陳浩,陳康華,徐銀超, ,王云志,祝昌軍,潘晨曦
?
AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層的組織結構與耐腐蝕性能
陳浩1, 2,陳康華1, 2,徐銀超1, 2, 3,王云志3,祝昌軍1, 2,潘晨曦1, 2
(1. 中南大學 粉末冶金國家重點實驗室,湖南 長沙,410083;2. 有色金屬先進材料協同創新中心,湖南 長沙,410083;3. 株洲鉆石切削刀具股份有限公司,湖南 株洲,412000)
采用陰極弧蒸發沉積設備在WC-6% Co(質量分數)基體上制備AlTiN,AlTiN-Cu和AlTiN/ AlTiN-Cu涂層。采用掃描電子顯微鏡(SEM)觀察涂層表面形貌和截面形貌,利用X線衍射儀(XRD)檢測涂層的相結構。采用Tafel極化曲線和電化學阻抗譜(EIS)方法,研究這3種涂層硬質合金在質量分數為3.5%的NaCl溶液中的電化學行為,比較這3種涂層的耐腐蝕性能。研究結果表明:Cu的加入使AlTiN涂層表面液滴增多,但減小晶粒粒度,使涂層結構更加致密,孔隙率減小;與硬質合金基體相比,AlTiN,AlTiN-Cu和AlTiN/ AlTiN-Cu涂層硬質合金的自腐蝕電流(corr)分別降低40%,80%和93%,電荷轉移電阻(ct)分別提高2.91,3.72和7.85 倍,耐腐蝕性能大大提高;3種涂層耐腐蝕能力從強到弱依次為AlTiN/ AlTiN-Cu,AlTiN-Cu和AlTiN。
涂層硬質合金; AlTiN-Cu;AlTiN/ AlTiN-Cu;Tafel極化曲線;電化學阻抗譜;孔隙率
傳統的氮化物硬質涂層(如TiN,CrN和TiAlN等)在一般情況下不易與腐蝕介質反應,表現出良好的耐腐蝕性能[1]。但是,在物理氣相沉積過程中,涂層生長往往會伴隨生成孔洞、微裂紋等缺陷,為腐蝕介質進入基體界面發生局部腐蝕提供了快速通道,從而削弱了PVD涂層的耐腐蝕性[2?3]。為了提高涂層的耐腐蝕性能,常常采用以下方法:增大涂層厚度;添加合金元素;沉積中間層(如Ti和Ni[4]);沉積納米多層涂層(如TiN/NbN[5]和TiAlN/CrN)等。近年來,納米涂層由于其超高的硬度和優異的耐磨性能受到廣泛關注。主要研究的超硬納米涂層有2類[6]:nc-MeN(納米氮化物)/硬質相(如a-Si3N4和a-TiB2)和nc-MeN/軟質相(如Cu和Ni),其中Me是Ti,Cr,Zr和Al等元素。研究表明,Cu作為軟金屬,延展性好且不與N反應,可以優化硬質涂層晶體結構并改善其內應力。IVANOV等[7]研究發現TiN中加入Cu后形成納米涂層,硬度提高到40 GPa(TiN涂層為25 GPa),結合力提高到10.7 N(TiN涂層為3.6 N)。LEU等[8]研究了TiAlN/Cu多層涂層的微觀結構和基本性能,發現加入Cu后,涂層為納米多層結構,硬度降低到25 GPa (TiAlN涂層為30 GPa),彈性模量提高到361 GPa (TiAlN涂層為348 GPa),抗氧化溫度降低。FOX-RABINOVICH等[9]發現,與AlTiN涂層相比,AlTiN/Cu多層涂層熱導率降低,摩擦因數減小,切削鎳基高溫合金壽命提高。目前,人們對AlTiN/AlTiN-Cu涂層研究較少,特別是關于AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層耐腐蝕性能對比研究還未見報道。為此,本文作者基于WC-6%Co(質量分數)硬質合金,對比研究AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層在3.5% NaCl(質量分數)溶液中電化學行為。同時,鑒于孔隙率對涂層的耐腐蝕性能影響重大,本文基于極化曲線,通過Matthew公式對3種涂層的孔隙率進行計算[10]。
采用陰極弧蒸發沉積設備制備各涂層,其中單獨采用粉末冶金Ti33Al67和(Ti33Al67)97Cu3靶材分別制備AlTiN和AlTiN-Cu涂層,同時使用2種靶材制備AlTiN/AlTiN-Cu涂層(基體置于2種靶材中間旋轉),基體選用WC-6%Co(質量分數)合金,反應氣體為氮氣,壓力為1.5~2.5 Pa,沉積溫度為400~500 ℃。
采用場發射掃描電鏡(SEM)觀察AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層的表面形貌、截面形貌并利用其自帶的能譜分析儀(EDS)分析涂層化學成分。采用X線衍射儀(XRD)分析AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層的相結構。
采用上海辰華CHI660E電化學工作站進行電化學實驗,測得開路電位?時間曲線、電化學阻抗譜和Tafel極化曲線。采用3種電極體系:待測試樣為工作電極(工作面積為1 cm2),鉑片電極為輔助電極,飽和甘汞電極(SCE)為參比電極。腐蝕溶液為3.5% NaCl(質量分數)溶液,實驗溫度控制在(20±1) ℃。實驗前樣品浸泡30 min以獲得穩定的開路電位(ocp)。
電化學阻抗譜(EIS)測量參數如下:初始電平為開路電位,掃描頻率為10?2~105Hz,振幅為0.01 V,靜止時間為2 s,選擇自動靈敏度。采用ZSimpWin 3.20軟件,選擇合適的等效電路圖對EIS圖譜進行擬合從而計算獲得EIS電化學參數。
Tafel曲線測量參數如下:初始電位較開路電位為?0.5 V,終止電位較開路電位為+0.5 V,掃描段數為 2 s,掃描速度為5 mV/s,選擇自動靈敏度。測出Tafel曲線后,利用電化學工作站自帶的“Special Analysis”功能得出自腐蝕電位(corr)、自腐蝕電流(corr)和極化電阻(P)等電化學腐蝕參數。
圖1和圖2所示分別為AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層表面形貌和截面形貌的SEM照片,表1所示為3種涂層的EDS成分。AlTiN-Cu和AlTiN/AlTiN-Cu涂層中Cu摩爾數分數分別為1.28%和0.53%。從圖1可見:3種涂層表面均存在孔洞和液滴等缺陷,其中,AlTiN涂層中存在較多孔洞,AlTiN-Cu涂層中孔洞數量明顯減少,但表面液滴增多,而AlTiN/AlTiN-Cu涂層不僅保持較少液滴,而且孔洞數量減小。從圖2可以看出:這3種涂層均與基體結合緊密;AlTiN涂層為柱狀晶結構,測得其厚度為2.70 μm;AlTiN-Cu和AlTiN/AlTiN-Cu涂層均為細晶結構,測得其厚度分別為2.98 μm和2.72 μm。

(a) AlTiN;(b) AlTiN-Cu;(c) AlTiN/AlTiN-Cu

表1 AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層中各元素摩爾數分數

(a) AlTiN;(b) AlTiN-Cu;(c) AlTiN/AlTiN-Cu
表面液滴是陰極弧蒸發沉積技術的一般特征[11],在沉積過程中,部分靶材宏觀粒子飛濺到正在沉積生長的薄膜表面。靶材的導熱系數和熔點影響液滴的形成,導熱系數越高,熔點越低,靶材受熱更快、溫度更高,更容易蒸發。由于Cu導熱系數為401.00 W/(m·K),比Al(237.00 W/(m·K))和Ti(15.240 W/(m·K))的大,導熱性和導電性更好,Ti-Al-Cu靶更容易受熱,會使陰極弧斑處的熔池體積變大,更容易形成金屬液滴。另外,根據Ti-Al二元相圖,當Al摩爾數分數為67%時,TiAl熔點約為1 454 ℃,而Cu的熔點為 1 084 ℃,因此,Ti-Al-Cu靶材比Ti-Al靶材更容易產生液滴。加入Cu后,AlTiN涂層晶粒細化,這可能是因為極小的Cu顆粒存在于AlTiN 晶界處,阻斷了柱狀晶的生長,從而細化晶粒[6]。在AlTiN/AlTiN-Cu涂層的截面形貌中沒有觀察到多層結構,可能是因為調制周期小達幾納米,掃描電鏡無法觀察到;或者是AlTiN-Cu中Cu摩爾數分數太小,AlTiN晶粒連貫生長[9],層狀結構不明顯。
圖3所示為3種涂層的XRD圖譜。從圖3可以看出:AlTiN涂層在37.24°和43.26°處出現2個主要衍射峰,分別對應Ti(Al)N面心立方結構中的(111)和(200)面;AlTiN-Cu和AlTiN/AlTiN-Cu涂層只存在(200)面的衍射峰,且衍射峰比AlTiN涂層的衍射峰寬化,這是晶粒細化的結果;AlTiN-Cu和AlTiN/AlTiN-Cu涂層中均觀察不到Cu的峰,這可能是因為Cu以納米晶形式存在,XRD檢測不出,或者Cu以非晶相存在,或者以分散形式存在[12?13]。

圖3 AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層的XRD圖譜
圖4所示為3.5%(質量分數)NaCl溶液中硬質合金基體和AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層硬質合金的Tafel極化曲線。利用電化學工作站自帶的“Special Analysis”功能得出自腐蝕電位(corr)、陽極Tafel斜率a、陰極Tafel斜率c、極化電阻(p)和自腐蝕電流(corr)等電化學腐蝕參數。其中p和corr分別通過式(1)和(2)(Stern-Geary公式)[2]計算獲得的:


其中:Δ和Δ分別為極化電壓和極化電流;a和c分別為陽極Tafel斜率和陰極Tafel斜率;p為極化電阻。
硬質合金基體的corr為?0.614 V,AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層硬質合金的corr分別為?0.313,?0.402和?0.425 V,與基體相比均向正方向偏移,說明這3種涂層都提高了硬質合金的耐腐蝕性。然而,與AlTiN涂層相比,AlTiN-Cu和AlTiN/AlTiN-Cu涂層樣品的corr向負方向偏移,但這并不意味其耐腐蝕性弱。一般認為,corr越負的材料發生腐蝕反應的傾向越大,但材料一旦進入腐蝕狀態,corr就不再是決定材料腐蝕性能的關鍵因素,表征腐蝕速度的corr成為判定材料耐腐蝕性能的重要指標,corr越小的涂層材料腐蝕速度越低,其耐腐蝕性能也就越強[10]。

1—基體;2—AlTiN;3—AlTiN/Cu;4—AlTiN/AlTiN-Cu。
硬質合金基體的corr為1.903 μA/cm2,AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層硬質合金的corr分別為1.143,0.365和0.138 μA/cm2,相比于基體材料分別降低40%,80%和93%,說明這3種涂層均能夠有效阻止含Cl?溶液的腐蝕,大大提高硬質合金的耐腐蝕性。由corr可以判斷出這3種涂層的耐腐蝕性由大到小依次為AlTiN/AlTiN-Cu,AlTiN-Cu和AlTiN。AlTiN涂層為柱狀晶結構,并伴隨在柱狀晶粒間隙生成一定數量的孔洞和裂紋,能為腐蝕液滲透至硬質合金基體界面提供快速通道;而AlTiN-Cu和AlTiN/AlTiN-Cu涂層均為細晶結構,有效阻礙了腐蝕液進入硬質合金基體界面。AlTiN/AlTiN-Cu涂層表現出更優異的耐腐蝕性,這是因為表面液滴數量較AlTiN-Cu少,液滴不僅易于發生腐蝕反應,而且與涂層結合不緊密易形成裂縫,為腐蝕液提供通道,所以,改善涂層液滴可以提高其耐腐蝕性能[14]。
根據Tafel極化曲線測試結果,可以由下式計算出3種涂層的保護效率(i)[15]:

表2 質量分數為3.5%的NaCl溶液中硬質合金基體和3種涂層硬質合金的電化學腐蝕參數


涂層的孔隙率()可以通過Matthew[16]公式計算得出:

其中:pm為硬質合金基體的極化電阻;p為涂層硬質合金的極化電阻;Δcorr為涂層硬質合金和硬質合金基體的自腐蝕電位之差;a為涂層硬質合金的陽極tafel斜率計算得到的3種涂層孔隙率,AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層的孔隙率分別為7.83%,4.01%和2.23%,與其自腐蝕電流密度(corr)對應的涂層排序一致。
圖5和圖6所示分別為硬質合金基體和AlTiN,AlTiN-Cu及AlTiN/AlTiN-Cu涂層硬質合金的Nyquist圖譜和Bode圖譜。其中:′為阻抗實部;″為阻抗虛部。硬質合金基體和這3種涂層硬質合金的的Nyquist圖譜均表現為1個容抗弧,Bode圖譜(圖6(b))表現為1個峰,說明只有1個時間常數。一般認為,作為材料耐腐蝕性能的直觀判據,容抗弧半徑越大,說明材料的耐腐蝕性能越好。從圖5可以看出:這4種樣品的容抗弧半徑從小至大依次為基體,AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu,說明其耐腐蝕性能依次提高。如圖6(a)所示;AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu這3種涂層硬質合金的lg ||?lg曲線相對于硬質合金基體依次向上移動,說明這3種涂層的阻抗依次提 高[17?18]。這 3種涂層硬質合金Nyquist圖譜中的容抗弧和Bode圖譜(圖6(b))中的峰均出現加寬現象,這與腐蝕溶液通過涂層的孔隙進入基體發生局部腐蝕有關[19]。

1—基體;2—AlTiN;3—AlTiN/Cu;4—AlTiN/AlTiN-Cu。
圖7所示為硬質合金基體和這3種涂層硬質合金的等效電路圖,其中,s為工作電極和參比電極之間的溶液電阻,dl為雙電層電容,ct為電荷轉移電阻。經ZSimpWin 3.20軟件擬合后得到的電化學阻抗譜擬合參數(EIS)見表3,所有結果擬合誤差均小于3%。0和為非線性最小二乘擬合中的可調參數,為lg||?lg圖譜的斜率,一般在0.5~1.0之間。相位角()可以在90°(純電容(=1))和0°(純電阻(=0))之間變化。從表3可看出:與硬質合金基體相比,AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層硬質合金的dl均減小,說明發生腐蝕反應的活性表面區域減少,耐腐蝕性提 高[20];3種涂層硬質合金的dl在0.8~0.9之間,說明涂層表面沒有理想電容;Bode圖譜(圖6(b))顯示3種涂層硬質合金的相位角在75°~80°之間,也說明涂層表面沒有理想電容。與容抗弧半徑相關的ct與材料的耐腐蝕性能成正比,AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層硬質合金的ct分別為83.99,101.3和190.1 kΩ·cm2,比硬質合金基體提高2.91,3.72和7.85 倍,說明涂層大大提高了硬質合金的耐腐蝕性。根據ct得到這3種涂層硬質合金的耐腐蝕性能從大至小依次為AlTiN/AlTiN-Cu,AlTiN-Cu和AlTiN,與Tafel曲線分析得到的結果一致。

(a)lg|Z|?lg f曲線;(b) 相位角?lg f曲線

圖7 硬質合金基體及AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層硬質合金的等效電路圖

表3 硬質合金基體及AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層硬質合金的EIS參數
1) AlTiN涂層為柱狀晶結構,表面存在液滴和孔洞等缺陷;AlTiN-Cu和AlTiN/AlTiN-Cu涂層均為細晶結構且AlTiN/AlTiN-Cu涂層表面液滴和孔洞均較少,結構最致密。
2) 與硬質合金基體相比,AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層硬質合金的自腐蝕電流密度corr分別降低40%,80%和93%,耐腐蝕性能得到明顯提高。AlTiN,AlTiN-Cu和AlTiN/AlTiNi-Cu涂層耐腐蝕性能力依次增強,孔隙率依次減小。
3) 與硬質合金基體相比,AlTiN,AlTiN-Cu和AlTiN/AlTiN-Cu涂層硬質合金的電荷轉移電阻ct分別提高2.91,3.72和7.85 倍,說明這3種涂層的耐腐蝕性從大至小的涂層依次為AlTiN/AlTiN-Cu,AlTiN-Cu和AlTiN,與Tafel曲線所示結果一致。
[1] KRISHNAN V, KRISHNAN A, REMYA R, et al. Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection[J]. Acta Biomater, 2011, 7(4): 1913?1927.
[2] GRIPS V K W, BARSHILIA H C, SELVI V E, et al. Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering[J]. Thin Solid Films, 2006, 514(1/2): 204?211.
[3] YOO Y H, LE D P, KIM J G, et al. Corrosion behavior of TiN,TiAlN,TiAlSiN thin films deposited on tool steel in the 3.5% NaCl solution[J]. Thin Solid Films, 2008, 516(11): 3544?3548.
[4] GRIPS V K W, SELVI V E, BARSHILIA H C, et al. Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering[J]. Electrochimica Acta, 2006, 51(17): 3461?3468.
[5] BARSHILIA H C, PRAKASH M S, POOJARI A, et al. Corrosion behavior of nanolayered TiN/NbN multilayer coatings prepared by reactive direct current magnetron sputtering process[J]. Thin Solid Films, 2004, 460(1/2): 133?142.
[6] WANG X Q, ZHAO Y H, YU B H, et al. Deposition, structure and hardness of Ti-Cu-N hard films prepared by pulse biased arc ion plating[J]. Vacuum, 2011, 86(4): 415?421.
[7] IVANOV Y F, KOVAL N N, KRYSINA O V, et al. Superhard nanocrystalline Ti-Cu-N coatings deposited by vacuum arc evaporation of a sintered cathode[J]. Surface and Coatings Technology, 2012, 207(207): 430?434.
[8] LEU M S, LO S C, WU Jinbao. Microstructure and physical properties of arc ion plated TiAlN/Cu thin film[J]. Surface & Coatings Technology, 2006, 201(7): 3982?3986.
[9] FOX-RABINOVICH G S, YAMAMOTO K, AGUIRRE M H, et al. Multi-functional nano-multilayered AlTiN/Cu PVD coating for machining of Inconel 718 superalloy[J]. Surface and Coatings Technology, 2010, 204(15): 2465?2471.
[10] 張立, 馮于平, 萬慶磊, 等.AlTiN, AlCrN和AlCrSiWN硬質涂層在3.5%NaCl溶液中的耐腐蝕性能和涂層孔隙率研究[C]//第十一次中國硬質合金學術會議, 銀川, 2014: 6?12. ZHANG Li, FENG Yuping, WAN Qinglei, et al. Corrosion resistance and porosity determination of AlTiN, AlCrN和AlCrSiN coatings in 3.5% NaCl solution[C]//The 11th Chinese Cemented Carbide Academic Meeting, Yinchuan, 2014: 6?12.
[11] 龔才. 電弧離子鍍 TiN 薄膜表面液滴及其對薄膜性能的影響研究[D]. 長沙: 中南大學材料科學與工程學院, 2013: 3?9. GONG Cai. Stady of droplets and its effect on performance of TiN film prepared by arc ion plating[D]. Changsha: Central South University. School of Materials Science and Engineering, 2013: 3?9.
[12] FENG Changjie, HU Xian, GIANG Yuanfei, et al. Effects of Cu addition on microstructure and adhesion properties of Ti-Al-N nanocomposite films deposited by magnetron sputtering[J]. Advanced Materials Research, 2013, 652/653/654: 1751?1754.
[13] ?ZTüRK A, EZIRMIK K V, KAZMANLI K, et al. Comparative tribological behaviors of TiN,CrN and MoN, Cu nanocomposite coatings[J]. Tribology International, 2008, 41(1): 49?59.
[14] MADAOUI N, SAOULA N, ZAID B, et al. Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution[J]. Applied Surface Science, 2014, 312(5): 134?138.
[15] YOO Y H, LE D P, KIM J G, et al. Corrosive behavior of TiN,TiAlN,TiAlSiN thin films deposited on tool steel in the 3.5% NaCl solution[J]. Thin Solid Films, 2008, 516(11): 3544?3548.
[16] CREUS J, MAZILLE H, IDRISSI H, et al. Porosity evaluation of protective coatings onto steel, through electrochemical techniques[J]. Surface and Coatings Technology, 2000, 130(2/3): 224?232.
[17] 孔凡靜. 利用EIS研究幾種單涂層和復合涂層在不同條件下的腐蝕失效行為[D]. 北京: 北京化工大學材料科學與工程學院, 2012: 32?37. KONG Fanjing. Using EIS to study the corrosion failure behaviors of several single coating and composite coatings in different conditions[D]. Beijing: Beijing University of Chemical Technology. College of Materials Science and Engineering, 2012: 32?37.
[18] OLIVEIRA V M C A, AGUIAR C, VAZQUEZ A M, et al. Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings[J]. Corrosion Science, 2014, 88(4): 317?327.
[19] WANG H W, STACK M M, LYON S B. The corrosion behavior of macropracticle defects in arc bond-sputtered CrN/NbN superlattice coatings[J]. Surface and Coatings Technology, 2000, 126(2/3): 279?287.
[20] EZHIL SELVI V, WILLIAM GRIPS V K, HARISH C. BARSHILIA, et al. Electrochemical behavior of superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive DC unbalanced magnetron sputtering[J]. Surface & Coatings Technology, 2013, 224(7): 42?48.
(編輯 陳燦華)
Microstructure and corrosion resistance of AlTiN, AlTiN-Cu and AlTiN/AlTiN-Cu coatings
CHEN Hao1, 2, CHEN Kanghua1, 2, XU Yinchao1, 2, 3, WANG Yunzhi3, ZHU Changjun1, 2, PAN Chenxi1, 2
(1. State Key Laboratory of Powder Metallurgy,Central South University, Changsha 410083, China;2. Collaborative Innovation Center of Advanced Nonferrous Structural Materials and Manufacturing,Changsha 410083, China; 3. Zhuzhou Cemented Carbide Cutting Tools Co. Ltd., Zhuzhou 412000, China)
AlTiN, AlTiN-Cu and AlTiN/ AlTiN-Cu coatings were produced by cathode arc evaporation deposition equipment on WC-6% Co substrates. Surface and cross-sectional morphologies of coatings were observed by SEM. Phase structures of coatings were studied by XRD. The corrosion resistances of coatings were investigated using Tafel polarization curve and electrochemical impedance spectroscopy in 3.5% NaCl solution. The results show that the amount of droplets on AlTiN coating surface increases with the increase of addition of Cu, but the grain size of it is refined, and the structure is more compacted, and the porosity decreases. Compared with cemented carbide substrate, the corrosion current densities (corr) of AlTiN, AlTiN-Cu and AlTiN/AlTiN-Cu coated cemented carbides reduce by 40%,80% and 93%, respectively, and the charge transfer resistances(ct) of AlTiN, AlTiN-Cu and AlTiN/AlTiN-Cu coated cemented carbides increase by 2.91,3.72 and 7.85 times, respectively. Obviously, corrosion resistances of coated cemented carbides are greatly improved. The corrosion resistant abilities of three kinds of coatings decreases from large to small in following order: AlTiN/AlTiN-Cu, AlTiN-Cu and AlTN.
coated cemented carbide; AlTiN-Cu; AlTiN/AlTiN-Cu; Tafel polarization curve; electrochemical impedance spectroscopy; porosity
10.11817/j.issn.1672?7207.2018.02.008
TG174.4
A
1672?7207(2018)02?0316?07
2017?01?12;
2017?03?16
國家科技重大專項(2014ZX04012011);國家自然科學基金重大科研儀器設備研制專項(51327902)(Project (2014ZX04012011) supported by the Major National Science and Technology; Project(51327902) supported by the Major Research Equipment Development of National Natural Science Foundation of China)
陳康華,博士,研究員,從事新型鋁合金及其復合材料、涂層硬質合金刀具研究;E-mail:khuachen@csu.edu.cn