999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Snail在 前列腺癌中的研究進展

2018-04-26 06:37:27劉妍徐勇
天津醫藥 2018年3期
關鍵詞:信號

劉妍,徐勇

Snail是近年發現的鋅指轉錄因子,在果蠅中胚層形成中起重要作用,并且與許多腫瘤的發生密切相關。上皮-間質轉化(epithelial-mesenchymal transition,EMT)是腫瘤侵襲和轉移的關鍵步驟。轉錄因子能夠誘導EMT的發生,調控EMT相關基因的表達。近年來研究發現,snail在前列腺癌(prostate cancer,PCa)中高表達,并在 PCa發生發展和侵襲轉移中發揮重要作用。本文就snail調控PCa一系列信號通路以及對PCa的預后評估及治療作一綜述。

1 Snail的結構

Snail基因定位于人類第20號染色體20q12.3,全長5 882 bp,含有3個外顯子。Snail為snail超家族成員之一,snail超家族成員中包括snail1(snail)、snail2(slug)和 snail3(smuc)[1],由高度保守的鋅指結構羧基末端DNA結合區和多變的氨基酸末端調控區組成。鋅指是C2H2型,由2個β-折疊緊密連接1個α-螺旋組成,其氨基末端包含SNAG反式激活區域,與DNA大溝接觸,2個保守的cys和his(C2H2)與Zn離子相連,并與以6個堿基CAGGTG為核心的位置相連,發揮轉錄功能[2-3]。Snail基因上具有糖原合成激酶3β(glycogen synthase kinase 3β,GSK-3β)結合位點,GSK-3β 與 snail結合后發生磷酸化[4],并且可以與特異核心堿基序列基因上的E-box盒連接調節其表達,發揮轉錄抑制因子的作用[5]。

DNA甲基化是表觀遺傳學基因表達調節的重要途徑之一。DNA甲基化可以調節snail基因的表達。Snail在EMT和間質-上皮轉化(mesenchymalepithelial transition,MET)過程中具有重要的作用,并且維持間充質細胞的形態。據文獻報道,snail的轉錄水平與其DNA甲基化水平呈負相關[6]。Snail基因DNA甲基化后,snail啟動子區域的活性顯著降低,組蛋白去乙酰酶促使組蛋白去乙?;?,抑制snail基因的表達。在小鼠的癌癥研究中,snail轉錄與其最接近的啟動子DNA甲基化密切相關,但是在人類snail基因的DNA甲基化作用尚鮮見文獻報道。

2 Snail的功能

2.1 Snail在胚胎發育和傷口愈合中的作用 Ma等[7]研究發現,snail在妊娠小鼠子宮上皮細胞基質部位過表達,但在胚胎未形成的小鼠體內沒有檢測到。胚胎發育過程中snail可以抑制緊密連接蛋白表達[8],促進胚胎穿過內膜與周圍血管建立聯系,促進胚胎發育。Aomatsu等[9]通過對成年雄性BALB/c小鼠的研究表明,snail和slug可以促進人角膜上皮細胞基底層的生長,在角膜損傷的愈合方面具有重要的作用。

2.2 Snail對細胞周期和細胞生長的調控作用 在胚胎發育過程中,snail通過抑制細胞周期蛋白D2(cyclin D2)基因的表達和增加p21 Waf1/Cip1的表達,調控G1期和G1/S控制點,抑制細胞凋亡[10]。另外,在培養經轉化生長因子β(transforming growth factor β,TGF-β)處理的大鼠肝細胞中,伴隨 snail的高表達,只有少數經EMT過程的細胞能夠存活[11]。因此,snail在胚胎發育過程中發揮重要作用。

2.3 Snail在腫瘤干細胞EMT的發生和機體免疫調節中的作用 高表達的snail促進腫瘤干細胞在基質微環境中發生EMT,使腫瘤干細胞向遠處轉移。Snail通過調控免疫細胞因子和調節性T細胞,導致樹突狀細胞損傷,發生免疫抑制,促進腫瘤的進展。Mani等[12]發 現 ,人 類 乳 腺 上 皮 細 胞(human mammary epithelial cells,HMLE)中異常表達的 snail可以引起HMLE聚集成團,促進EMT的發生。這些HMLE具有間充質表型,大量存在于腫瘤形成初期,類似于乳腺腫瘤干細胞(cancer stem cell,CSC)。Kurrey等[13]在卵巢癌的研究中也有相似的發現,snail能有效調節卵巢癌細胞的生長并且參與CSC的自我更新和無限增殖作用,間接地提升腫瘤細胞的自我更新能力,增加富含CD44+/CD24-標志物的卵巢CSC的數量。

2.4 Snail在腫瘤細胞侵襲和遷移中的作用 Snail可以抑制上皮細胞的黏附,促使上皮細胞與間質細胞轉換,增強細胞侵襲能力,導致EMT的發生。在EMT過程中,EMT標志性蛋白——上皮細胞鈣黏蛋白(E-cadherin)下調[14],snail和神經鈣黏素(N-cadherin)上調。在多數腫瘤和胚胎發育過程中,轉換的上皮細胞分離出來,極性發生改變,遷移到機體其他部位,逐漸轉換成為具有侵襲能力的間質細胞。Snail可以通過多條信號通路啟動EMT的發生,發揮重要作用[15-17]。

2.5 Snail通過多條信號通路在EMT發生中的作用 信號通路主要包括TGF-β/表皮生長因子(epidermal growth factor,EGF)、腫瘤壞死因子-β(tumor necrosis factor β,TNF-β)、受體酪氨酸激酶(receptor tyrosine kinases,RTK)、Notch、骨成型蛋白質(bone morphogenetic protein,BMP)以及 Wnt/β-連環蛋白(β-catenin)等。Snail通過多條信號通路能夠降低E-cadherin和上皮細胞標志蛋白表達,并且可以促進間質細胞標志蛋白表達;而小干擾RNA沉默表達 snail時,低表達的 snail能夠促進 E-cadherin過表達,并且降低間質細胞標志蛋白表達[18]。在snail蛋白的中央區域有許多磷酸化位點,snail可以通過這些磷酸化位點來調節其活性[19]。

3 Snail與PCa的關系

3.1 Snail在PCa中的作用 研究發現,snail在PCa組織中高表達,并與PCa的Gleason評分密切相關,由于snail在PCa發展進程中起著重要的作用,snail的表達水平可以用于PCa患者病情的預測,并可為 PCa患者 Gleason評分提供參考[20]。Huang等[21]利用構建熒光素酶報告基因及染色質免疫沉淀技術檢測到PCa組織中轉錄因子snail高表達,通過抑制糖基轉移酶LARGE2的表達,導致α-肌營養不良蛋白聚糖(α-dystroglycan,α-DG)亞糖基化,從而影響PCa的進程。有報道顯示,snail在PCa細胞系PC-3中高表達[22]。PCa細胞系DU145中snail也可以異常高表達[23]。此外,PCa細胞系ARCaP中snail的高表達還可以通過調節氧化應激酶提升活性氧(reactive oxygen species,ROS)的表達水平,促進腫瘤的進展[24]。Emadi等[25]發現 PCa 的8個細胞系中,LNCaP和PC-3細胞中的snail基因表達水平是最高的,沉默snail表達后LNCaP和PC-3細胞大量減少,細胞凋亡顯著增加,低表達的snail可以促進E-cadherin蛋白的表達,降低波形蛋白(vimentin)和N-cadherin蛋白的表達并抑制細胞浸潤,誘導一個完整的MET發生。因此,snail是PCa細胞重要的生存因子和細胞衰老的抑制因子,影響PCa發展的進程。

3.2 Snail通過多條信號通路在PCa中的激活機制 Chen等[26]發現,伴隨 snail的上調,TGF-β 和EGF表達也升高,導致人白細胞抗原Ⅰ類分子(human leucocyte antigenⅠ,HLA-Ⅰ)在 PCa中低表達。Snail和HLA-Ⅰ呈負相關表達,這有利于PCa細胞逃離免疫監視。Smith等[20]得出了相似的研究結論,認為snail在EMT過程中作為一個關鍵的轉錄因子,能促進PCa的發生發展。Liu等[27]發現,PCa細胞能通過RTK-磷脂酰肌醇-3-激酶(PI3K)-蛋白激酶 B(protein kinase B,PKB)/GSK-3β信號通路表達較高水平的snail和成纖維細胞生長因子(basic fibroblast growth factor,bFGF),而 E-cadherin呈低表達。bFGF通過穩定snail蛋白并且增強其轉錄活性,促進PC-3的EMT和腫瘤轉移,提示PCa細胞的EMT表型轉化。而用RNA干擾技術沉默snail基因表達后,PCa中snail基因表達降低,E-cadherin表達升高,提示PCa細胞的EMT表型逆轉。沉默的snail表達也使PCa細胞大量減少,證明snail可以介導PCa細胞發生EMT。Ju等[28]發現,TGF-β可以通過BMP-SMAD4信號通路上調PCa細胞中snail的表達水平,促進PCa細胞增殖。Wang等[29]也報道了snail通過Notch信號通路促進PCa細胞發生EMT,提高癌細胞的侵襲能力。Tao等[30]發現,snail通過 miR-128調控的核糖體 S6蛋白激酶抗體(RPS6KB1)/缺氧誘導因子-1α(hypoxia inducible factor 1α,HIF-1α)/丙 酮 酸 激 酶 M2(PKM2)信號通路調節PCa細胞的生長和能量代謝。此外,snail在去勢抵抗性前列腺癌(castrationresistant prostate cancer,CRPC)中的表達明顯低于激素依賴性PCa[31]。當PCa細胞中snail水平下降時,miR-128水平會增高,減少糖代謝和乳酸生成,抑制RPS6KB1、HIF-1α 和 PKM2 的表達。Santiago等[32]報道稱,淋巴樣增強子結合因子 1(lymphoid enhancer binding factor 1,LEF1)作為 T 細胞因子(T-cell factor,TCF)家族成員之一,通過 Wnt/β-catenin信號通路激活EMT相關基因以及轉錄因子snail,促進 PCa細胞增殖、侵襲、遷移。Hao等[33]對 YKL-40基因的研究也獲得了相似的結論,見圖1。

Fig.1 Schematic diagram of the signaling pathways associated with snail-induced EMT in prostate cancer圖1 Snail調控PCa發生EMT的信號通路示意圖

3.3 Snail在PCa細胞侵襲和轉移中的作用 Snail能夠下調細胞與細胞之間的黏附蛋白E-cadherin,上調間質細胞蛋白vimentin,增強癌細胞的侵襲和轉移能力。Snail還可以通過MAPK信號通路對整合素蛋白進行調控,減少PCa細胞與纖連蛋白和Ⅰ型膠原蛋白等細胞外基質(extracellular matrix,ECM)的黏附能力,促進癌細胞與之分離并轉移,增強PCa細胞的侵襲能力,在細胞解離和代謝方面發揮重要的作用[34]。Lv 等[35]也報道稱,低氧環境能提高PCa細胞的侵襲能力,高表達的snail通過調節侵襲相關基因,在PCa細胞侵襲方面發揮作用;同時,低氧環境還可以上調HIF-1α和腫瘤壞死因子α(tumor necrosis factor α,TNF-α);更重要的是,TNF-α與HIF-1α共同增強snail的穩定性。Snail在PCa中高度表達,抑制E-cadherin的表達并且促進侵襲相關基因基質金屬蛋白酶9(matrix metalloproteinase 9,MMP-9)、纖連蛋白以及波形蛋白表達增高,最終影響PCa細胞侵襲和轉移。Osorio等[36]在snail增加PCa細胞侵襲力方面也得到了相同的結論。

3.4 Snail在PCa預后評價和治療中的作用 Wen等[37]研究證實,snail高表達的PCa患者生化復發可能會較早出現,患者需要早期進行輔助性治療。Poblete等[38]發現,Gleason 評分高的 PCa患者體內snail基因的表達水平更高,可以通過snail表達水平對PCa的進展進行評估。這一發現為PCa患者的早期診斷及個體化治療等方面提供了廣闊的應用前景。

Neal等[39]研究顯示,snail可以通過抑制乳腺絲抑蛋白(maspin)啟動子區域的活性而抑制其蛋白的表達,導致PCa細胞間黏附降低,促進PCa細胞的轉移以及EMT的發生。因此,snail可以作為PCa治療的靶向基因,通過促進乳腺絲抑蛋白在PCa細胞中重新表達,阻止PCa的進程。Barnett等[24]研究證實,snail調控氧化應激酶并激活細胞外信號調節激酶(extracellular signal-regulated kinase,ERK),增加ROS,調節EMT的發生。因此,snail將可能成為阻止PCa進程的靶向基因。

值得注意的是,Tang等[40]研究發現,牛磺酸對EMT相關基因以及snail具有抑制作用,在PCa細胞中作為EMT的抑制劑發揮作用,從而應用于PCa的靶向治療。此外,藤黃酸也可以起到相同的作用,降低 PCa細胞的侵襲能力[41]。

恩雜魯胺作為雄激素受體抑制劑,能夠競爭性地抑制雄激素(androgen)與雄激素受體(androgen receptor,AR)的結合,抑制PCa細胞的增殖并導致其死亡。在恩雜魯胺作用下,PCa細胞中的snail基因表達降低,臨床廣泛地將恩雜魯胺用于PCa的雄激素阻斷治療。但是近年來,Miao等[31]通過對C42細胞和CRPC組織的研究表明,恩雜魯胺能夠增強PCa細胞上皮細胞-間質轉化可塑性(epithelial-tomesenchymal plasticity,EMP),同時伴隨 AR 的降低、snail的激活以及間質細胞標志物的表達,促進PCa細胞的轉移,認為采用恩雜魯胺治療PCa可能存在治療抵抗。因此snail對于長期使用恩雜魯胺的CRPC患者的療效仍有待于進一步持續監測[42]。

綜上所述,目前研究表明轉錄因子snail在PCa中高度表達,在PCa的發生發展中起重要的作用。因此,snail有望成為PCa新的臨床診斷指標,為PCa的早期診斷、預后判斷提供幫助,為建立PCa個性化基因治療提供新的基因靶點。

[1]Kaufhold S,Bonavida B.Central role of snail1 in the regulation of EMT and resistance in cancer:a target for therapeutic intervention[J].J Exp Clin Cancer Res,2014,33:62.doi:10.1186/s13046-014-0062-0.

[2]Villarejo A,Cortés-Cabrera A,Molina-Ortíz P,et al.Differential role of snail1 and snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition[J].J Biol Chem,2014,289(2):930-941.doi:10.1074/jbc.M113.528026.

[3]Prokop JW,Liu Y,Milsted A,et al.A method for in silico identification of SNAIL/SLUG DNA binding potentials to the E-box sequence using molecular dynamics and evolutionary conserved amino acids[J].J Mol Model,2013,19(9):3463-3469.doi:10.1007/s00894-013-1876-y.

[4]Zhao J,Ou B,Han D,et al.Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways[J].Mol Cancer,2017,16(1):70.doi:10.1186/s12943-017-0629-4.

[5]Izawa G,Kobayashi W,Haraguchi M,et al.The ectopic expression of Snail in MDBK cells does not induce epithelial-mesenchymal transition[J].Int J Mol Med,2015,36(1):166-172.doi:10.3892/ijmm.2015.2215.

[6]Chen Y,Wang K,Qian CN,et al.DNA methylation is associated with transcription of Snail and Slug genes[J].Biochem Biophys Res Commun,2013,430(3):1083-1090.doi:10.1016/j.bbrc.2012.12.034.

[7]MaXH,Hu SJ,Yu H,etal.Differentialexpression of transcriptional repressor snail gene at implantation site in mouse uterus[J].Mol Reprod Dev,2006,73(2):133-141.

[8]De Chiara L,Andrews D,Watson A,et al.miR302 regulates SNAI1 expression to control mesangial cell plasticity[J].Sci Rep,2017,7:42407.doi:10.1038/srep42407.

[9]Aomatsu K,Arao T,Abe K,et al.Slug is upregulated during wound healing and regulates cellular phenotypes in corneal epithelial cells[J].Invest Ophthalmol Vis Sci,2012,53(2):751-756.doi:10.1167/iovs.11-8222.

[10]Sun G,Guzman E,Balasanyan V,et al.A molecular signature for anastasis,recovery from the brink of apoptotic cell death[J].J Cell Biol,2017,216(10):3355-3368.doi:10.1083/jcb.201706134.

[11]ValdesF,AlvarezAM,LocascioA,etal.Theepithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor Beta in fetal rat hepatocytes[J].Mol Cancer Res,2002,1(1):68-78.

[12]Mani SA,Guo W,Liao MJ,et al.The epithelialmesenchymal transition generates cells with properties of stem cells[J].Cell,2008,133(4):704-715.doi:10.1016/j.cell.2008.03.027.

[13]Kurrey NK,Jalgaonkar SP,Joglekar AV,et al.Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells[J].Stem Cells,2009,27(9):2059-2068.doi:10.1002/stem.154.

[14]Wallesch M,Pachow D,Blücher C,et al.Altered expression of E-cadherin-related transcription factors indicates partial epithelialmesenchymal transition in aggressive meningiomas[J].J Neurol Sci,2017,380:112-121.doi:10.1016/j.jns.2017.07.009.

[15]Zheng H,Li W,Wang Y,et al.Glycogen synthase kinase-3 beta regulates snail and beta-catenin expression during Fas-induced epithelial-mesenchymal transition in gastrointestinal cancer[J].Eur J Cancer,2013,49(12):2734-2746.doi:10.1016/j.ejca.2013.03.014.

[16]Wang H,Fang R,Wang XF,et al.Stabilization of snail through AKT/GSK-3 beta signaling pathway is required for TNF-alphainduced epithelial-mesenchymal transition in prostate cancer PC3 cells[J].Eur J Pharmacol,2013,714(1/2/3):48-55.doi:10.1016/j.ejphar.2013.05.046.

[17]Nagarajan D,Melo T,Deng Z,et al.ERK/GSK3beta/snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition[J].Free Radic Biol Med,2012,52(6):983-992.doi:10.1016/j.freeradbiomed.2011.11.024.

[18]Yonemori K,Kurahara H,Maemura K,et al.Impact of Snail and E-cadherin expression in pancreatic neuroendocrine tumors [J].Oncol Lett,2017,14(2):1697-1702.doi:10.3892/ol.2017.6306.

[19]Tarasewicz E,Rivas L,Hamdan R,et al.Inhibition of CDK-mediated phosphorylation of Smad3 results in decreased oncogenesis in triple negative breast cancer cells[J].Cell Cycle,2014,13(20):3191-3201.doi:10.4161/15384101.2014.950126.

[20]Smith BN,Odero-Marah VA.The role of snail in prostate cancer[J].Cell Adh Migr,2012,6(5):433-441.doi:10.4161/cam.21687.

[21]Huang Q,Miller MR,Schappet J,et al.The glycosyltransferase LARGE2 is repressed by Snail and ZEB1 in prostate cancer[J].Cancer Biol Ther,2015,16(1):125-136.doi:10.4161/15384047.2014.987078.

[22]Furuya S,Endo K,Takahashi A,et al.Snail suppresses cellular senescence and promotes fibroblast-led cancer cell invasion[J].FEBS Open Bio,2017,7(10):1586-1597.doi:10.1002/2211-5463.12300.

[23]Luo W,Tan P,Rodriquez M,et al.Leucine-rich repeat-containing G protein-coupled receptor 4(Lgr4)is necessary for prostate cancer metastasis via epithelial-mesenchymal transition[J].J Biol Chem,2017,292(37):15525-15537.doi:10.1074/jbc.M116.771931.

[24]Barnett P,Arnold RS,Mezencev R,et al.Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells[J].Biochem Biophys Res Commun,2011,404(1):34-39.doi:10.1016/j.bbrc.2010.11.044.

[25]Emadi Baygi M,Soheili ZS,Schmitz I,et al.Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines[J].Cell Biol Toxicol,2010,26(6):553-567.doi:10.1007/s10565-010-9163-5.

[26]Chen XH,Liu ZC,Zhang G,et al.TGF-β and EGF induced HLAI downregulation is associated with epithelial-mesenchymal transition(EMT)through upregulation of snail in prostate cancer cells[J].Mol Immunol,2015,65(1):34-42.doi:10.1016/j.molimm.2014.12.017.

[27]Liu ZC,Wang HS,Zhang G,et al.AKT/GSK-3β regulates stability and transcription of snail which is crucial for bFGF-induced epithelial– mesenchymal transition of prostate cancer cells[J].Biochim Biophys Acta,2014,1840(10):3096-3105.doi:10.1016/j.bbagen.2014.07.018.

[28]Ju X,Casimiro MC,Gormley M,et al.Identification of a cyclin D1 network in prostate cancer that antagonizes epithelial-mesenchymal restraint[J].Cancer Res,2014,74(2):508-519.doi:10.1158/0008-5472.CAN-13-1313.

[29]Wang W,Wang L,Mizokami A,et al.Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling[J].Chin J Cancer,2017,36(1):35.doi:10.1186/s40880-017-0203-x.

[30]Tao T,Li G,Dong Q,et al.Loss of snail inhibits cellular growth and metabolism through the miR-128-mediated RPS6KB1/HIF-1α/PKM2 signaling pathway in prostate cancer cells[J].Tumour Biol,2014,35(9):8543-8550.doi:10.1007/s13277-014-2057-z.

[31]Miao L,Yang L,Li R,et al.Disrupting androgen receptor signaling induces snail-mediated epithelial-mesenchymalplasticity in prostate cancer[J].Cancer Res,2017,77(11):3101-3112.doi:10.1158/0008-5472.CAN-16-2169.

[32]Santiago L,Daniels G,Wang D,et al.Wnt signaling pathway protein LEF1 in cancer,as a biomarker for prognosis and a target for treatment[J].Am J Cancer Res,2017,7(6):1389-1406.

[33]Hao H,Wang L,Chen H,et al.YKL-40 promotes the migration and invasion of prostate cancer cells by regulating epithelial mesenchymal transition[J].Am J Transl Res,2017,9(8):3749-3757.

[34]Neal CL,Mckeithen D,Odero-Marah VA.Snail negatively regulatescelladhesion to extracellularmatrix and integrin expression via the MAPK pathway in prostate cancer cells[J].Cell Adh Migr,2011,5(3):249-257.

[35]Lv L,Yuan J,Huang T,et al.Stabilization of Snail by HIF-1α and TNF-α is required for hypoxia-induced invasion in prostate cancer PC3 cells[J].Mol Biol Rep,2014,41(7):4573-4582.doi:10.1007/s11033-014-3328-x.

[36]Osorio LA,Farfán NM,Castellón EA,et al.Snail transcription factor increases the motility and invasive capacity of prostate cancer cells[J].Mol Med Rep,2016,13(1):778-786.doi:10.3892/mmr.2015.4585.

[37]Wen YC,Chen WY,Lee WJ,et al.Snail as a potential marker for predicting the recurrence of prostate cancer in patients at stage T2 after radical prostatectomy[J].Clin Chim Acta,2014,431:169-173.doi:10.1016/j.cca.2014.01.036.

[38]Poblete CE,Fulla J,Gallardo M,et al.Increased snail expression and low syndecan levels are associated with high Gleason grade in prostate cancer[J].Int J Oncol,2014,44(3):647-654.doi:10.3892/ijo.2014.2254.

[39]Neal CL,Henderson V,Smith BN,et al.Snail transcription factor negatively regulates maspin tumor suppressor in human prostate cancer cells[J].BMC Cancer,2012,12:336.doi:10.1186/1471-2407-12-336.

[40]Tang Y,Kim YS,Choi EJ,et al.Taurine attenuates epithelialmesenchymal transition-related genes in human prostate cancer cells[J].Adv Exp Med Biol,2017,975:1203-1212.doi:10.1007/978-94-024-1079-2_96.

[41]Lu L,Tang D,Wang L,et al.Gambogic acid inhibits TNF-αinduced invasion of human prostate cancer PC3 cells in vitro through PI3K/Akt and NF-kB signaling pathways[J].Acta Pharmacol Sin,2012,33(4):531-541.doi:10.1038/aps.2011.180.

[42]Sidaway P.Enzalutamide promotes mesenchymal plasticity via snail activation[J].Nat Rev Urol,2017,14(6):325.doi:10.1038/nrurol.2017.55.

猜你喜歡
信號
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
7個信號,警惕寶寶要感冒
媽媽寶寶(2019年10期)2019-10-26 02:45:34
孩子停止長個的信號
《鐵道通信信號》訂閱單
基于FPGA的多功能信號發生器的設計
電子制作(2018年11期)2018-08-04 03:25:42
基于Arduino的聯鎖信號控制接口研究
《鐵道通信信號》訂閱單
基于LabVIEW的力加載信號采集與PID控制
Kisspeptin/GPR54信號通路促使性早熟形成的作用觀察
主站蜘蛛池模板: 成人av专区精品无码国产| 亚洲人成成无码网WWW| 综合五月天网| 国内熟女少妇一线天| 国产美女无遮挡免费视频网站| 免费观看国产小粉嫩喷水| 四虎精品黑人视频| 国模视频一区二区| 欧美在线免费| 色综合成人| 97亚洲色综久久精品| 91www在线观看| 亚洲男人的天堂网| 四虎成人免费毛片| 欧美啪啪一区| 国产一在线观看| 99r在线精品视频在线播放| 成人精品免费视频| 国产精品污视频| 国产91无码福利在线| 色偷偷一区二区三区| 538国产在线| 欧美专区在线观看| 国产va免费精品| 亚洲AV无码乱码在线观看代蜜桃| 一本大道东京热无码av| 波多野结衣一区二区三区88| 四虎永久在线| 波多野结衣一二三| 欧美一级特黄aaaaaa在线看片| 精品一区二区久久久久网站| 亚洲乱码在线播放| 国产精品播放| 欧美福利在线观看| 亚洲首页在线观看| 亚洲最大综合网| 国产精品香蕉在线| 日本不卡在线播放| 国产精品毛片一区视频播| 久久频这里精品99香蕉久网址| 日本一区二区三区精品国产| 亚洲性日韩精品一区二区| 国产无遮挡裸体免费视频| 亚洲bt欧美bt精品| a天堂视频| 日韩天堂视频| 中文字幕久久波多野结衣| 亚洲国产精品日韩av专区| 亚洲免费福利视频| 亚洲香蕉久久| 91福利免费| 国产亚洲欧美日韩在线一区| 亚洲精品在线观看91| 99热这里只有精品免费国产| 啪啪免费视频一区二区| 69精品在线观看| 国产精品尤物在线| 亚洲伊人天堂| 中文字幕av一区二区三区欲色| 久久亚洲国产一区二区| 91精品啪在线观看国产| 巨熟乳波霸若妻中文观看免费| www成人国产在线观看网站| 日韩无码白| 幺女国产一级毛片| 女人天堂av免费| 国产91高跟丝袜| 国产精品免费入口视频| 新SSS无码手机在线观看| 91麻豆精品国产高清在线| 日韩精品亚洲一区中文字幕| 992Tv视频国产精品| 欧美日韩一区二区三区四区在线观看| 免费精品一区二区h| 福利视频99| 色综合a怡红院怡红院首页| 日韩成人在线一区二区| 亚洲国产一区在线观看| 波多野结衣中文字幕一区二区| 久久这里只精品热免费99| 8090成人午夜精品| 欧美成人a∨视频免费观看|