李 鑫, 申愛琴(.長安大學 公路學院, 陜西 西安 70064; 2.北京交通大學 土木建筑工程學院, 北京 00044)
中國不僅地跨多個氣候帶,而且即使同一地區不同時間段也會有較大溫濕氣候變化,加之極端天氣出現頻繁,環境因素對水泥混凝土路面耐久性和使用壽命的影響正逐漸凸顯.如何綜合中國氣候特點,對溫濕度耦合作用下水泥混凝土路面內的應力、應變進行模擬預估已成為當下亟待解決的問題.
關于溫濕度耦合問題,Philip等[1]早期提出了以水分蒸發、擴散及毛細作用為依據的溫度-多孔介質飽和度雙參數模型;Wang等[2]在分析壓力作用的情況下,結合熱力學不可逆理論,得出了實用化的三參數模型;李友榮等[3]提出了建立在Luikov質-熱傳遞耦合方程上的模擬分析方法,通過研究多孔介質的質、熱傳遞相互影響作用分析了溫濕度通量的耦合關系;李榮濤等[4]通過有限元方法,研究了多場耦合條件下混凝土類多孔介質數值模擬控制方程及本構定律,并對耦合條件下的破壞進行相關對比分析.Puatatsananon等[5-6]也根據相關研究提出了關于水泥混凝土的雙場耦合數值模型,為多場耦合作用下水泥混凝土的耐久性研究提供了更深化的理論基礎;劉純林等[7]通過研究多孔介質在多場耦合作用下的質、熱傳遞規律,結合COMSOL Multiphysics軟件,建立了溫度、濕度及荷載共同作用下的混凝土數值仿真模型,用于多場耦合作用下水泥混凝土的變形觀測.
綜上所述,現有模型運用于不同領域且互不通用,另外對路面混凝土甚少提及.本文綜合考慮中國氣候特點,選取溫濕度耦合條件進行模擬計算,運用COMSOL Multiphysics軟件提出具有代表意義的路面混凝土內部應力分布模型,并對計算所得應力和應變結果進行對比分析,以期對水泥混凝土路面病害的預防和治理進行指導.
所選材料為C30,C40路面混凝土.其中水泥選用P·O 42.5秦嶺牌普通硅酸鹽水泥;集料為創奇集料和細度模數2.80且表觀密度2650kg/m3的級配良好中砂;減水劑為添加了KDSP-1的引氣減水劑;礦粉為比表面積560m2/kg的長城S95優質礦粉;粉煤灰為比表面積270m2/kg的大唐韓城Ⅰ級粉煤灰.路面混凝土砂率為40%(質量分數,文中涉及的砂率、水膠比等均為質量分數或質量比),水膠比為0.34,具體配合比如表1所示.

表1 路面混凝土配合比Table 1 Mix proportion of the pavement concrete kg/m3
不良溫濕度環境會影響水泥混凝土路面的耐久性、壽命及服務水平.結合中國溫濕氣候類型劃分及溫濕度條件出現的頻率,同時綜合考慮水泥混凝土路面可能產生病害的最不利因素,本文選取最具代表性的小溫差干濕循環和大溫差干濕循環作為溫濕度雙場耦合分析的試驗條件進行研究.因路面混凝土板體積較大,不易進行室內試驗,故本文選用100mm×100mm×400mm棱柱體水泥混凝土試件作為溫濕度觀測試件.各試驗條件下分別成型8組試件,在標準條件養護箱內養護28d后進行平行測試,取其平均值與模擬值來對比論證模型的可靠性,然后對模型延伸拓展,即在模型參數不變的情況下,將分析對象變為同等材料的路面混凝土板進行研究.
試件拆模養生后沖擊鉆孔,在試件內5個位置埋入溫濕度傳感器,隨即用環氧樹脂和保鮮膜封堵隔絕,只保留試件的1個側面與外界環境接觸;待環氧樹脂固化后,將試件涂有環氧樹脂并覆蓋保鮮膜的其余5個側面包裹泡沫塑料.內部濕度觀測試件傳感器埋置位置與成品見圖1.

圖1 溫濕度觀測試件傳感器的埋置位置與成品Fig.1 Position of sensors in temperature and humidity test specimen and finished product of specimen(size:mm)
試驗所需溫濕度雙場耦合條件由恒溫恒濕環境箱提供.待環境箱內溫濕度穩定后,將試件平穩置于箱內,傳感器接線外延,保證試件與外界完全隔絕,定期進行數據采集.
模型物理參數分為4類,其中密度、體積等常用物理參數可通過試驗測算獲得,而溫度場、濕度場及力學性能相關參數均根據已有成果、規范及模型算例進行修正或直接應用.詳細模型物理參數見表2.
所建模型為溫濕度共同作用下的混凝土內部應力分析模型,其實質是質、熱、力瞬態三場耦合模型.考慮到模型建立的復雜性和分析計算的合理簡化,作如下基本假設:所用材料均服從各項同性,觀測期內只發生彈性變形而無塑形變形;水泥混凝土各點各物理參數相同;濕度擴散服從Fick第二定律,熱量傳遞服從Fourior定律;水分在混凝土表面蒸發均勻,且只在指定表面蒸發;水分傳輸系數在混凝土內部均勻一致,不受外界影響;混凝土蒸發速率不受混凝土變形的影響.

表2 模型物理參數Table 2 Physical parameters of the model
本文模型在建立和求解過程中所運用的方程如下:(1)溫度控制方程.熱力學第一定律是熱量傳導的最基本定律.本文在熱量傳導方程基礎上,在導熱接口運用傅里葉定律,并忽略液體的黏性擴散和熱壓做功,最終簡化為如下導熱方程形式:
(1)
式中:ρ為物體密度,kg/m3;Cp為定壓比熱容,J/(kg·K);T為絕對溫度,K;t為黏度應力張量,Pa;k為導熱系數,W/(m·K);Q為物體從外界吸收的熱量,W/m3.
(2)濕度控制方程.綜合考慮混凝土內相對濕度與水分含量之間的非線性關系以及溫度對濕度變化產生的影響,可將濕度控制方程表達為如下形式:
(2)
式中:Dh為濕度擴散系數,m2/s;K為單位溫度改變所引起的水分變化量,%;h為混凝土內部的相對濕度,%.
(3)力學控制方程.小變形情況下路面混凝土應力場的力學平衡方程可表達為:
σij,j+Fi=0
(3)
式中:σij,j為外荷載作用下產生的應力;Fi為體力.
混凝土內應力與位移之間的關系可由幾何方程表述,應力與變形之間的關系與相對位移關系密切.在小位移假設下,本文選用的幾何方程為:
(4)
式中:εij為混凝土的應變;ui,j為混凝土的位移;xi和xj為混凝土在i,j軸上的位移極小量.
綜合上述控制方程,同時考慮物理參數的關系與相互作用,本文運用COMSOL Multiphysics軟件偏微分方程組的弱形式解法,在理論上給出真實結果[8-9];通過試驗與模型相對比,在驗證模型合理性的基礎上,對不同條件下路面混凝土內部的應力和應變狀況進行分析研究,最終提出不同強度等級路面混凝土在不同溫濕度耦合條件下的內部應力和應變變化規律.
低溫條件下(-22℃),15d內路面混凝土試件內部各測點的溫度和含水率室內實測值與模型計算值發展趨勢如圖2所示.其中Point 1 S~Point 5 S代表5個測點的模擬值,Point 1 B~Point 5 B為5個測點的實測值.由圖2可見,路面混凝土試件內部各測點的溫度和含水率模擬值變化趨勢和范圍與實測值大體一致,且模擬曲線較實測曲線更加平滑;在低溫條件下,路面混凝土試件內部溫度實測值和模擬值分別最大下降15%和11%,最大相對誤差為12%;路面混凝土試件含水率實測值和計算值最大變化分別為65%和59%,最大相對誤差為15%.由此可見,在低溫環境下,路面混凝土試件模擬值與實測值相差較小,驗證了模型在單一恒定條件下的合理可靠性.
低溫循環條件下(-22~-10℃),15d內路面混凝土內各測點的溫度和含水率實測值和模型計算值發展趨勢如圖3所示.其中Point 1 S~Point 5 S表示5個測點的模擬值,Point 1 B~Point 5 B為5個測點的實測值.由圖3可見,循環條件下,路面混凝土內部溫度實測值和模擬值分別最大下降11%和12%,最大相對誤差為16%,路面混凝土含水率實測值和模擬值最大相對誤差為13%.由此可見,模型計算值與試驗所得結果未見太大偏差,故該模型也適用于循環條件.

圖2 低溫條件下15d內路面混凝土試件內部溫度、含水率的實測值與模擬值發展趨勢Fig.2 Growing trend of simulation value and observed value in temperature and moisture content of pavement concrete specimen within 15days under low temperature

圖3 低溫循環條件下15d內路面混凝土試件內部溫度、含水率的實測值與模擬值發展趨勢Fig.3 Growing trend of simulation value and observed value in temperature and moisture content of concrete specimen within 15days under low temperature cycling
通過對比模擬值與實測值在上述環境下試件內溫、濕度的變化規律后發現,在誤差檢驗滿足要求的基礎上,可將模型運用于溫濕度耦合作用下路面混凝土板內部應力、應變的相關研究.
在參數不變的基礎上,將分析對象換成符合尺寸規范的C30,C40路面混凝土板,在板內體對角線上取5個六等分點為觀測點,來模擬計算各點在選定環境條件下的應力和應變分布規律,從而對不同環境下路面混凝土板內部的受力和薄弱環節有所認知.各觀測點的具體位置如圖4所示.

圖4 路面混凝土板內觀測點位置示意Fig.4 Location of observation points in concrete(size:mm)
將C30,C40路面混凝土板置于大溫差干濕循環條件(相對濕度40%~80%且-18~5℃)下15d進行模擬,得到該條件下混凝土板體內各觀測點的應力和應變情況,如圖5所示.
由圖5可知,在大溫差干濕循環條件下,混凝土板內應力集中于板體中部、棱角和板邊中部,這與不同溫濕環境條件下跟環境接觸的上表面和上表面的4條邊所表現出的收縮、膨脹變形趨勢有關;C30,C40路面混凝土板內最大應力可達0.53,0.59MPa,且C40混凝土板應力更易集中;C30,C40路面混凝土板內各測點應變總體保持上升趨勢,埋置深的測點相對埋置淺的測點應變增長更大,且C30混凝土板在環境影響下變形更大.
在小溫差干濕循環條件(相對濕度40%~80%且-8~2℃)下15d內,C30,C40路面混凝土板內部應力和應變變化如圖6所示.

圖5 相對濕度40%~80%且-18~5℃條件下15d內混凝土板內部應力分布與應變變化規律Fig.5 Rule of internal stress distribution and strain change in C30 and C40concrete plates within 15days under the condition of relative humidity of 40%~80% and -18~5℃

圖6 相對濕度40%~80%且-8~2℃條件下15d內后混凝土板內部應力和應變變化規律Fig.6 Rule of internal stress distribution and strain change in C30 and C40concrete plates within 15days under the condition of relative humidity of 40%~80% and -8~2℃
由圖6可見,該條件下15d內混凝土路面板內應力主要集中于各邊中段及臨近區域,C30,C40路面混凝土板內部最大應力分別為0.45,0.56MPa,較大溫差干濕循環條件降低15%和5%.由應變曲線可以看出,混凝土路面板內各點的應變逐漸上升,相較于大溫差干濕循環條件下的漲勢稍顯平緩,且2種混凝土板的應變變化趨勢大致相同.可見在小溫差干濕循環條件下混凝土內部應力、應變以及溫濕度的重新分布需要更長時間.
將2種環境下15d內不同強度水泥混凝土路面板內部的最大應力和應變匯總如圖7所示.由圖7可見,大溫差干濕循環下的板內最大內應力是小溫差干濕循環條件下的1.1倍左右;C40路面混凝土板內最大應力值在2種環境下分別為C30混凝土板的1.11倍和1.24倍,可見C40路面混凝土更易在溫濕度耦合條件下出現應力集中.由圖7還可見,大溫差干濕循環條件下混凝土路面板的最大內應變是小溫差干濕循環條件下的1.5倍左右;C30混凝土路面板在2種環境下的最大應變值為C40混凝土板的1.1倍和1.4倍,可見C30路面混凝土更易產生內部應變,且在溫度、濕度均存在大梯度循環時,這種現象更明顯.

圖7 不同環境下2種混凝土路面板內部最大應力和應變匯總Fig.7 Summary of internal maximum strain and stress in two kinds of concrete pavement under different conditions
綜上可知,在溫濕度雙場循環條件下,高強度等級混凝土更易出現應力集中,從而產生裂縫等病害,特別是在大溫差干濕循環條件下設計水泥混凝土路面時,并非所選材料的強度等級越高越好;此外,溫濕度雙場循環條件下,低強度等級混凝土的內應變及變形更明顯,故對變形要求嚴格的水泥混凝土路面設計時不宜選用過低強度等級的混凝土材料.
(1)在溫濕度雙場循環條件下路面混凝土板內部會出現應力集中現象,且主要集中于路面板的板體中部、棱角及板邊中部.
(2)在溫濕度雙場均變化的過程中,路面混凝土板內部將自發產生變形,且由深到淺的5個測點應變呈逐漸減小的趨勢.
(3)在2種雙場循環環境中,C40混凝土更易在環境因素下產生應力集中,其最大應力值可達C30路面板的1.11倍和1.24倍,這種現象在小溫差干濕循環環境中更明顯.
(4)C30路面混凝土更易在溫濕度雙場循環下發生變形,其最大內應變值分別是相同環境下C40路面混凝土的1.1倍和1.4倍,且在大梯度循環時,此現象會更加明顯.
(5)大梯度雙場循環條件下,不同強度等級的路面混凝土所產生的內應力、內應變均比小梯度雙場循環條件下大.可見梯度越大的溫濕度變化環境對路面混凝土越不利.
[1] PHILIP J R,DVRIES D A.Moisture movement in porousmaterials under temperature gradients[J].Eos Transactions American Geophysical Union,1957,38(2):222.
[2] WANG B X,SHI D H,PENG X F,et al.Recent developments in flow film boiling heat transfer[J].Progress in Natural Scince,1992,2(6):481.
[3] 李友榮.多孔物料干燥時的耦合傳熱傳質效應[J].工程熱物理學報,1999,20(1):90.
LI Yourong.The couple heat and mass transfer during the drying of a capillary media[J].Journal of Engineering Thermophysics,1999,20(1):90.(in Chinese)
[4] LI X K,LI R T,ZHANG X S,et al.Numerical modeling of coupled thermo-hygro-mechanical processes in concrete at high temperature[J].Engineering Mechanics,2005,22(4):171.
[5] PUATATSANANON W,SAOUMA V E.Nonlinear coupling of carbonation and chloride diffusion in concrete[J].Journal of Materials in Civil Engineering,2005,17(3):264-275.
[6] SAETTA A V,VITALIANI R V.Experimental investigation and numerical modeling of carbonation process in reinforced concerte structures Part one:Theoretical formulation[J].Cement and Concrete Research,2004,34:571-579,
[7] 劉純林,盛凱,石司琴,等.混凝土材料濕熱耦合變形研究進展[J].材料世界,2014,35(5):35.
LIU Chunlin,SHENG Kai,SHI Siqin,et al.Advances in hygro-thermal deformation of concrete meterial[J].World of Material,2014,35(5):35.(in Chinese)
[8] 高原.干濕環境下混凝土收縮與應力研究[D].北京:清華大學,2013.
GAO Yuan.Studies on shrinkage and shrinkage induced stresses of concrete under dry-wet cycles[D].Beijing:Tsinghua University,2013.(in Chinese)
[9] 唐世斌.混凝土溫濕型裂縫開裂過程細觀數值模型研究[D].大連:大連理工大學,2009.
TANG Shibin.Mesoscopic numerical model of thermo-hygro cracking process in concrete[D].Dalian:Dalian University of Technology,2009.(in Chinese)