wave motion model. Under the threedimensional axial symmetry case, the vibrations of soil around pile and pile core soil caused by horizontal harmonic concentrated load and SH waves are solved by potential functions and variable separation method, and the radial and ring displacements of soil around pile and pile core soil are also obtained. The vibration of pipe pile under harmonic concentrated load and SH waves is investigated by considering pipe pilesoil dynamic interaction and continuous conditions. And the dynamic magnification factor at pipe pile has got. The results of numeral example indicate that pipe pile has resonance phenomenon under harmonic SH waves, the pipe pilecould lead to instability if the pipe pile wall too thin, and seismic performance of pipe pile is better than solid core pile under the same outside diameter.
Keywords:
pipe pile; SH waves; dynamic properties; dynamic magnification factor
樁基作為一種重要的基礎(chǔ)形式通常要承受地震激勵、海洋荷載、動力機器荷載等動態(tài)激勵的作用,有關(guān)樁基振動特性的研究近幾十年來受到了足夠的重視并取得了一定的研究成果[17],以往這些研究都是考察實芯樁的振動特性。管樁作為近年來才出現(xiàn)的一種樁基形式,由于具有抗彎抗拉性能好、強度和承載力高、耐久性好且造價較低等諸多優(yōu)點而被廣泛應(yīng)用到眾多工程領(lǐng)域。為了給樁基設(shè)計、施工、檢測等提供理論依據(jù),近幾年來,針對管樁的振動特性的研究越來越受到關(guān)注,丁選明等[8]給出了瞬態(tài)集中荷載作用下大直徑管樁的時域解析解,鄭長杰等[910]針對粘彈性地基中現(xiàn)澆大直徑管樁的縱向振動及扭轉(zhuǎn)振動進行了研究,吳文兵等[11]考慮土塞效應(yīng)運用附加質(zhì)量法對成層地基中管樁的縱向振動進行了研究,劉林超等[12]針對飽和土中管樁的水平振動運用多孔介質(zhì)理論進行了研究。
汶川地震以來,針對地震激勵下結(jié)構(gòu)動態(tài)響應(yīng)的研究越來重要,特別是地震激勵下樁基振動特性的研究將對樁基的抗震設(shè)計具有十分重大的意義,而目前針對地震波作用下樁基振動特性的研究相對較少,Kaynia等[13]、Makris等[14]對Rayleigh波作用下樁基的振動特性進行了研究,王海東等[15]將Novak利用薄層法計算地基土動力阻抗的方法應(yīng)用到單樁豎向動力響應(yīng)的研究中,對瑞利波作用下考慮樁土相互作用的單樁動力響應(yīng)進行了研究,馮永正等[16]采用文克勒地基梁模型建立了樁土樁相互作用的粘彈性模型給出了瑞利波作用下的雙樁橫向相互作用因子的計算公式。本文將針對簡諧SH波作用下管樁的振動特性進行研究,分析相關(guān)參數(shù)對SH波作用下振動特性的影響規(guī)律。
1簡諧SH波作用下樁周土和樁芯土
的水平位移
4數(shù)值算例與分析
對于管樁在簡諧SH波作用下的振動特性這里借助動力放大因子Sg來分析,圖2~5給出了簡諧SH波作用下管樁樁頂動力放大因子隨頻率的變化曲線,圖中相關(guān)參數(shù)的取值為:r1/H=1/20,r2/H=1/40,Ep/GO=1 000,ρp=2.5、υO(shè)=υI=0.35,ρ=15,G=1.5。由于缺少實驗與實測數(shù)據(jù)的驗證,為了保證計算結(jié)果的合理性和正確性,圖2給出了管樁內(nèi)半徑分別為r2/H=1/40、r2/H=1/60時與實芯樁計算結(jié)果的對比。可見,當管樁外半徑一定時,隨著管樁內(nèi)半的減小,管樁樁頂?shù)膭恿Ψ糯笠蜃涌梢灾鸩酵嘶綄嵭緲兜那樾危皖l時管樁與實芯樁動力放大因子隨頻率變化曲線的差異主要在曲線峰值對應(yīng)的頻率,實芯樁動力放大因子隨頻率變化曲線峰值對應(yīng)的頻率要小。在低頻時管樁與實芯樁的動力放大因子相差不大,高頻時管樁的動力放大因子要比實芯樁的小,這可能是因為在管樁外半徑與實芯樁樁徑一樣時,實芯樁的剛度大而柔性小抗震性能較差的緣故。從圖2~5可以看出,管樁樁頂動力放大因子隨頻率變化曲線存在較明顯的波峰,說明管樁土系統(tǒng)存在有共振現(xiàn)象,在設(shè)計中要避免系統(tǒng)結(jié)構(gòu)周期與場地的卓越周期頻率接近;當無量綱頻率接近零時,動力放大系數(shù)Sg→1,而當頻率趨于無窮大時,動力放大因子趨于零,這是因為頻率較大時,系統(tǒng)還沒來得及反應(yīng),SH剪切波就往相反方向運動。管樁壁厚對管樁樁頂動態(tài)放大因子有較大的影響,當管樁內(nèi)半徑一定時,管樁外半徑(r1/H)越小,管樁壁厚越薄,此時動力放大因子隨頻率變化曲線的峰值越大,將會出現(xiàn)較大的波峰(如圖3),且曲線波動的越厲害,這是因為隨著管樁壁厚的減小,管樁由于過薄導(dǎo)致穩(wěn)定性變差;這里以動力放大因子明顯增大作為恒定管樁穩(wěn)定性的一個標準,從圖3中可以看出,當管樁內(nèi)半徑一定時,管樁外半徑為1/35時動力放大因子隨頻率變化曲線的峰值有明顯的增大,基于本文中的參數(shù),此時管樁的外半徑與樁長的比不宜小于1/35。樁土剪切模量比Ep/GO對管樁樁頂動力放大因子的影響見圖4,樁土剪切模量比對管樁動力放大因子數(shù)值大小的影響較大,樁土剪切模量比越大,動力放大因子隨頻率變化曲線的峰值越大,且峰值對應(yīng)的頻率越大,這是由于樁土剪切模量比增大,相當于樁基剪切模量不變時,樁周土和樁芯土的剪切模量減小,土體對管樁的約束作用減小造成的。管樁樁芯土和樁周土模量比對管樁樁頂動力放大因子的影響主要在峰值處(如圖5),管樁樁芯土和樁周土模量比越大,動力放大因子越小,可見,當樁芯土剪切模量一定時,樁周土的剪切模量越小,動力放大因子越小,由于在樁基施工中會造成樁周土的弱化作用,造成樁周土剛度降低,所以在實際工程中采用管樁要比實芯樁的抗震性能更好。endprint
5結(jié)論
以簡諧SH波和水平集中荷載作用下管樁的振動特性為研究對象,運用波的傳播理論、樁基動力學(xué)、數(shù)學(xué)物理方法等得到了管樁樁頂?shù)膭恿Ψ糯笠蜃樱詳?shù)值算例的形式通過分析管樁壁厚、樁土模量比和樁芯土與樁周土模量比對管樁動力放大因子的影響,研究了管樁的振動特性。
1)管樁樁頂動力放大因子隨頻率變化曲線存在較明顯的峰值,系統(tǒng)存在有共振現(xiàn)象。
2)當管樁壁厚過薄時動力放大因子隨頻率變化曲線將會出現(xiàn)急劇增大,樁基此時宜發(fā)生穩(wěn)定性破壞,所以管樁不能過薄。
3)由于樁基在施工中通常會造成樁周土剛度的弱化,所以采用管樁的抗震性能有時要比實芯樁好。
參考文獻:
[1]
NOVAK M. Dynamic stiffness and damping of piles [J]. Canadian Geotechnical Journal, 1974, 11(4): 574598.
[2] NOGAMI T,KONAGAI K. Time domain axial response of dynamically loaded single piles [J]. Journal of Engineering Mechanics, 1986,12(11):12411252.
[3] MAESO O, JUAN J, GARCIA A F. Dynamic impedances of piles and groups of piles in saturated soils [J]. Computer & Structurees,2005, 83:769782.
[4] 高洪波,劉林超,閆啟方.分數(shù)導(dǎo)數(shù)微分算子描述的粘彈性土層中群樁的水平振動研究[J].工程力學(xué),2012,29(6): 160168.
GAO H B, LIU L C,YAN Q F. Lateral vibration of pile groups in visocelastic soil layer described by fractional derivative operator[J].Engineering Mechanics, 2012, 29(6): 160168. (in Chinese)
[5] 李強,鄭輝,王奎華.飽和土中摩擦樁豎向振動解析解及應(yīng)用[J].工程力學(xué),2011,28(1):157170.
LI Q,ZHENG H,WANG K H. Analytical solution and its application of vertical vibration of a fraction pile in saturated soil [J].Engineering Mechanics, 2011,28(1): 157170.
[6] 王奎華,王寧,劉凱,等.三維軸對稱條件下基于虛土樁法的單樁縱向振動分析[J].巖土工程學(xué)報,2012,34(5): 885892.
WANG K H,WANG N,LIU K,et al. Longitudinal vibration of piles in 3D axisymmetric soil based on fictitious soil pile method [J]. Chinese Journal of Geotechnical Engineering,2012,34(5): 885892. (in Chinese)
[7] 崔春義,張石平,楊剛,等.考慮樁底土層波動效應(yīng)的飽和黏彈性半空間中摩擦樁豎向振動[J].巖土工程學(xué)報,2015,37(5): 878892.
CUI C Y,ZHANG S P, YANG G,et al. Vertical vibration of floating piles in saturated viscoelastic halfspace considering wave effect of subsoil under pile bottom[J]. Chinese Journal of Geotechnical Engineering, 2015,37(5): 878892. (in Chinese)
[8] 丁選明,劉漢龍. 大直徑管樁在瞬態(tài)集中荷載作用下的振動響應(yīng)時域解析解[J].巖土工程學(xué)報,2013,35(6): 10101017.
DING X M,LIU H L. Timedomain analytical solution of the vibration response of a largediameter pipe pile subjected to transient concentrated load [J]. Chinese Journal of Geotechnical Engineering,2013,35(6):1010 1017. (in Chinese)
[9] 鄭長杰,丁選明,黃旭,等.滯回阻尼土中大直徑管樁縱向振動響應(yīng)解析解 [J]. 巖石力學(xué)與工程學(xué)報,2014, 33(Sup1): 32843290.
ZHENG C J, DING X M,HUNG X,et al. Analytical solution of vertical vibration response of large diameter pipe pile in hysteretic damping soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup1): 32843290. (in Chinese)endprint
[10] 鄭長杰,丁選明,劉漢龍,等.黏彈性地基中PCC樁扭轉(zhuǎn)振動響應(yīng)解析方法研究[J].巖土力學(xué),2013,34(7): 19431950.
ZHENG C J,DING X M,LIU H H L,et al. Analytic method of torsional vibration response of castinplace concrete largediameter pipe pile in viscoelastic soil [J].Rock and Soil Mechanics, 2013, 34(7):19431950. (in Chinese)
[11] 吳文兵,蔣國盛,王奎華,等.土塞效應(yīng)對管樁縱向動力特性的影響研究[J].巖土工程學(xué)報,2014,36(6): 11291141.
WU W B, JIANG G S,WANG K H, et al. Influence of soil plug effect on vertical dynamic response of pipe piles [J]. Chinese Journal of Geotechnical Engineering, 2014,36(6): 11291141. (in Chinese)
[12] 劉林超,閆啟方. 飽和土中管樁的水平動阻抗研究[J].巖土力學(xué),2014,35(5):13481356.
LIU L C, YAN Q F. Study of lateral dynamic impedance of pipe pile in saturated soil [J].Rock and Soil Mechanics, 2014,35(5):13481356. (in Chinese)
[13] KAYNIA A M, NOVAK M. Response of pile foundations to Rayleigh waves and obliquely body wave [J]. Earthquake Engineering and Structural Dynamics,1992, 21(4):3033l8.
[14] MAKRIS N. Soilpile interaction during the passage of Rayleigh waves: an analytical solution[J]. Earthquake Engineering and Structural Dynamics,1994,23(2):153 167.
[15] 王海東,尚守平.瑞利波作用下考慮樁土相互作用的單樁豎向動力響應(yīng)計算研究[J].工程力學(xué),2006,23(8):74 78.
WANG H D, SHANG S P. Computation research on vertical dynamic response of singlepile considering pilesoil interaction during passage of Raleigh waves[J].Engineering Mechanics,2006,23(8): 74 78. (in Chinese)
[16] 馮永正,王立忠,陳云敏.瑞利波作用下雙層地基中群樁橫向動力響應(yīng)[J].振動工程學(xué)報,2001,14(3):264291.
FENG Y Z,WANG L Z, CHEN Y M. Lateral dynamic response of pile group in doublelayered soils during the passage of Rayleigh waves[J].Journal of Vibration Engineering,2001,14(3): 264291. (in Chinese)
[17] GAZETAS G, DOBRY R. Simple radiation damping model for piles and footings [J].Journal of Engineering Mechanics, 1984, 110(6):937956.
[18] 胡安峰,謝康和,肖志榮.水平荷載下單樁動力反應(yīng)分析[J].浙江大學(xué)學(xué)報,2003,37(4):420425.
HU A F, XIE K H, XIAO Z R. Dynamic response analysis for single pile subjected to lateral loading [J]. Journal of Zhejiang University, 2003,37(4): 420425. (in Chinese)
(編輯胡玲)endprint