999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Automatic clustering of EEG data from ICU patients

2018-01-23 08:42:49JinJingEmileangremontaSenanEbrahimMohammadGhassemiEricRosenthalSaharZafarBrandonWestover
西北大學學報(自然科學版) 2018年1期
關鍵詞:特征提取癲癇方法

Jin Jing, Emile D′angremonta, Senan Ebrahim, Mohammad Ghassemi, Eric Rosenthal, Sahar Zafar, M. Brandon Westover

(1.Neurology Department, Massachusetts General Hospital, Harrard Medical School, Boston, MA, 02114, USA;2.Faculty of Science, Utrecht University,Utrecht, PO Box 80125, Netherlands; 3.School of Science, Massachusetts, Institute of Technology, Boston, MA, 02114, USA)

1 Introduction

Seizures, status epilepticus, and seizure-like rhythmic or periodic activity are common, pathological, and harmful states of brain electrical activity seen in the electroencephalogram (EEG) of patients during critical medical illnesses or acute brain injury[1-2]. A growing body of evidence shows that these states, when prolonged, cause neurological injury[3-4]. In this study, we aimed to develop a valid method to automatically discover a small number of homogeneous pattern clusters, to facilitate efficient interactive labelling by EEG experts.

2 Method

In this study, we analysed continuous EEG recordings from 10 different ICU patients at MGH. The duration of each recording is at least 12 hours, with a sampling rate of 200 Hz. Digital filters were applied to remove artifacts such as powerline interference, and baseline drift. In addition, spectrograms was prepared for frequency domain feature extraction[5-6]. In total, as listed in Table 1, we extracted 576 time and frequency domain features from each EEG recording.

Tab.1 Temporal and spectral features extracted from EEG.

After feature extraction, we applied principal component analysis (PCA)[11]with 90% variance retained to reduce the dimensionality for each feature array. It is followed by unsupervised clustering method K-means[12], to further split the data into 9 clusters using K-means. From each cluster we took 9 random samples plus the cluster center, rendering 900 samples in total. Three experts independently labelled all samples into one of 6 standard pattern categories (seizures, GPDs, LPDs, LRDA, GRDA, burst suppression, other).

We compared two methods for labelling clusters: (1) “Labour intensive labelling” (LIL): assign the most frequent of 30 expert provided labels; (2) “Labour efficient labelling “(LEL): assign the most frequent of the 3 expert labels for the central sample. We compared interrater agreement (IRA) indexed by Gwet′s AC1[13]among experts vs. between each expert and consensus labels using LIL vs. LEL. Finally, we used Laplacian Eigenmaps (LE)[14]to visualize the data, as shown in Figure 1.

Fig.1 Laplacian Eigenmaps for 2-D visualization of high-D data.

3 Results

Median [IQR] expert-expert IRA for all label pairs across subjects was 0.65 [0.58, 0.75]. IRA for individual expert labels and the final consensus label was 0.76 [0.70, 0.82] using LIL, and 0.71 [0.63, 0.78] using LEL. The boxplots are shown in Figure 2. Differences between LIL and LEL were not statistically significant (p=0.34). As illustrated in Figures 3a-f, LE visualizations of the feature space generally revealed a continuum.

Fig.2 Boxplots of IRA Gwet′s AC1 index for expert-expert [Ex vs Ex], expert-LIL [Ex vs LIL], and expert-LEL [Ex vs LEL].

Fig.3 LE visualizations of the feature space generally revealed a continuum of EEG patterns.

4 Conclusion

This research suggests that large EEG datasets can be automatically clustered into a small number of patterns described by standard ICU EEG pattern labels. We demonstrated efficient cluster labelling by inspecting only the central most representative of each cluster. Furthermore, LE visualizations support the hypothesis of an interictal-ictal continuum.

[1] FISHER R S, BOAS W V E, BLUME W,et al. Epileptic seizures and epilepsy: Definitions proposed by the International League against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)[J].Epilepsia, 2005,46(4):470-472.

[2] HOLTKAMP M, MEIERKORD H. Non-convulsive status epilepticus: a diagnostic and therapeutic challenge in the intensive care setting[J].Therapeutic advances in Neurological Disorders, 2011,4(3):169-181.

[3] 劉國權. 基于發作間期 EEG 的癲癇自動診斷系統的研究與設計[D].南京:南京郵電大學, 2016.

[4] 孟慶芳, 陳珊珊, 陳月輝,等. 基于遞歸量化分析與支持向量機的癲癇腦電自動檢測方法[J].物理學報, 2014, 63(5): 0505061-0505068.

[5] 張瑞,宋江玲, 胡文鳳. 癲癇腦電的特征提取方法綜述[J].西北大學學報(自然科學版), 2016, 46(6): 781-788.

[6] 李艷艷, 楊陳軍, 野梅娜, 等. 一種新的癲癇腦電融合特征提取方法[J].西北大學學報(自然科學版), 2016, 46(6): 801-808.

[7] ESTELLER R, ECHAUZ J, TCHENG T,et al. Line length: an efficient feature for seizure onset detection. In Engineering in Medicine and Biology Society[J].Proceedings of the 23rd Annual International Conference of the IEEE ,2001,2:1707-1710.

[8] DECARLO L T. On the meaning and use of kurtosis[J].Psychological Methods, 1997,2(3):292.

[9] COIFMAN R R, WICKERHAUSER M V. Entropy-based algorithms for best basis selection[J].IEEE Transactions on Information Theory, 1992,38(2):713-718.

[10] MUKHOPADHYAY S, RAY G C. A new interpretation of nonlinear energy operator and its efficacy in spike detection[J].IEEE Transactions on Biomedical Engineering, 1998,45(2):180-187.

[11] JOLLIFFE I T. Principal Component Analysis and Factor Analysis[M].New York:Springer,1986:115-128.

[12] 陳爽爽,周衛東,袁琦,等. 基于多特征的顱內腦電癲癇檢測方法[J].中國生物醫學工程學報, 2013, 32(3): 279-283.

[13] GWET K L. Handbook of inter-rater reliability: The definitive guide to measuring the extent of agreement among multiple Raters[D]. Advanced Analytics, Gaithersburg, MD, 2010.

[14] BELKIN M,NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]∥Ihternational Information Processing Systems:Natural and Synthetic.MIT Press, 2002:585-591.

猜你喜歡
特征提取癲癇方法
癲癇中醫辨證存在的問題及對策
基于Gazebo仿真環境的ORB特征提取與比對的研究
電子制作(2019年15期)2019-08-27 01:12:00
玩電腦游戲易引發癲癇嗎?
飲食科學(2017年5期)2017-05-20 17:11:53
一種基于LBP 特征提取和稀疏表示的肝病識別算法
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
捕魚
左氧氟沙星致癲癇持續狀態1例
西南軍醫(2015年4期)2015-01-23 01:19:30
基于MED和循環域解調的多故障特征提取
中醫針藥治療腦卒中后癲癇臨床觀察
主站蜘蛛池模板: 国产91高跟丝袜| 91青青草视频在线观看的| 国产精品人人做人人爽人人添| 亚洲人成网址| 一级成人a毛片免费播放| 99精品视频在线观看免费播放| 国产成人精品午夜视频'| 在线无码九区| 在线观看av永久| 国产欧美日韩91| 日本欧美视频在线观看| 亚洲日韩日本中文在线| 日韩无码视频网站| 2021国产精品自产拍在线| 国产swag在线观看| 亚洲精品爱草草视频在线| 成人在线欧美| 丁香五月激情图片| 国产性生大片免费观看性欧美| 欧美一级高清视频在线播放| 久久国产拍爱| 激情五月婷婷综合网| 成人免费视频一区| 草草线在成年免费视频2| 中文字幕自拍偷拍| 69免费在线视频| 国产一级妓女av网站| 在线观看国产网址你懂的| 国产精品爽爽va在线无码观看| 五月天福利视频| 欧美福利在线观看| 全午夜免费一级毛片| 亚洲国产精品日韩欧美一区| 99热最新在线| 高潮毛片免费观看| 91九色视频网| a级毛片免费看| 亚洲Av综合日韩精品久久久| 国产一级精品毛片基地| 成人毛片免费在线观看| 青青操视频免费观看| 国产一级二级在线观看| 最新亚洲人成网站在线观看| 欧美精品伊人久久| 亚洲v日韩v欧美在线观看| 久久久久青草大香线综合精品| 国产69精品久久| 国产一区成人| 伊人91在线| 亚洲三级a| 五月婷婷综合在线视频| AV老司机AV天堂| 在线观看视频一区二区| 亚洲成人免费看| 国产丝袜91| 国产精品视频白浆免费视频| 午夜不卡视频| 成AV人片一区二区三区久久| 91区国产福利在线观看午夜| 亚洲系列无码专区偷窥无码| 伊人婷婷色香五月综合缴缴情| 91精品国产无线乱码在线| 91亚洲免费| 国产亚洲视频中文字幕视频| 老汉色老汉首页a亚洲| jijzzizz老师出水喷水喷出| 2020精品极品国产色在线观看| 四虎成人精品| 国产精品亚洲五月天高清| 国产91全国探花系列在线播放| 国产无码网站在线观看| 国产亚洲视频播放9000| 日韩在线2020专区| 国内精品免费| 在线观看亚洲精品福利片| 国产成人综合在线视频| 婷婷色中文| 国产网友愉拍精品视频| 亚洲成在人线av品善网好看| 成人字幕网视频在线观看| 国产日韩欧美在线播放| 91麻豆精品视频|