999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有Beddington-DeAngelis發生率的隨機SIS傳染病模型的定性分析

2018-02-01 04:58:39同遷
關鍵詞:模型

, ,,同遷

(山東科技大學 數學與系統科學學院,山東 青島 266590)

1 引言與模型建立

傳染病是人類的宿敵,人類的歷史充斥著與傳染病的斗爭。傳染病給人類造成了巨大的災難,天花、霍亂、艾滋病等讓人聞之色變[1]。為了控制傳染病,研究者建立了很多數學模型去研究傳染病的傳播動力學[2-6]。在傳染病動力學中,重要的數學模型是KERMACK和MCKENDRICK在1927年提出的倉室模型[7]。在這個倉室模型中,人們被分為三個相互隔離的倉室:易感者倉室“S”,染病者倉室“I”,以及恢復者或移出者倉室“R”。在模型中,易感者可以通過與染病者接觸而轉化為染病者,而染病者可以通過治療轉化為恢復者或移出者,并獲得永久的免疫能力,這個模型被稱之為SIR模型。然而有些疾病并不符合SIR模型,比如流行感冒,患者經過治療后,不能獲得永久免疫力,還有再次感染該種疾病的可能。這樣建立的模型被稱為SIS模型[8]。文獻[7-8]中采用了常見的非線性傳染率-雙線性傳染率βSI。研究者還研究了很多其他類型的非線性傳染率[9-11]。

眾所周知,隨機噪聲因素在傳染病的傳播中起著重要作用,因此,許多學者對傳染病模型隨機性的影響進行了研究[12-13],不同的隨機干擾方法被引入到傳染病模型當中,并取得了很好的結果[14-23]。 基于以上文獻分析,考慮傳染率受到隨機白噪聲干擾即β→σdB(t)及人口輸入、因病死亡率等因素,建立了一類具有Beddington-DeAngelis發生率的隨機型SIS傳染病動力學模型:

(1.1)

這里A表示人口的輸入率(包括人口的出生和遷入),a和b是測量抑制效果的參數,α表示因病死亡率,σ2是噪聲強度,B(t)是標準布朗運動。

2 預備知識

定義2.1對于模型(1.1),

幾乎處處成立。

引理2.4(伊藤公式) 設x(t),t≥0是方程dx(t)=f(x(t),t)dt+g(x(t),t)dB(t),0≤t<∞的解,V∈C2,1(Rn×R+;R)。則函數V(x(t),t)仍是一伊藤過程,具有如下隨機微分:

dV(x(t),t)= [Vt(x(t),t)+Vx(x(t),t)f(x(t),t)

上式稱為伊藤公式。

3 模型的分析

3.1 確定型SIS傳染病模型的定性分析

首先我們考慮確定性SIS傳染病模型:

(3.1)

下面考慮模型(3.1)的平衡點的穩定性。

模型在疾病消除平衡點E0:(S0,0)處的雅可比矩陣為

顯然,若R<1,則疾病消除平衡點E0:(S0,0)是局部穩定的; 若R>1,則疾病消除平衡點E0:(S0,0)是不穩定的。

其特征方程為

λ2+(a11+a22)λ+a11a22-a21a12=0,

其中

顯然

從而特征根總有負實部,故若存在疾病平衡點E:(S*,I*),則疾病平衡點必是局部穩定的。因此得到如下定理。

定理3.1.2對于模型(3.1),

1) R<1,疾病消除平衡點E0:(S0,0)是局部穩定的;

3.2 隨機SIS傳染病模型(1.3)的定性分析

定義

證明:設初值為(S(0),I(0))∈Ω。設(S(t),I(t))是模型(1.1)的具有初值的解。在模型(1.1)的第二個方程中應用伊藤公式得

(3.2)

兩邊在[0,t]上積分得

(3.3)

考慮二次函數

(3.4)

從式子(3.3)可得

(3.5)

(3.5)式兩邊同時除以t(t>0),得

(3.6)

由引理2.3知

式子(3.6)兩邊同時取上極限得

(3.7)

(3.7)式兩邊同時取上極限得

“云計算”是IT技術的一個主流發展方向,“云計算”的普及意味著快捷的空間共享、信息資源共享,也意味著不再需要電腦主機,只要有顯示器或具有相當于顯示器功能的設備、再加上網絡,就可以開展工作。網絡化的系統,應允許從電腦端、以及移動端登錄。基于BIM的各項技術需與“云計算”相結合。

(3.8)

在上式中令ε→0,得到

(3.9)

另一方面,由引理2.2,可以得到

(3.10)

從而由方程(3.9)與(3.10)知

幾乎處處成立,證畢。

定理3.2.2若R*>1,則模型的疾病I(t)是持久的,并且有

證明:對式(1.1)兩端同時求從0到t求積分,并兩邊同時除以t(>0),可以得到

接著可以得到

(3.11)

(3.12)

上式從0到t求積分,然后方程兩邊同時除以t(>0)得

(3.13)

不等式(3.13)可以寫成

(3.14)

對(3.14)式兩端取下極限:

圖1 模型(1.3)的時間序列圖

證畢。

4 數值模擬

為了驗證得到的理論結果,給出一些數值模擬。取基本參數為

A=0.2,μ=0.4,β=2,r=0.2,α=0.1,a=1,b=1。

計算知R=0.952 4<1,根據定理3.2.1,模型的疾病消除平衡點E0:(0.5,0)是局部穩定的(圖1)。若增大人口的輸入率A=0.5,此時R=1.587 3>1,根據定理3.2.2知,模型的疾病平衡點E*:(0.752 7,0.397 8)是局部穩定的(圖2)。

下面在持久的系統上考慮隨機干擾的影響。首先,令σ=1.9,滿足定理3.2.1的第一個條件,于是疾病最終消除(圖3)。其次,令σ=1.7,此時,R*=0.950 2<1, 滿足定理3.2.1的第二個條件,由定理3.2.1知,疾病最終消除(圖4)。若令σ=0.3,經過計算,R*=1.567 5>1,由定理3.2.2知,疾病是持久的(圖5)。

圖2 模型(1.3)的時間序列圖

圖3 確定性模型和隨機模型動力學行為對比

圖4 確定性模型和隨機模型動力學行為對比

圖5 確定性模型和隨機模型動力學行為對比

5 結論

[1]HAMER W H.Epidemic disease in England,Lancet[M].Bedford:Bedford Press,1906:733-739.

[2]BRAUER F,CASTILLO-CHAVEZ C.Mathematical models in population biology and epidemiology[M].2nd Edition.New York:Springer,2012.

[3]MINCHIN E A.The prevention of malaria[J].Indian Medical Gazette,1911,46(2):64-66.

[4]MAY R M,ANDERSON R M,MCLEAN A R.Possible demographic consequences of HIV/AIDS epidemics:I.Assuming HIV infection always leads to AIDS[J].Mathematical Biosciences,1988,90(1):475-505.

[5]ANDERSON R M,MAY R M.Infectious diseases of human:Dynamics and control[M].Oxford:Oxford University Press,1992.

[6]馬知恩,周義倉,王穩地,等.傳染病動力學的數學建模與研究[M].北京:科學出版社,2004.

[7]KERMACK W O,MCKENDRICK A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,1927,115:700-721.

[8]KERMACK W O,MCKENDRICK A G.Contributions to the mathematical theory of epidemics:III.Further studies of the problem of endemicity[J].Bulletin of Mathematical Biology,1991,53(1):57-87.

[9]XU R,MA Z E.Global stability of a SIR epidemic model with nonlinear incidence rate and time delay[J].Nonlinear Analysis Real World Applications,2009,10(5):3175-3189.

[10]LIU W M,LEVIN S A,IWASA Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].Journal of Mathematical Biology,1986,23(2):187-204.

[11]RUAN S,WANG W.Dynamical behavior of an epidemic model with a nonlinear incidence rate[J].Journal of Differential Equations,2003,188(1):135-163.

[12]MAO X R.Stochastic differential equations and applications[M].2nd ed.Chichester:Horwood Publishing,2007.

[13]馮濤,孟新柱.一類捕食者染病的捕食者-食餌系統的隨機動力學行為[J].山東科技大學學報(自然科學版),2017,36(1):99-110.

FENG Tao,MENG Xinzhu.Stochastic dynamics of a predator-prey system with disease in predator[J].Journal of Shandong University of Science and Technology (Natural Science),2017,36(1):99-110.

[14]ZHAO W C,LI J,ZHANG T Q,et al.Persistence and ergodicity of plant disease model with Markov conversion and impulsive toxicant input[J].Communications in Nonlinear Science and Numerical Simulation,2017,48:70-84.

[15]MENG X Z,ZHAO S N,FENG T,et al.Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis[J].Journal of Mathematical Analysis and Applications,2015,433(1):227-242.

[16]CHANG Z B,MENG X Z,LU X.Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates[J].Physica A:Statistical Mechanics and its Applications,2017,472:103-116.

[17]MIAO A Q,ZHANG J,ZHANG T Q,et al.Threshold dynamics of a stochastic SIR model with vertical transmission and vaccination[J].Computational and Mathematical Methods in Medicine,2017:4820183.

[18]MIAO A,WANG X,ZHANG T,et al.Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis[J] Advances in Difference Equations,2017(1):226.

[19]LIU Q,JIANG D Q,SHI N Z,et al.Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence[J].Physica A:Statistical Mechanics and its Applications,2017,469:510-517.

[20]DU N H,NHU N N.Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises[J].Applied Mathematics Letters,2017,64:223-230.

[21]LI C G,PEI Y Z,LIANG X Y,et al.A stochastic toxoplasmosis spread model between cat and oocyst with jumps process[J].Communications in Mathematical Biology and Neuroscience,2016 :Article ID 18.

[22]BERETTA E,KOLMANOVSKII V,SHAIKHET L.Stability of epidemic model with time delays influenced by stochastic perturbations[J].Mathematics and Computers in Simulation,1998,45(3/4):269-277.

[23]LIU M,BAI C Z,WANG K.Asymptotic stability of a two-group stochastic SEIR model with infinite delays[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(10):3444-3453.

猜你喜歡
模型
一半模型
一種去中心化的域名服務本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數模型及應用
p150Glued在帕金森病模型中的表達及分布
函數模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 国产精品成人第一区| 精品国产电影久久九九| 国产精品福利导航| 国产一区二区三区日韩精品| 亚洲天堂网在线观看视频| 国产亚洲欧美在线人成aaaa| 婷婷色婷婷| 欧美午夜视频在线| 国产在线91在线电影| 国产午夜小视频| 国产真实乱子伦精品视手机观看| 亚洲成aⅴ人片在线影院八| 欧美一级夜夜爽| 成人免费午夜视频| 亚洲 欧美 偷自乱 图片 | 黄色免费在线网址| 波多野结衣一二三| 欧美亚洲一区二区三区导航| 成人在线第一页| 九九热精品视频在线| 91系列在线观看| 国产福利不卡视频| 97se亚洲综合在线韩国专区福利| 四虎成人在线视频| 国产青青操| 久久人妻xunleige无码| 亚洲最大综合网| 久久久精品久久久久三级| YW尤物AV无码国产在线观看| 亚洲九九视频| 999精品免费视频| 国产一区二区色淫影院| 欧美国产在线精品17p| 亚洲综合极品香蕉久久网| 乱人伦中文视频在线观看免费| 宅男噜噜噜66国产在线观看| 免费无码又爽又刺激高| 三区在线视频| 国产精品视频导航| 激情乱人伦| 亚洲天堂啪啪| 任我操在线视频| 婷婷中文在线| 亚洲欧美另类日本| 丰满的熟女一区二区三区l| 国产亚洲成AⅤ人片在线观看| 欧美高清三区| 色哟哟国产精品| 亚洲第一精品福利| 久久精品国产精品国产一区| 制服丝袜亚洲| 国产精品视频猛进猛出| 色综合手机在线| 黄色在线网| 免费播放毛片| 国产激情无码一区二区三区免费| 国产精品成人啪精品视频| 55夜色66夜色国产精品视频| 国产天天射| 中文字幕亚洲专区第19页| 中国国产A一级毛片| 国产精品亚洲欧美日韩久久| 91区国产福利在线观看午夜| 草草线在成年免费视频2| 午夜无码一区二区三区| 中文字幕在线欧美| 综合色88| 亚洲精品无码不卡在线播放| 午夜无码一区二区三区在线app| 国产精品露脸视频| 第九色区aⅴ天堂久久香| 精品无码日韩国产不卡av | 高清欧美性猛交XXXX黑人猛交| 激情视频综合网| 亚洲欧洲天堂色AV| 日日拍夜夜操| 久久久久久尹人网香蕉| AV不卡国产在线观看| 国产男人天堂| 久久美女精品国产精品亚洲| 在线视频97| 亚洲人成网18禁|