周玉乾,孟思遠,周文期(.甘肅省農業科學院 作物研究所,蘭州 730070; .甘肅省種子管理局,蘭州 73000)
植物表皮在組織器官的生長發育和形態建成中發揮非常重要的作用[1-3]。表皮是植物體內與外界環境的天然保護屏障,它不僅可以感知外界刺激、傳遞信號,吸收營養等,而且表皮細胞外壁常覆蓋一層脂肪性物質,稱角質層,在植物的地上器官(如莖、葉、花、果實和種子)中具有保護功能[4-6]。增加表皮層厚度不僅能使植物有效地抵御外界有機脅迫(微生物、病蟲害侵襲)和無機脅迫(低溫、高鹽堿等),更能減少植物體內熱量及水分的散失[7];在地下器官(根)中具有吸收功能。因此,研究植物表皮的分裂、分化與形態建成對植物的正常生長發育具有非常重要的理論意義。植物葉表皮扁平細胞排列緊密,細胞邊緣凸凹嵌套,沒有細胞間隙(除了氣孔)。除一般的表皮扁平細胞外,葉表皮細胞還包括特化的氣孔復合體和表皮毛等附屬物,在禾本科植物葉中還包括泡狀細胞、以及由硅質細胞和栓質細胞緊密鑲嵌而成的短細胞[8-10]。近幾年來,隨著生物技術的不斷提高,對植物表皮形態建成的研究成為一大熱點,尤其在雙子葉模式植物擬南芥中,取得了一系列的研究成果,但是在單子葉植物中,調控氣孔及表皮細胞發育圖式的基因及參與分子調控網絡的機理研究非常受限,因此需要更多科技工作者去深入探討和研究。
植物表皮主要作用是增加表皮層的厚度,減少熱量及水分散失,從而保護表皮層下組織,以免受到病蟲侵害及機械傷害[7]。擬南芥(Arabidopsisthaliana) 作為一種雙子葉植物的模式植物,對其葉表皮的研究已經取得很大的進展。研究證明,擬南芥葉表皮扁平細胞的發育經歷3個階段:第1階段,表皮原始細胞先沿著葉長軸開始擴展,形成稍微變長的多變形細胞;其次,沿細胞壁的背斜面向鄰近細胞側面延伸,細胞邊緣逐漸形成不規則的鋸齒狀凸出(lobe);最后,細胞凸出進一步向外延伸,與相鄰細胞狹窄的凹陷(neck) 處交錯相連,最終形成復雜多變的表皮圖式[11]。擬南芥表皮毛是一種特化的、典型的單細胞結構,一般有3個分支,無腺體,廣泛分布于葉、莖、花瓣的表面。其發育過程包括起始發育、分支、延伸和形態建成4 個階段[12]。葉表皮不規則的齒狀凸出和頸的形成以及表皮毛的延伸與發育主要受細胞骨架(微管,微絲和中間纖維)的調控。微管主要調控葉扁平細胞延伸與分裂[1,13]。微管結合蛋白MAP65(microtubule associated protein 65) 負責微管穩定以及微管成束[14];微管切割蛋白KTN1(katanin 1) 與植物中的小G蛋白ROPs(rho-like small GTPase in plant) 的效應蛋白RIC1(ROP-interactive CRIB motif-containing protein 1)結合,通過切割微管進而調控微管的分布[15];Rho-GTPase級聯信號通路能調控微管與微絲的排列,從而導致葉扁平細胞形態改變[11,16]。微絲主要控制表皮細胞邊緣的凸出,即lobe的形成和圖式發育[2,11,17-18]。微絲結合蛋白ABPs(Actin binding proteins) 調節微絲的聚合以及微絲動態裝配[19];目前已被證實的擬南芥中微絲結合蛋白主要包括:微絲解聚因子(actin-depolymerizing factors)、前纖維蛋白(profilin)、肌動蛋白(fimbrins)、絨毛蛋白(villin)、肌動蛋白相關蛋白Arp2/3(actin-related protein 2/3) 復合體等都參與細胞的形態發生[20-21]。
在擬南芥中已經證明參與調控扁平細胞及表皮毛發育有多條信號通路,表皮毛的形態和發育的調控均依賴相關基因的精確表達,其中大部分屬于R2R3類型的MYB、bHLH(basic helix-loop-helix)和含WD40重復序列的TTG(RANSPARENTTESTA GLABRA1) 類轉錄因子,表皮毛發育及分子調控目前研究比較清晰[22-28]。本研究就針對依賴于SPK1-ROPs-SCAR/WAVE-ARP2/3這一信號通路進行介紹,該通路基因通過調控微絲核化改變細胞骨架結構,從而導致葉扁平細胞及表皮毛發育過程形態異常,該通路成員有SPK1(spike 1),ROPs,環磷酸腺苷受體結合抑制因子SCAR/WAVE(suppressor of cAMP receptor/ Wiskott-Aldrich syndrome protein-family verprolin-homologous protein) 復合體,ARP2/3復合體[22,29-30]。單突變體spk1表皮毛分支明顯減少,不規則,扭曲延伸,扁平細胞邊緣凸出減少[3,31]。ROP家族在擬南芥中共有11個成員,分別是ROP1~ROP11,其中ROP1~ROP6主要調控細胞極性生長,參與葉表皮細胞形態建成,組成激活突變體CA-rop2扁平細胞顯著膨大,非極性分裂生長,表皮毛表現出腫脹表型,分枝不規則,扭曲;而負顯性突變體DN-rop2扁平細胞狹窄,lobe變短[32]。ROP2/4在扁平細胞lobe頂端質膜上激活,促進RIC4-依賴的皮層微絲積累,促進了細胞向外凸出生長,控制微絲聚集,而ROP6在neck區域與RIC1結合促進微管的裝配,進而抑制細胞凸出形成[11]。ROPs信號分子在該通路中起“開關”作用,另一通路就是激活下游SCAR/WAVE復合體,繼續信號傳遞[33-34]。SCAR/WAVE 復合體共包括5個亞基,分別是PIR/SRA1(PIROGI/Specifically Rac1-associated protein)NAP1/NAP125(NCK-associated protein),BRICK1/HSPC300(haematopoietic stem progenitor cell 300),ABI(abl-interactor 2) 和 SCAR/WAVE[35-37]。研究證明,該復合體中PIR/SRA1亞基接收上游ROPs的激活信號,SCAR/WAVE亞基與下游ARP2/3復合體直接相互作用并激活下游信號通路[36-40]。該復合體中單突變體pir1、nap1、brk1、wave1等都呈現出表皮毛扭曲,分枝不規則表型,并且細胞粘連處有缺口,細胞排列不緊密,brk1扁平細胞邊緣突出變平滑的表型更為明顯[21,37,41-42]。Arp2/3復合體由7個亞基構成,分別是ARP2、ARP3、ARPC1-ARPC5[43-44]。4種稱為“變形(distorted)”基因分別編碼ARP2、ARP3、ARPC2以及ARPC5,單個基因突變同樣表現出表皮毛扭曲、腫脹,分枝繚亂,長度減少等表型[45-47]。大量試驗證明編碼該信號通路的蛋白功能相對保守,SCAR/WAVE和ARP2/3復合體主要通過調節微絲斑或微絲帶的形成來調控細胞極性生長過程,從而改變葉扁平細胞以及表皮毛的形狀[36,48]。目前雙子葉植物中,對通過微管和微絲調控擬南芥表皮細胞的圖式發育和形態建成的信號通路研究取得較大的成果。
氣孔是高等植物表皮上的一種特化結構,是蒸騰過程中水蒸氣從體內排到體外的主要出口,也是光合作用和呼吸作用與外界氣體交換的“大門”,對植物的蒸騰、光合、呼吸等都起著非常重要的作用。氣孔在調節植物逆境環境中,常通過其開關來維持體內水分,在維持地球水分平衡、碳氧平衡及植物的生命活動中均發揮著非常重要的作用[49-50]。當光照、溫度、CO2含量、葉片含水量、化學物質等環境因子發生變化時,植物通過調整氣孔孔徑大小來控制自身與外界的氣體交換能力,以便能更好地適應外界環境[50-51]。擬南芥的原表皮細胞同時具有發育成扁平細胞、氣孔和表皮毛的能力。原表皮細胞逐漸發育成擬分生組織母細胞MMC(meristemoid mother cell),屬于氣孔干細胞,并主導氣孔系細胞的第1次不均等起始分裂,產生2個子細胞,小細胞為擬分生組織(meristemoid),繼續進行細胞不均等分裂,或者分化為保衛細胞母細胞GMCs(guard mother cells);其中較大的姊妹細胞稱為氣孔系基礎細胞SLGC(stomatal lineage ground cell),發育成扁平細胞PCs(pavement cells),GMCs再進行一次均等分裂,進而最終分化成2個保衛細胞GCs(guard cells),細胞壁加厚,逐漸形成孔狀特化的氣孔結構。氣孔擬分生組織在發育過程中,經歷1~3次不均等分裂形成氣孔和多個扁平細胞[49]。把這種經過1~3次不均等分裂過程稱為氣孔系細胞的擴增分裂(amplifying division);把另一種氣孔系基礎細胞重新獲得分裂能力,形成2個氣孔和1個扁平細胞的分裂稱為空間分裂(spacing division),這2種分裂模式同時調控氣孔在表皮層的分布和發育,使氣孔分布遵循“一個氣孔間隔一個扁平細胞”交錯的排列模式[49,52-53]。
擬南芥中有關氣孔發育及調控機理有比較深入的研究,其信號通路主要包括轉錄因子,配體與受體、MAPK信號級聯等[54-55]。已經報道了3個bHLH正調轉錄因子SPCH(Speechless)、MUTE 和FAMA,分別與另2種轉錄因子SCRM/ICE1(Scream/inducer of cbf expression 1) 和SCRM2(scream 2)形成異二聚體,分別調控由原表皮細胞向擬分生組織,擬分生組織向保衛細胞母細胞,以及保衛細胞母細胞向保衛細胞的分裂與分化3個關鍵過程[56-59];RNA聚合酶Ⅱ第3大亞基NRPB3(the third largest subunit of RNA polymerase Ⅱ) 能夠與FAMA和ICE1相互作用,來執行氣孔發育和圖式分化特異的轉錄調控,功能缺陷型突變體nrpb3-1表現出2個氣孔系細胞簇生的表型,包括簇生擬分生組織、GMCs和氣孔復合體[60]。另外,MYB 轉錄因子主要包括FLP(FOUR LIPS) 和 MYB88,編碼2種R2R3類 MYB 蛋白,與FAMA獨立協同調控GMCs 向GCs的分化和轉變,在此過程中,FAMA須結合另一種叫作RBR(RETINO BLASTOMA RELATED) 蛋白才能行使功能,均在氣孔形成晚期發揮重要的調控作用[56,61-62]。配體主要包括表皮模式因子EPFs(epidermal patterning factors) 家族EPF1、EPF2、EPFL5、EPFL6負調控氣孔發育,STOMAGEN/EPFL9則對氣孔發育起正調節作用[63-65]。受體包括富亮氨酸重復區受體類激酶(LRR-LRK) 包括ERECTA家族成員[ER、ERL1(ERECTA LIKE 1) 和ERL2],以及SERK(SOMATIC EMBRYOGENESIS RECEPTOR KINASE) 家族成員SERK1-SERK4,與其共受體富亮氨酸重復的受體類蛋白TMM(TOO MANY MOUTH) 共同調控氣孔系前體細胞的不均等分裂;植物促分裂原蛋白活化激酶級聯信號MAPK信號級聯(MAPK signaling cascade) 由促分裂原蛋白活化激酶YODA/MAPKKK、MKK4/MKK5/MKK7/MKK9和MPK3/MPK6構成,YODA-MKK4/5-MPK3/6信號級聯通路中激酶的功能缺失導致葉表皮形成氣孔簇,而持續激活將導致葉片沒有氣孔的形成[66-68],因此,不同的酶活性水平影響氣孔系細胞的正常發育。此外,一個新的受體蛋白BASL(BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE) 也調控氣孔系擬分生組織母細胞和擬分生組織細胞的不均等分裂[69-70]。枯草桿菌蛋白酶類的絲氨酸蛋白酶SDD1(STOMATAL DENSITY AND DISTRIBUTION1) 作用于TMM上游,在擬分生組織細胞和GMCs中表達,調控氣孔圖式發育[71-72]。
雖然有關葉扁平細胞和氣孔的研究在擬南芥中取得的進展令人鼓舞,但在玉米(ZeamaysL.)和水稻(OryzasativaL.) 等單子葉植物中,調控氣孔及表皮細胞生長發育與形態建成的分子機制研究非常受限,因此亟待研究者去發現和挖掘。
單子葉植物中葉氣孔及表皮細胞的生長發育、排列方式等與雙子葉植物中截然不同[73]。在雙子葉植物中,雖然2個氣孔遵循間隔1個扁平細胞的排列模式,但是氣孔雜亂無章地分布在葉表皮上,并且在成熟葉片中,處于各種分裂與分化狀態的氣孔和扁平細胞形態隨時能被觀察到。但是在單子葉禾本科植物中,氣孔一列列整齊地排列在葉脈兩側,也遵循2個氣孔間隔1個扁平細胞的排列模式[8]。早期葉原基形成后,氣孔系細胞便開始分裂與分化,并在較短時間內完成發育,因此在成熟葉片中,幾乎觀察不到正處于分裂或者分化的氣孔系細胞[73-74]。玉米葉氣孔及扁平細胞的發育過程與水稻中基本一致[75],氣孔都是由氣孔系原始細胞(也叫保衛細胞母細胞前體細胞)進行第1次不等分裂,產生2個大小不一的子細胞,大細胞直接發育成PCs,而小細胞稱為GMCs,GMCs具有氣孔系干細胞命運,能繼續分裂與分化;當位于GMCs兩側的副衛細胞母細胞SMCs(subsidary mother cells) 接收到GMCs傳遞的某種信號后,起初在GMCs 和SMCs 接觸的位置形成微絲斑,然后SMCs的細胞核朝GMCs極化進行第2次不均等分裂,形成副衛細胞SCs(subsidary cells);最后,GMCs 再進行1次橫向均等分裂,形成對稱的2個保衛細胞,隨著葉發育成熟,最終形成由2個三角形狀的副衛細胞夾著2個啞鈴狀的保衛細胞組成的氣孔復合體[76-79]。
目前研究發現,無論在雙/單子葉植物中,氣孔的分化均受到一類bHLH 家族轉錄因子的調控,主要包括SPCH、MUTE和FAMA[77]。在水稻中, OsSPCH2調控氣孔形態及氣孔密度,OsFAMA主要控制極性分裂及副衛細胞的形態變化,與ATFAMA功能保守,調控GMCs向特化GCs分裂。擬南芥中過表達OsMUTE氣孔缺陷表型得到部分恢復,過表達ZmMUTE,也能誘導產生很多的保衛細胞,因此,推測在玉米中,同源蛋白ZmSPCH、ZmMUTE和ZmFAMA都參與調控氣孔系細胞發育的信號通路[77]。玉米中富亮氨酸受體類激酶PAN1(PANGLOSS1) 和PAN2 作為受體識別來源于GMCs 傳遞的信號,調控SMCs的不均等分裂方向及其子細胞的極性分裂,功能缺失均導致氣孔及表皮細胞結構異常,PAN2可能參與微絲極化,影響副衛細胞的形狀,基因突變后能引起三角形的副衛細胞變成矩形[76,80-81]。Rho家族GTPase、ROP2和ROP9與PAN1互作,調控SMCs的極性分裂[82]。在單子葉植物二穗短柄草中,STOMATALESS(STL) 基因功能缺失導致葉片中不能形成氣孔,并且證明STL基因就是擬南芥與水稻中ICE的同源基因[83]。同時他們利用CRISPR-Cas 9(clustered,regularly interspaced short palindromic repeats-associated 9) 基因編輯技術,分離到bdscrm2突變體,研究表明BdSCRM2功能缺陷,雖然能形成GMCs和SCs,但是GMCs將不能正常分裂,成為開孔。雙突變體 bdspch1、bdspch2和 bdice1的突變體在氣孔發育早期均不能形成GMCs前體細胞,導致氣孔密度顯著降低,這表明 BdSPCHs 和 BdICE1 的功能與擬南芥中的氣孔調控比較相似,在調控氣孔系細胞早期發育中發揮作用[83]。因此筆者推測在水稻及玉米等禾谷類作物中,同源蛋白ZmSPCHs(3個)、ZmICE1、ZmICE2、OsICE1和OsSCRM2等也參與氣孔系細胞的分裂與分化,這有待更多的學者進行基因功能的研究,以期闡明調控單子葉植物氣孔系細胞形態建成的內在基因調控網絡。
對玉米及水稻中調控葉扁平細胞形態和表皮毛的基因,推測主要依賴Racs(ROPs)-SCAR/WAVE-ARP2/3復合體這一保守的信號通路[79]。在玉米中,早期報道了3個BRK(Brick)基因通過調控微絲成核,影響微絲排列而導致葉表皮細胞邊緣突出(lobe) 的缺失,且表皮毛變短、尖端變鈍化[84-85]。由于當時基因組信息的不完善,文章沒有給出具體的基因座信息,更沒有提出這3個基因就是WAVE復合體中的3個亞基,但是筆者通過生物信息學比對和分析,確定BRK1、BRK2和BRK3與擬南芥中HSP300、PIR/SRA1和NAP1就是相互對應的同源蛋白,且進化上功能保守,通過調控微絲成核分別引起葉表皮細胞形態變化[79,84-85]。在水稻中,表皮毛禿頭基因 TUTOU1/ES1(Early Senescence 1)編碼擬南芥及玉米SCAR1同源蛋白,通過控制微絲合成,影響表皮毛的形態發育,表皮毛尖端鈍化,并證明功能缺失突變體 es1對干旱等逆境脅迫更敏感[86-87]。ZHOU等[79]在水稻中克隆了2個調控表皮細胞形態建成基因LPL2(less pronounced lobe epidermal cell 2) 和LPL3,分別是玉米BRK2和BRK3及擬南芥中PIR/SRA1和NAP1的同源基因,并證明LPL2和LPL3在調控水稻葉表皮細胞邊緣凸出中發揮不可或缺的功能,同屬于水稻SCAR/WAVE復合體的亞基,酵母雙雜交試驗表明LPL2和LPL3能夠相互作用[88]。總之,雖然在單子葉植物中,也克隆到少數幾個調控葉表皮細胞圖式發育的基因,但是離闡明單子葉植物葉表皮形態建成機制仍相差甚遠,亟待挖掘。
目前,對單子葉植物水稻、玉米葉表皮發育的遺傳調控機制還懸而未決,單子葉植物氣孔及扁平細胞的發育機制不等同于雙子葉植物,新的分子遺傳調控機制方面的許多問題亟待解決:(1)氣孔方面:有哪些特異性基因參與調控單子葉植物氣孔系細胞的分裂與分化?氣孔發育圖式是如何相互調控的?(2)表皮細胞方面:水稻及玉米等單子葉植物中是否存在依賴ROPs-SCAR/WAVE-ARP2/3復合體調控表皮細胞形態建成的信號通路?如果存在,分別由哪些亞基組成?各自的功能又是什么?還有哪些信號通路參與其中[79]?等等問題亟待探索和研究。
植物表皮細胞發育過程易于顯微觀察,是研究植物的生長發育、細胞分裂與分化、形態建成和抗逆生理性研究的理想模型[49]。克隆調控氣孔發育相關基因、解析并研究基因功能,增進對水稻玉米等糧食作物氣孔和表皮細胞發育機制的認識,可以通過轉基因及基因編輯等分子育種手段選育既能節約淡水灌溉,又能促進農作物增產的優良品種的選育,對作物改良具有重大意義。
參考文獻Reference:
[1] SMITH L G.Cytoskeletal control of plant cell shape:getting the fine points[J].CurrentOpinioninPlantBiology,2003,6(1):63.
[2] MATHUR J.Cell shape development in plants[J].TrendsinPlantScience,2004,9(12):583-590.
[3] SMITH L G,OPPENHEIMER D G.Spatial control of cell expansion by the plant cytoskeleton[J].AnnualReviewofCellandDevelopmentalBiology,2005,21(1):271.
[4] GUIMIL S,DUNAND C.Patterning ofArabidopsisepidermal cells:epigenetic factors regulate the complex epidermal cell fate pathway[J].TrendsinPlantScience,2006,11(12):601-609.
[5] GUIMIL S,DUNAND C.Cell growth and differentiation in arabidopsis epidermal cells[J].JournalofExperimentalBotany,2007,58(14):3829-3840.
[6] MARTIN C,GLOVER B J.Functional aspects of cell patterning in aerial epidermis.[J].CurrentOpinioninPlantBiology,2007,10(1):70.
[7] SCHELLMANN S,HLSKAMP M.Epidermal differentiation:trichomes inArabidopsisas a model system[J].InternationalJournalofDevelopmentalBiology,2004,49(5/6):579-584.
[8] LUO L,ZHOU W Q,LIU P,etal.The development of stomata and other epidermal cells on the rice leaves[J].BiologiaPlantarum,2012,56(3):521-527.
[9] GALLAGHER K,SMITH L G.Discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis[J].Development,1999,126(20):4623.
[10] GALLAGHER K,SMITH L G.Roles for polarity and nuclear determinants in specifying daughtercell fates after an asymmetric cell division in the maize leaf[J].CurrentBiology,2000,10(19):1229-1232.
[11] FU Y,GU Y,ZHENG Z,etal.Arabidopsisinterdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis[J].Cell,2005,120(5):687.
[12] SZYMANSKI D B,LLOYD A M,MARKS M D.Progress in the molecular genetic analysis of trichome initiation and morphogenesis inArabidopsis[J].TrendsinPlantScience,2000,5(5):214-219.
[13] HASHIMOTO T.Dynamics and regulation of plant interphase microtubules:a comparative view[J].CurrentOpinioninPlantBiology,2003,6(6):568-576.
[14] MLLER S,SMERTENKO A,WAGNER V,etal.The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function[J].CurrentBiology,2004,14(5):412-417.
[15] LIN D,CAO L,ZHOU Z,etal.Rho GTPase signaling activates microtubule severing to promote microtubule ordering inArabidopsis[J].CurrentBiology,2013,23(4):290-297.
[16] FU Y,XU T,ZHU L,etal.A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion inArabidopsis[J].CurrentBiology,2009,19(21):1827-1832.
[17] YANG Z.Cell polarity signaling inArabidopsis[J].AnnualReviewofCell&DevelopmentalBiology,2008,24(24):551-575.
[18] ARMOUR W J,BARTON D A,LAW A M,etal.Differential growth in periclinal and anticlinal walls during lobe formation inArabidopsiscotyledon pavement cells[J].PlantCell,2015,27(9):2484-2500.
[19] WASTENEYS G O,YANG Z.New views on the plant cytoskeleton[J].PlantPhysiology,2004,136(4):3884-3891.
[20] KLAHRE U,FRIEDERICH E,KOST B,etal.Villin-like actin-binding proteins are expressed ubiquitously inArabidopsis[J].PlantPhysiology,2000,122(1):35-48.
[21] DEEKS M J,KALORITI D,DAVIES B,etal.ArabidopsisNAP1 is essential for arp2/3-dependent trichome morphogenesis[J].CurrentBiology,2004,14(15):1410-1414.
[22] QIAN P,HOU S,GUO G.Molecular mechanisms controlling pavement cell shape inArabidopsisleaves[J].PlantCellReports,2009,28(8):1147-1157.
[23] WADA T,TACHIBANA T,SHIMURA Y,etal.Epidermal cell differentiation inArabidopsisdetermined by a myb homolog,CPC[J].Science,1997,277(5329):1113- 1116.
[24] WALKER A R,DAVISON P A,BOLOGNESI-WINFIELD A C,etal.The TRANSPARENT TESTA GLABRA1 locus,which regulate strichome differentiation and anthocyanin biosynthesis inArabidopsis,encodes a WD40 repeat protein[J].PlantCell,1999,11(7):1337-1350.
[25] PAYNE C T,ZHANG F,LOYD AM.GL3 encodes a bHLH protein that regulates trichome development inArabidopsisthrough interaction with GLl andTTG 1[J].Genetics,2000,156(3):1349-1362.
[26] 高 英,郭建強,趙金鳳.擬南芥表皮毛發育的分子機制[J].植物學報,2011,46(1):119-127.
GAO Y,GUO J Q,ZHAO J F.Molecular mechanisms ofArabidopsistrichome development[J].ChineseBulletinofBotany,2011,46(1):119-127.
[27] 曹 敏,張 璐,高新梅,等.植物表皮毛發育分子調控機制的研究進展[J].安徽農業科學,2013,41(10):4231-4235.
CAO M,ZHANG L,GAO X M,etal.Research progress of molecular mechanism inthe development of plant trichomes[J].JournalofAnhuiAgriculture,2013,41(10):4231-4235.
[28] 劉艷霞,王 娟,蘭海燕.基因調控網絡調節植物表皮毛發育的研究進展[J].分子植物育種,2017(4):1362-1370.
LIU Y X,WANG J,LAN H Y.Advance in gene regulatory network of plant trichome development controlling[J].MolecularPlantBreeding,2017(4):1362-1370.
[29] COOPER J A,WEAR M A,WEAVER A M.Arp2/3 complex:advances on the inner workings of a molecular machine[J].Cell,2001,107(6):703-705.
[30] DIPANWITA B,JIE L E,TAYA Z,etal.A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes[J].ProceedingsoftheNationalAcadermyofSciencesoftheUSA,2008,105(10):4044-4049.
[31] QIU J L,JILK R,MARKS M D,etal.TheArabidopsisSPIKE1 gene is required for normal cell shape control and tissue development[J].PlantCell,2002,14(1):101-108.
[32] FU Y,LI H,YANG Z.The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion duringArabidopsisorganogenesis[J].PlantCell,2002,14(4):777-794.
[33] YANG Z.Small GTPases:versatile signaling switches in plants[J].PlantCell,2002,14(Suppl):S375.
[34] GU Y,WANG Z,YANG Z.ROP/RAC GTPase:an old new master regulator for plant signaling[J].CurrentOpinioninPlantBiology,2004,7(5):527-536.
[35] SZYMANSKI D B.Breaking the WAVE complex:the point ofArabidopsistrichomes[J].CurrentOpinioninPlantBiology,2005,8(1):103.
[36] YANAGISAWA M,ZHANG C,SZYMANSKI D B.ARP2/3-dependent growth in the plant kingdom:SCARs for life[J].FrontiersinPlantScience,2013,4(166):166.
[37] LE J,MALLERY E L,ZHANG C,etal.ArabidopsisBRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2[J].CurrentBiology,2006,16(9):895.
[38] DJAKOVICS,DYACHOK J,BURKE M,etal.BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape inArabidopsis[J].Development,2006,133(6):1091-1100.
[39] CHEN Z,BOREK D,PADRICK S B,etal.Structure and control of the actin regulatory WAVE complex[J].Nature,2010,468(7323):533.
[40] MENDOZA M C.Phosphoregulation of the WAVE regulatory complex and signal integration[J].SeminarsinCell&DevelopmentalBiology,2013,24(4):272-279.
[41] FRANK M,EGILE C,DYACHOK J,etal.Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2004,101(46):16379.
[42] BASU D,LE J,SEL-D E E,etal.DISTORTED3/SCAR2 is a putativeArabidopsisWAVE complex subunit that activates the Arp2/3 complex and is required for epidermal morphogenesis[J].PlantCell,2005,17(2):502-524.
[43] HENRY N.HIGGS AND,THOMAS D.Activation by a diverse array of proteins1[J].AnnualReviewofBiochemistry,2001,70(1):649-676.
[44] POLLARD T D.Regulation of actin filament assembly by Arp2/3 complex and formins[J].AnnualReviewofBiophysics&BiomolecularStructure,2007,36(36):451.
[45] LEW D J.The morphogenesis checkpoint:how yeast cells watch their figures[J].CurrentOpinioninCellBiology,2003,15(6):648.
[46] MATHUR J,MATHUR N,KERNEBECK B,etal.Mutations in actin-related proteins 2 and 3 affect cell shape development inArabidopsis[J].PlantCell,2003,15(7):1632-1645.
[47] SELD E A,LE J,BASU D,etal.ArabidopsisGNARLED encodes a NAP125 homolog that positively regulates ARP2/3[J].CurrentBiology,2004,14(15):1405.
[48] YANAGISAWA M,DESYATOVA A S,BELTETON S A,etal.Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis[J].NaturePlants,2015,1(3):15014.
[49] BERGMANN D C,SACK F D.Stomatal development[J].AnnualReviewofCellandDevelopmentalBiology,2007,58(1):163-181.
[50] LIU B F,GAO E J,ZENG X Z,etal.Plant development:YODA the stomatal switch[J].CurrentBiology,2004,14(12):488-490.
[51] SCHROEDER J I,KWAK J M,ALLEN G J.Guard cell abscisic acid signalling and engineering drought hardiness in plants[J].Nature,2001,410(6826):327-330.
[52] PILLITTERI L J,TORII K U.Mechanisms of stomatal development[J].AnnualReviewofPlantBiology,2012,63(1):591-614.
[53] PILLITTERI L J,DONG J.Stomatal development inArabidopsis[J].TheArabidopsisBook/AmericanSocietyofPlantBiologists,2013,11:162.
[54] 陳青云,李有志,樊憲偉.植物氣孔發育的分子調控機制[J].遺 傳,2017,39(4):302-312.
CHEN Q Y,LI Y ZH,FAN X W.Molecule mechanism for regulating stomatal development inplants[J].Hereditas,2017,39(4):302-312.
[55] 陳 亮,侯歲穩.植物氣孔發育的分子遺傳調控[J].中國科學(生命科學),2017,47(8):798-807.
CHEN L,HOU S W.Molecular genetic control of plant stomatal development[J].ScientiaSinicaVitae(LifeScience),2017,47(8):798-807.
[56] OHASHIIT O K,BERGMANN D C.ArabidopsisFAMA controls the final proliferation/differentiation switch during stomatal development[J].PlantCell,2006,18(10):2493-2505.
[57] MACALISTER C A,OHASHI-ITO K,BERGMANN D C.Transcription factor control of asymmetric cell divisions that establish the stomatal lineage[J].Nature,2007,445(7127):537-540.
[58] PILLITTERI L J.Termination of asymmetric cell division and differentiation of stomata[J].Nature,2007,445(7127):501-505.
[59] KANAOKA M M,PILLITTERI L J,FUJII H,etal.SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading toArabidopsisstomatal differentiation[J].PlantCell,2008,20(7):1775.
[60] CHEN L,GUAN L,QIAN P,etal.NRPB3,the third largest subunit of RNA polymerase Ⅱ,is essential for stomatal patterning and differentiation inArabidopsis[J].Development,2016,143(9):1600-1611.
[61] LAI L B,NADEAU J A,LUCAS J,etal.TheArabidopsisR2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage[J].ThePlantCell,2005,17(10):2754.
[62] MATOS J L,LAU O S,HACHEZ C,etal.Irreversible fate commitment in theArabidopsisstomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module[J].Elife,2014,3:15.
[63] HUNT L,BAILEY K J,GRAY J E.The signalling peptide EPFL9 is a positive regulator of stomatal development[J].NewPhytologist,2010,186(3):609-614.
[64] SUGANO S S,SHIMADA T,IMAI Y,etal.Stomagen positively regulates stomatal density inArabidopsis[J].Nature,2010,463(7278):241.
[65] LEE J S,HNILOVA M,MAES M,etal.Competitive binding of antagonistic peptides fine-tunes stomatal patterning[J].Nature,2015,522(7557):439.
[66] WANG Y,XUE X,ZHU J K,etal.Demethylation of ERECTA receptor genes by IBM1 histone demethylase affects stomatal development[J].Development,2016,143(23):4452.
[67] LAMPARD G R,LUKOWITZ W,ELLIS B E,etal.Novel and expanded roles for MAPK signaling inArabidopsisstomatal cell fate revealed by cell type-specific manipulations [J].PlantCell,2009,21(11):3506.
[68] MENG X,CHEN X,MANG H,etal.Differential function ofArabidopsis,SERK family receptor-like kinases in stomatal patterning[J].CurrentBiology,2015,25(18):2361-2372.
[69] DONG J,CORA A M,DOMINIQUE C B.BASL controls asymmetric cell division inArabidopsis[J].Cell,2009,137(7):1320-1330.
[70] ZHANG Y,WANG P,SHAO W,etal.The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division[J].DevelopmentalCell,2015,33(2):136.
[71] BERGER D,ALTMANN T.A subtilisin-like serine protease involved in the regulation of stomatal density and distribution inArabidopsisthaliana[J].Genes&Development,2000,14(9):1119-1131.
[72] GROLL U V,BERGER D,ALTMANN T.The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling duringArabidopsisstomatal development[J].PlantCell,2002,14(7):1527-1539.
[73] PETERSON K M,RYCHEL A L,TORII K U.Out of the mouths of plants:the molecular basis of the evolution and diversity of stomatal development[J].PlantCell,2010,22(2):296-306.
[74] CASSON S A,FRANKLIN K A,GRAY J E,etal.Phytochrome B and PIF4 regulate stomatal development in response to light quantity[J].CurrentBiology,2009,19(3):229-234.
[75] SACK F D,CHEN J G.Plant science.Pores in place[J].Science,2009,323(5914):592-593.
[76] CARTWRIGHT H N,HUMPHRIES J A,SMITH L G.PAN1:a receptor-like protein that promotes polarization of an asymmetric cell division in maize[J].Science,2009,323(5914):649-651.
[77] LIU T,OHASHI-ITO K,BERGMANN D C.Orthologs ofArabidopsisthalianastomatalbHLHgenes and regulation of stomatal development in grasses[J].Development,2009,136(13):2265-2276.
[78] ZHANG X,FACETTE M,HUMPHRIES J A,etal.Identification of PAN2 by quantitative proteomics as a leucine-rich repeat-receptor-like kinase acting upstream of PAN1 to polarize cell division in maize[J].PlantCell,2012,24(11):4577.
[79] ZHOU W Q,WANG Y,WU Z,etal.Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice[J].JournalofExperimentalBotany,2016,67(14):4311-4323.
[80] SUTIMANTANAPI D,PATER D,SMITH L G.Divergent roles for maize PAN1 and PAN2 receptor-like proteins in cytokinesis and cell morphogenesis[J].PlantPhysiology,2014,164(4):1905-1917.
[81] FACETTE M R,PARK Y,SUTIMANTANAPI D,etal.The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize[J].NaturePlants,2015,1(2):14024.
[82] HUMPHRIES J A,SMITH L G.ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize[J].PlantCell,2011,23(6):2273-2284.
[83] RAISSIG MT,ABRASH E,BETTADAPUR A,etal.Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2016,113(29):8326.
[84] FRANK M J,SMITH L G.A small,novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells[J].CurrentBiology,2002,12(10):849.
[85] FRANK M J,CARTWRIGHT H N,SMITH L G.Three brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis[J].Development,2003,130(4):753.
[86] BAI J,ZHU X,WANG Q,etal.Rice TUTOU1 encodes a SCAR-like protein that is important for actin organization and panicle development[J].PlantPhysiology,2015,169(2):1179-1191.
[87] RAO Y,YANG Y,XU J,etal.EARLY SENESCENCE1 encodes a SCAR-LIKE PROTEIN2 that affects water loss in rice[J].PlantPhysiology,2015,169(2):1225-1239.
[88] BASU D,ELASSAL E D,LE J,etal.Interchangeable functions ofArabidopsisPIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development[J].Development,2004,131(17):4345.