劉 丹,張 帥,唐玉姣,尹 靜,譚興伶,陳 茜,于志國,林俊杰*
(1.重慶三峽職業學院農林科技系,重慶 萬州 404100;2.重慶三峽學院三峽庫區水環境演變與污染防治重慶高校市級重點實驗室,重慶 萬州 404155;3.南京信息工程大學水文氣象學院,南京 210044)
土壤氮素主要以有機氮形態存在,是無機氮的重要來源,其礦化特征對植物養分供給具有重要意義,但其需經微生物轉化成銨態氮和硝態氮才能被植物直接利用[1]。而無機氮極易淋溶進入水體,從而增加水體富營養化風險。
特殊的調蓄水制度使三峽支流不同水位高程消落帶經歷了不同程度的干濕循環[2-3],消落帶生源要素周轉速率、氧化還原狀態、水土界面過程等均發生了明顯變化[4-5]。三峽支流蓄水期水流緩慢[6],氮素進入水體不易遷移擴散,可能造成水體富營養化等水生態問題,因此,查明干濕循環條件下,三峽支流消落帶沉積物氮礦化動力學過程至關重要。
氮礦化是陸地生態系統氮循環的關鍵[7],主要受凋落物輸入、微生物和酶活性以及根際過程等生物因子[8-10],以及溫度、濕度、pH 等非生物因素的影響[11-14]。氮礦化動力學參數可用來衡量氮礦化潛力和供氮能力,通過模型擬合可進行動力學參數估算。氮礦化模型按有機物分解過程可分為零階、一階、雙一階和混階動力學模型[15-17];按建模方式可分為有效積溫模型(EATM)、機理模型和功能模型[18];按有機氮性質分為One-pool、Two-pool、Special及多氮庫模型[19]。張玉玲等[20]研究表明,Special模型是長期施肥水稻土氮礦化過程的最佳模型;盧紅玲等[21]研究黃土高原石灰性土壤氮礦化模型發現,Two-pool和Special模型優于One-pool和有效積溫模型,且Special模型淹水條件下更優;Gil等[22]研究發現,Special模型更適合長期施肥后土壤氮礦化過程模擬;Li等[23]研究上海地區水稻土壤氮礦化模型發現,Two-pool和Special模型對氮礦化的過程模擬效果最好,且Special模型的參數最優;Camargo等[24]對巴西南部土壤氮礦化過程進行模型擬合,發現One-pool和Two-pool模型擬合效果較好,但參數估算過程較為復雜;劉青麗等[25]研究表明,在變溫條件下有效積溫模型能更好地模擬土壤氮礦化過程,而指數模型能較好地描述氮礦化對水分變化的響應。可見,查明不同環境條件下氮礦化動力學最佳模型至關重要。
本研究以三峽支流彭溪河消落帶為研究對象,從有機氮分解過程角度結合 One-pool、Two-pool、Special、EATM對消落帶沉積物氮礦化過程進行了擬合,通過多元回歸建立了基本理化性質與擬合參數的估算方程,旨在為查明三峽支流水體富營養化頻發和消落帶植被適生性下降等問題提供科學依據。
三峽庫區特殊的調蓄水制度使得庫區水位在145~175 m之間呈年際周期性漲落。本研究于2015年6月庫區水位最低、消落帶裸露期間采集三峽支流澎溪河上游(渠口鎮)和下游(雙江鎮)兩個水文斷面的低水位(150 m)和高水位(170 m)高程的表層(0~15 cm)沉積物樣品,每個水位高程由3個隨機采樣點組成(圖1)。采集的原狀新鮮樣品于4℃保存,一部分用于氮礦化培養實驗,另一部分經凍干、剔除植物根系、過篩后用于基本理化性質測定。
2013—2017年三峽庫區萬州水文站水位波動和水位高程與淹水時間的關系見圖2。消落帶水位高程和淹水時間呈顯著負相關,水位越低淹水時間越長,150 m水位高程淹水時間約325 d·a-1,主要集中在8月至次年6月,170 m水位高程主要淹水時間約123 d·a-1,主要集中 10 月至次年 1 月。
采用連續淹水厭氧培養法對氮礦化速率進行了測定[26],具體步驟如下:準確稱取10.00 g經預處理樣品于50 mL培養瓶,按水土比2∶1加入去離子水,以高純氮(>99.99%)保持厭氧,控制氧氣<1×10-6,使體系始終處于厭氧狀態,密封,每個樣品3次重復,于35℃恒溫培養箱中避光培養[27]。分別于第3、7、14、21、28 d破壞性取樣,因厭氧條件,故不考慮NO-3-N變化,只測定 NH+4-N 含量[28]。


圖2 水位高程與淹水時間之間的關系Figure 2 Relationship of water level altitude with flood time
pH值采用0.01 mol·L-1CaCl2浸提法測定,有機質(OM)采用重鉻酸鉀容量法測定,NH+4-N采用靛酚藍比色法測定,NO-3-N采用2 mol·L-1KCl浸提比色法測定,沉積物粒徑組成采用比重法測定,總磷(P)采用堿熔-鉬銻抗分光光度法測定,總碳(C)和總氮(N)用元素分析儀(意大利EA3000)測定,溶解性有機碳(DOC)用總有機碳分析儀測定(TOC-VCPN)。
1.5.1 One-pool模型
One-pool模型是在一階指數模型基礎上提出的,假設氮庫由單一組分組成,具體如下[29]:

式中:Nm為累積氮礦化量,mg·kg-1;N 為總氮含量,g·kg-1;fd為易礦化氮占總氮比值,%;kd為易礦化氮礦化速率常數,d-1。
1.5.2 Two-pool模型
將有機氮庫分為兩部分,即易礦化氮庫和難礦化氮庫,具體如下[30]:

式中:kr為難礦化氮礦化速率常數,d-1。
1.5.3 Special模型
Special模型是在雙庫氮礦化模型基礎上提出的,假設氮庫存在一個較穩定且較慢礦化的部分,且該部分更符合零階方程,具體如下[31]:

式中:kt為較慢礦化部分礦化速率常數,d-1。
1.5.4 有效積溫模型(EATM)
有效積溫模型是以溫度為主導因素的模型,具體如下[32]:

式中:T為培養溫度,℃;T0為基點溫度,℃;t為培養時間,d;k和n為礦化常數。n<1時,單位有效積溫所礦化氮量隨培養時間的增加逐漸減少;n>1時相反。
利用Microsoft Excel 2010對數據進行處理,利用SigmaPlot 12.0對四種氮庫模型進行擬合及繪圖,利用IBM SPSS Statistic 20對數據進行統計分析,并通過多元逐步回歸分析建立基于沉積物基本理化性質的氮礦化動力學參數估測方程,用調整的確定系數和均方根誤差判斷模型優劣。
模型調整的確定系數(R2adj)公式為:

式中:n指觀測樣品數;R2為模型確定系數;M為變量個數,理論上R2adj位于0~1之間,其越接近1,表明模型模擬越準確。
均方根誤差(RMSE)公式為:

式中:ym指觀測值;yp指估測值。RMSE越小,表明預測誤差越小,模型精度越高。
沉積物基本理化性質見表1。從表1可知,研究區沉積物C、N、C/N、OM在低水位高程含量更高,而P與之相反,DOC在水位高程分布上無顯著差異。沉積物粘粒和粉粒在水位高程上分布表現為低水位高程>高水位高程,而砂礫與之相反。總體上,砂礫>粉粒>粘粒。NH+4-N表現為低水位高程>高水位高程,而NO-3-N分布與其相反。
對三峽支流消落帶沉積物氮礦化過程采用Onepool、Two-pool、Special及有效積溫模型進行擬合見圖3,模型參數見表2。在水位高程上,凈氮礦化累積量均表現為低水位高程大于高水位高程,且隨時間延長顯著增加(P<0.05);有效積溫模型對不同水位高程沉積物礦化情況進行擬合得到的n值均小于1,表明單位有效積溫所礦化氮量隨培養時間的增加逐漸減少。k值代表礦化強度,相關分析表明,k值與累積礦化氮呈顯著正相關。One-pool模型在低水位高程Nd值最大,RMSE值最低,Special模型在高水位高程Nd值最大,RMSE值最低。
將氮礦化模型擬合參數與沉積物基本理化性質進行相關分析(表 3),結果表明,fd與 C、N、C/N、NH+4-N、OM、粉粒呈極顯著負相關(P<0.01),與砂礫、NO-3-N呈極顯著正相關(P<0.01);kd與C、N、C/N、NH+4-N、OM、粉粒呈極顯著正相關(P<0.01),與砂礫、NO-3-N呈極顯著負相關(P<0.01)。可見,C、N、C/N、OM、NH+4-N、NO-3-N、粉粒和砂礫可能為預測沉積物氮礦化動力學參數的決定因子。
將模型參數fd和kd作為因變量,利用相關性分析所得預測沉積物氮礦化動力學參數的決定因子(C、N、C/N、OM、NH+4-N、NO-3-N、粉粒和砂礫)作為自變量進行多元逐步線性回歸,建立的模型參數預測方程見表4。從表4可知,氮礦化動力學模型參數fd和kd可用C/N和OM進行估算,模型參數fd和kd的R2adj分別為0.985和0.963,RMSE分別為0.006和0.000 4,P值均小于0.01。可見,該預測方程可較好地預測消落帶氮礦化模型參數fd和kd。

表1 消落帶沉積物基本理化性質Table 1 Physico-chemical properties of the sediments in the WLF zone

圖3 沉積物氮礦化模型擬合Figure 3 Model fitting of soil nitrogen mineralization kinetics

表2 沉積物氮礦化動力學參數擬合Table 2 Fitted parameters for the nitrogen mineralization kinetic models

表3 氮礦化動力學參數與沉積物理化性質相關性Table 3 Pearson′s correlation between kinetic parameters and soil physio-chemical properties
澎溪河消落帶沉積物C、N、C/N、NH+4-N、NO-3-N含量隨水位高程變化差異顯著(表1),其中,C、N、C/N和NH+4-N隨水位高程降低而增加,而NO-3-N含量隨水位高程降低而降低。可能原因為,一方面,低水位高程淹水脅迫時間較長(年淹水時間為325 d),缺氧條件下NH+4-N向NO-3-N轉化受限,且NH+4-N帶正電荷,易被沉積物吸附,不易流失,表現為NH+4-N累積[33];另外,沉積物NO-3-N帶負電荷溶水性,使其更易進入水體[34-35],表現為NO-3-N流失;同時,還原條件下沉積物碳氮礦化較慢,可能是導致低水位高程C、N和C/N較高的原因。另一方面,高水位高程淹水時間較短(年淹水時間為123 d),落干條件下沉積物暴露于空氣中,NH+4-N易通過硝化作用轉化為NO-3-N,且可通過 NH3形式揮發而損失[36-38],表現為 NH+4-N 流失、NO-3-N累積。而植被適生性、多樣性和生物量等均隨高程增加而增強(大)[39],可能與沉積物NH+4-N和NO-3-N分布存在一定內在聯系。另外,沉積物氮礦化累積量培養前期快速上升,后期趨于穩定,這與顧春朝等[40]所得結果一致。可能原因為,一方面,淹水初期,厭氧微生物迅速繁殖并將有機氮分解為銨態氮。隨著培養時間延長,銨態氮積累,厭氧微生物數量飽和。李建兵等[41]研究表明,過高的銨態氮可能抑制微生物生長,使氮礦化累積量趨于穩定。另一方面,短期培養過程中氮礦化主要來自易分解氮庫,這部分氮庫受團聚體等物理化學保護較弱,易被優先分解礦化。隨著培養時間延長易分解氮消耗殆盡,而沉積物中難分解氮庫組分受團聚體等物理化學作用保護較強,難于分解礦化[42-43]。
四種氮礦化動力學模型均能夠較好擬合消落帶沉積物氮礦化動力學過程,其中One-pool模型對低水位高程擬合RMSE值最小,效果最好;Special模型對高水位高程擬合RMSE值最小,效果最好。消落帶沉積物氮素礦化過程中,不同水位高程沉積物易礦化氮庫礦化勢(Nd)存在顯著差異(表2),表現為在低水位高程高于高水位高程,沉積物C、N、C/N、NH+4-N、NO-3-N、OM、粉粒、砂礫與沉積物易礦化氮庫礦化勢(fd)和易礦化速率(kd)顯著相關,受沉積物理化性質影響較大。劉杏認等[44]研究表明,在一定濕度范圍內含水量增加使沉積物氮礦化速率增加。Harrison-Kirk等[45]的研究表明土壤質地會影響土壤含水量和通氣孔隙,從而影響氮礦化過程。Hanan等[13]的研究表明pH的變化會對氮礦化過程產生影響。林俊杰等[46]研究表明,消落帶沉積物氨化、硝化及凈氮礦化速率與其N本底值正相關。氮礦化動力學參數估算表明,C/N和OM是控制模型參數fd和kd的關鍵因素。Haer等[47]研究表明,OM含量和粘粒比例是影響印度耕地沉積物氮礦化動力學參數估算的主要因素;Schomberg等[48]的研究表明C和N是預測土壤氮礦化潛力的主要因素;周吉利等[49]研究表明,微生物量碳和pH值決定了中亞熱帶紅壤區沉積物的氮礦化過程。此外,本研究尚未考慮季節性溫度升高與干濕循環耦合關系對消落帶表層沉積物氮礦化動力學過程的影響,在未來的工作中需進一步研究。
干濕循環加速了消落帶氮礦化動力學過程,增加了低水位高程消落帶沉積物易礦化氮重新淹水后大量進入水體的風險,One-pool模型和Special模型分別是低水位和高水位高程氮礦化動力學擬合的最佳模型,其動力學參數與沉積物C、N、NH+4-N、NO-3-N、OM、C/N、粉粒和砂礫顯著相關;且C/N和OM可用于氮礦化動力學模型參數估算,對深入理解三峽支流消落帶沉積物氮礦化機制與消落帶植被適生性下降、水體富養化之間的關系具有指示意義。
參考文獻:
[1]白日軍,楊治平,張 強,等.晉西北不同年限小葉錦雞兒灌叢土壤氮礦化和硝化作用[J].生態學報,2016,36(24):8008-8014.BAI Ri-jun,YANG Zhi-ping,ZHANG Qiang,et al.Soil nitrogen mineralization and nitrification under Caragana microphylla shrubs of different ages in the northwestern Shanxi Loess Plateau[J].Acta Ecologica Sinica,2016,36(24):8008-8014.
[2]Wang Y J,Chen F Q,Zhang M,et al.The effects of the reverse seasonal flooding on soil texture within the hydro-fluctuation belt in the Three Gorges Reservoir,China[J].Journal of Soils&Sediments,2018,18(1):109-115.
[3]林俊杰,張 帥,楊振宇,等.干濕循環對三峽支流消落帶沉積物中可轉化態氮及其形態分布的影響[J].環境科學,2015,36(27):2460-2463.LIN Jun-jie,ZHANG Shuai,YANG Zhen-yu,et al.Effect of drought and subsequent re-wetting cycles on transferable nitrogen and its form distribution in the sediment of water level fluctuating zone in the tribu-tary of Three Gorge Reservoir Areas[J].Environmental Science,2015,36(27):2460-2463.
[4]赫 斌,李 哲,馮 婧,等.三峽澎溪河高陽平湖高水位期間磷-藻生態模型研究[J].湖泊科學,2016,28(6):1244-1255.HE Bin,LI Zhe,FENG Jing,et al.Study on the phosphorus-algal ecological modelling during high water level period in Lake Gaoyang of Pengxi River,Three Gorges Reservoir[J].J Lake Sci,2016,28(6):1244-1255.
[5]胥 燾,王 飛,郭 強,等.三峽庫區香溪河消落帶及庫岸土壤重金屬遷移特征及來源分析[J].環境科學,2014,35(4):1502-1508.XU Tao,WANG Fei,GUO Qiang,et al.Transfer characteristic and source identification of soil heavy metals from water-level-fluctuating zone along Xiangxi River,Three-Gorges Reservoir Area[J].Environmental Science,2014,35(4):1502-1508.
[6]付 莉,張 磊,蔚建軍,等.三峽庫區支流回水區水體分層與藻類生長[J].環境工程學報,2015,9(5):2265-2271.FU Li,ZHANG Lei,WEI Jian-jun,et al.Water stratification and its relevance to growth of algal community at backwater area in Three Gorges Reservoir[J].ChineseJournalofEnvironmentalEngineering,2015,9(5):2265-2271.
[7]趙 麗,王書航,姜 霞,等.蠡湖表層沉積物氮礦化過程及其賦存形態變化[J].環境科學,2016,37(12):4626-4632.ZHAO Li,WANG Shu-hang,JIANG Xia,et al.Variation of nitrogen forms in sediments of Lihu Lake during mineralization[J].Environmental Science,2016,37(12):4626-4632.
[8]Bai J H,Gao H F,Xiao R,et al.A review of soil nitrogen mineralization as affected by water and salt in coastal wetlands:Issues and methods[J].Clean-Soil Air Water,2012,40(10):1099-1105.
[9]Carrillo Y,Ball B A,Molina M.Stoichiometric linkages between plant litter,trophic interactions and nitrogen mineralization across the littersoil interface[J].Soil Biology&Biochemistry,2016,92:102-110.
[10]Deressa A.Effects of soil moisture and temperature on carbon and nitrogen mineralization in grassland soils fertilized with improved cattle slurry manure with and without manure additive[J].Physical Review E Statistical Nonlinear&Soft Matter Physics,2015,2(1):1-9.
[11]葛曉敏,王瑞華,唐羅忠,等.不同溫濕度條件下楊樹人工林土壤氮礦化特征研究[J].中國農學通報,2015,31(10):208-213.GE Xiao-min,WANG Rui-hua,TANG Luo-zhong,et al.Study on the effects of temperature and moisture on nitrogen mineralization of soil in poplar plantations[J].Chinese Agricultural Science Bulletin,2015,31(10):208-213.
[12]劉碧榮,王常慧,張麗華,等.氮素添加和刈割對內蒙古棄耕草地土壤氮礦化的影響[J].生態學報,2015,35(19):6335-6343.LIU Bi-rong,WANG Chang-hui,ZHANG Li-hua,et al.Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia[J].Acta Ecologica Sinica,2015,35(19):6335-6343.
[13]Hanan E J,Schimel J P,Dowdy K,et al.Effects of substrate supply,pH,and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral[J].Soil Biology&Biochemistry,2016,95:87-99.
[14]Liu Y,He N P,Wen X F,et al.Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems[J].Agriculture Ecosystems&Environment,2016,215:40-46.
[15]Li H L,Han Y,Cai Z C.Nitrogen mineralization in paddy soils of the Taihu region of China under anaerobic conditions:Dynamics and model fitting[J].Acta Pedologica Sinica,2003,115(3/4):161-175.
[16]Pereira,Mouramuniz J,Augustosilva J,et al.Nonlinear models to predict nitrogen mineralization in an oxisol[J].Scientia Agricola,2005,62(4):395-400.
[17]Romano N,Alvarez R,Bono A.Modeling nitrogen mineralization at surface and deep layers of sandy soils[J].Archives of Agronomy and Soil Science,2017,63(6):870-882.
[18]馬 力,楊林章,顏廷梅,等.長期施肥水稻土氮素剖面分布及溫度對土壤氮素礦化特性的影響[J].土壤學報,2010,47(2):286-294.MA Li,YANG Lin-zhang,YAN Ting-mei,et al.Profile distribution and mineraization characteristics of nitrogen in relation to temperature in paddy soil under long-term fertilization[J].Acta Pedologica Sinica,2010,47(2):286-294.
[19]Moreno-Cornejo J,Zornoza R,Faz A,et al.Effects of pepper crop residues and inorganic fertilizers on soil properties relevant to carbon cycling and broccoli production[J].Soil Use&Management,2013,29(4):519-530.
[20]張玉玲,黨秀麗,虞 娜,等.遼河平原地區長期施肥水稻土氮素礦化及其模擬的研究[J].土壤通報,2008,39(4):761-765.ZHANG Yu-ling,DANG Xiu-li,YU Na,et al.Nitrogen mineralization and simulation of paddy soil under different long-term fertilization in Liaohe Plain Region[J].Chinese Journal of Soil Science,2008,39(4):761-765.
[21]盧紅玲,李世清,金發會,等.黃土高原石灰性土壤長期間隙淋洗淹水培養下的氮素礦化過程及其模擬[J].中國農業科學,2008,41(10):3140-3148.LU Hong-ling,LI Shi-qing,JIN Fa-hui,et al.Nitrogen process and simulation of long-term alternate leaching water-logged incubation for calcareoussoilontheLoessPlateau[J].ScientiaAgriculturaSinica,2008,41(10):3140-3148.
[22]Gil M V,Carballo M T,Calvo L F.Modelling N mineralization from bovine manure and sewage sludge composts[J].Bioresource Technology,2011,102(2):863-871.
[23]Li H L,Han Y,Cai Z C.Modeling nitrogen mineralizationinpaddysoils ofShanghaiRegion[J].Pedosphere,2003,13(4):331-336.
[24]Camargo F A D O,Gianello C,Tedesco M J,et al.Empirical models to predict soil nitrogen mineralization[J].Ciência Rural,2002,32(3):393-399.
[25]劉青麗,任天志,李志宏,等.植煙黃壤氮素礦化動態模擬研究[J].植物營養與肥料學報,2010,16(2):400-406.LIU Qing-li,REN Tian-zhi,LI Zhi-hong,et al.Dynamic simulation of organic nitrogen mineralization in yellow soil of planting tobacco[J].Plant Nutrition and Fertilizer Science,2010,16(2):400-406.
[26]Canali S,Bartolomeo E D,Tittarelli F,et al.Comparison of different laboratory incubation procedures to evaluate nitrogen mineralization in soils amended with aerobic and anaerobic stabilized organic materials[J].Journal of Food Agriculture&Environment,2011,9(2):540-546.
[27]林俊杰,張 帥,劉 丹,等.季節性溫度升高對落干期消落帶土壤氮礦化影響[J].環境科學,2016,37(2):697-702.LIN Jun-jie,ZHANG Shuai,LIU Dan,et al.Effect of seasonal temperature increasing on nitrogen mineralization in soil of the water level fluctuating zone of Three Gorge Tributary during the dry period[J].Environmental Science,2016,37(2):697-702.
[28]曹競雄,韋 夢,陳孟次,等.溫度對厭氧條件下不同pH水稻土氮素礦化的影響[J].中國生態農業學報,2014,22(10):1182-1189.CAO Jing-xiong,WEI Meng,CHEN Meng-ci,et al.Effects of temperature on soil nitrogen mineralization in different pH paddy soils under anaerobic condition[J].Chinese Journal of Eco-Agriculture,2014,22(10):1182-1189.
[29]王 偉,于興修,劉 航,等.農田土壤氮礦化研究進展[J].中國水土保持,2016(10):67-71.WANG Wei,YU Xing-xiu,LIU Hang,et al.Advances in nitrogen mineralization in farmland soil[J].Soil and Water Conservation in China,2016(10):67-71.
[30]Sierra J,Marbán L.Nitrogen mineralization pattern of an oxisol of guadeloupe,french west indies[J].Soil Science Society of America Journal,2000,64(6):2002-2010.
[31]王小曉,黃 平,吳勝軍,等.土壤氮礦化動力學模型研究進展[J].世界科技研究與發展,2017,39(2):164-173.WANG Xiao-xiao,HUANG Ping,WU Sheng-jun,et al.Kinetics modeling of soil nitrogen mineralization:A review[J].World Sci-Tech R&D,2017,39(2):164-173.
[32]Wu T Y,Ma B L,Liang B C.Quantification of seasonal soil nitrogen mineralization for corn production in eastern Canada[J].Nutrient Cycling in Agroecosystems,2008,81(3):279-290.
[33]周 濤,李正魁,馮露露.氨氮和硝氮在太湖水華自維持中的不同作用[J].中國環境科學,2013,33(2):305-311.ZHOU Tao,LI Zheng-kui,FENG Lu-lu.The different roles of ammonium and nitrate in the bloom self-maintenance of Lake Taihu[J].China Environmental Science,2013,33(2):305-311.
[34]Shang F Z,Yang P L,Li Y K,et al.Effects of different chemical nitrogenous fertilizer application rates on soil nitrogen leaching and accumulation in deep vadose zone[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(7):103-110.
[35]Tang Q,Bao Y H,He X B,et al.Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir,China[J].Science of the Total Environment,2014,479/480(1):258-266.
[36]Palanivell P,Ahmed O H,Susilawati K,et al.Mitigating ammonia volatilization from urea in waterlogged condition using clinoptilolite zeolite[J].International Journal of Agriculture&Biology,2015,17(1):149-155.
[37]Shan L N,He Y F,Chen J,et al.Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin,China[J].JournalofEnvironmentalScience,2015,38(12):14-23.
[38]曹 兵,賀發云,徐秋明,等.南京郊區番茄地中氮肥的氣態氮損失[J].土壤學報,2006,43(1):62-68.CAO Bing,HE Fa-yun,XU Qiu-ming,et al.Gaseous losses from fertilizers applied to a tomato field in Nanjing suburbs[J].Acta Pedologica Sinica,2006,43(1):62-68.
[39]張愛英,熊高明,樊大勇,等.三峽水庫運行對淹沒區及消落帶植物多樣性的影響[J].生態學雜志,2016,35(9):2505-2518.ZHANG Ai-ying,XIONG Gao-ming,FAN Da-yong,et al.Effects of damming on plant diversity in the inundated and riparian zones of the ThreeGorgesReservoirArea,China[J].ChineseJournalofEcology,2016,35(9):2505-2518.
[40]顧春朝,傅民杰.不同施肥類型對淹水稻田土壤氮素礦化的影響[J].湖北農業科學,2016,55(13):3322-3326.GU Chun-zhao,FU Min-jie.Effects of different fertilizer types on soil nitrogen mineralization in paddy under water-logging condition[J].Hubei Agricultural Sciences,2016,55(13):3322-3326.
[41]李建兵,黃冠華.鹽分對粉壤土氮轉化的影響[J].環境科學研究,2008,21(5):98-103.LI Jian-bing,HUANG Guan-hua.Pilot study of salinity(NaCl)affecting nitrogen transformation in silt loam soil[J].Research of Environmental Sciences,2008,21(5):98-103.
[42]Yamashita T,Flessa H,John B,et al.Organic matter in density fractions of water-stable aggregates in silty soils:Effect of land use[J].Soil Biology&Biochemistry,2006,38(11):3222-3234.
[43]于維水,盧昌艾,李桂花,等.不同施肥制度下中國東部典型土壤易分解與耐分解氮的組分特征[J].中國農業科學,2015,48(15):3005-3014.YU Wei-shui,LU Chang-ai,LI Gui-hua,et al.Component characteristics of soil labile and recalcitrant nitrogen under different long-term fertilization systems in East China[J].Scientia Agricultura Sinica,2015,48(15):3005-3014.
[44]劉杏認,董云社,齊玉春,等.溫帶典型草地土壤凈氮礦化作用研究[J].環境科學,2007,28(3):633-639.LIU Xing-ren,DONG Yun-she,QI Yu-chun,et al.Soil net nitrogen mineralization in the typical temperate grassland[J].Environmental Science,2007,28(3):633-639.
[45]Harrison-Kirk T,Beare M H,Meenken E D,et al.Soil organic matter and texture affect responses to dry/wet cycles:Changes in soil organic matter fractions and relationships with C and N mineralisation[J].Soil Biology&Biochemistry,2014,74:50-60.
[46]林俊杰,劉 丹,張 帥,等.淹水-落干與季節性溫度升高耦合過程對消落帶沉積物氮礦化影響[J].環境科學,2017,38(2):555-562.LIN Jun-jie,LIU Dan,ZHANG Shuai,et al.Effect of coupling process of wetting-drying cycles and seasonal temperature increasing on sediment nitrogen minerization in the Water Level Fluctuating Zone[J].Environmental Science,2017,38(2):555-562.
[47]Haer H S,Benbi D K.Modeling nitrogen mineralization kinetics in arable soils of semiarid india[J].Arid Land Research&Management,2003,17(2):153-168.
[48]Schomberg H H,Wietholter S,Griffin T S,et al.Assessing indices for predicting potential nitrogen mineralization in soils under different management systems[J].Soil Science Society of America Journal,2009,73(5):1575-1586.
[49]周吉利,鄒剛華,彭佩欽,等.中亞熱帶典型紅壤區土壤氮礦化動力學參數估算[J].農業現代化研究,2015,36(4):702-707.ZHOU Ji-li,ZOU Gang-hua,PENG Pei-qin,et al.Estimating the kinetic parameters of soil organic nitrogen mineralization for various land use types in a typical hilly red-soil region in subtropical central China[J].Research of Agricultural Modernization,2015,36(4):702-707.