(1南華大學 核科學技術學院,湖南 衡陽421001;2南華大學 鈾礦冶生物技術國防重點學科實驗室,湖南 衡陽421001;3南華大學 污染控制與資源化技術湖南省重點實驗室,湖南 衡陽 421001)
鈾礦冶產生的大量低濃度含鈾放射性廢水對生態環境構成嚴重威脅[1-2]。鈾作為一種重金屬,不僅具有放射性,且具有動態的生物毒性和化學毒性[3-4]。我國的污水綜合排放標準規定鈾的最高允許排放濃度不超過0.05mg/L,而鈾礦冶等生產排放的廢水中鈾的質量濃度一般在5mg/L左右[5]。因此,開展含鈾廢水處理技術的研究,使廢水達標排放對于核工業可持續發展及環境保護具有重要的意義和應用前景。廢水中鈾的傳統去除方法有化學沉淀法、離子交換法、吸附法、膜分離等[6-7]。吸附法以其操作簡單、吸附速率快而被廣泛關注,在低濃度含鈾廢水處理領域得到了很快的發展,是目前該領域最有前景的處理技術之一[8-11]。吸附法的關鍵是選擇合適的吸附劑,目前研究者們致力于探索價廉高效的吸附劑,如黏土礦物[12-14]、二氧化硅[15-18]及沸石[19-22]等。石墨烯(graphene,GN)是一種由單原子層的碳原子通過sp2雜化,組成六角形呈蜂巢晶格狀的二維材料[23],其理論比表面積高達2630m2/g,具有非常強的吸附能力,成為納米吸附劑研究中的熱點。氧化石墨烯(graphene oxide, GO)是石墨烯的氧化物,其表面有諸多含氧官能團[24],使其具有親水的特性,吸附性能更佳。Romanchuk等[25]將石墨烯氧化物原子薄片用于快速吸收受污染水中的放射性廢物,實驗發現GO吸附U(VI) 的能力比傳統的吸附劑膨潤土和活性炭要高很多。王云等[26]采用化學方法將多壁碳納米管打開得到富含氧基團的氧化石墨烯納米帶,其對鈾的最大吸附量可達394mg/g。GO還可通過化學改性或與一些化學材料復合來接枝特定吸附功能基團,來提高吸附效果和吸附選擇性[27-33]。學者們開展大量氧化石墨烯復合材料吸附鈾的研究,并取得一定的成果,但氧化石墨烯復合材料對鈾的吸附性能及作用機制的綜述仍然很少[31]。本文綜述了氧化石墨烯復合材料對鈾的吸附性能、吸附影響因素及吸附機理,并對它們在鈾廢水處理中的應用前景和發展趨勢做了展望,以期為后續相關研究及實際應用提供參考依據。
石墨烯的高比表面積使其成為理想的吸附材料[25,31],然而,完整結構的二維石墨烯晶體化學穩定性高,呈惰性,另外其相鄰片層之間的π-π作用使石墨烯容易產生團聚或者重新堆積成石墨,從而妨礙了石墨烯在吸附方面的研究及應用,學者們通常利用石墨烯的衍生物——GO作為吸附材料[32-33]。石墨烯(圖1)[23]與GO的結構(圖2)[24]大致相同,只是在二維基面上連有一些官能團如羥基,環氧基,羧基,羰基等,這些含氧官能團能賦予了GO一些新的特性如分散性、親水性及對聚合物的兼容性等,使GO成為一種優良的支撐材料,可以結合化學功能基團或復合其他材料,官能團還可提供活性吸附位點吸附鈾等環境污染物,進而有效分離廢水中的鈾等污染物[31-33]。目前學者們對氧化石墨烯復合材料吸附鈾的性能進行了一些研究,表1匯總了氧化石墨烯材料對鈾吸附性能的主要參數[34-59],這些研究發現該材料能有效吸附水中的鈾,等溫吸附模型能較好地符合Langmiur模型,吸附熱力學研究發現石墨烯基復合材料對鈾的吸附為自發放熱的過程。

圖1 石墨烯結構示意圖[23]Fig.1 Basic structure of graphene[23]

圖2 氧化石墨烯的 Dékán 結構模型[24]Fig.2 Dékán structural model of graphene oxide[24]
氧化石墨烯復合材料對鈾的吸附效果受到很多因素的影響,如溶液pH值、吸附溫度、離子強度、接觸時間和吸附劑用量等,因此,不同因素下氧化石墨烯復合材料對鈾離子的吸附性能往往存在一定的差異,且不同的氧化石墨烯材料的吸附能力受這些因素的影響各不相同。

溫度是影響吸附的重要環境因子之一,對重金屬的吸附-解吸、沉淀-溶解、氧化-還原等一系列化學和物理過程都有不同程度的影響。因此,溫度的變化也可能導致吸附量的變化。Cheng等[37]研究發現溫度對氧化石墨烯/海泡石復合材料(GO@sepiolite)吸附鈾的影響較大,隨著溫度升高,GO@sepiolite對鈾的吸附效果提高,當溫度從298K升高至338K時,GO@sepiolite對鈾的吸附量約增加到原來的2.2倍。Zhang等[45]研究了288.15~323.15K溫度范圍內磺化氧化石墨烯(GOS)對鈾的吸附,結果表明,溫度越高越有利鈾的吸附。其他學者的相關研究也得到了一致的實驗結論,發現氧化石墨烯復合材料對鈾的吸附是一個放熱自發的過程,溫度升高能促進吸附反應的進行(見表1)[34-39,41-42,44-46,48-51]。這種現象可能是因為水的溶劑化作用,在水溶液中鈾離子以水合離子狀態存在,要吸附至石墨烯基材料表面上需要脫去鈾離子表面的水合鞘,這個脫水過程需要消耗能量,是吸熱過程,而離子吸附到吸附劑表面的過程是放熱過程[48,63],當鈾離子脫水的能量超過鈾離子吸附于氧化石墨烯材料放出的能量時,整個吸附過程表現為吸熱反應,溫度越高鈾離子脫水越容易,因此越有利于氧化石墨烯材料對鈾離子的吸附[34]。

表1 石墨烯基復合材料對鈾的吸附容量及主要參數Table 1 Adsorption capacities and mainly parameters of graphene-based composite materials for uranium
Note:RT-room temperature; n.a.-not application.
溶液的離子強度會影響鈾離子存在形態,又能影響氧化石墨烯材料雙靜電層厚度而改變吸附劑的結合位點數,從而影響其對鈾離子的吸附[64]。不同氧化石墨烯材料吸附鈾的效果受離子強度影響的情況不盡相同,在一些實際的吸附研究中,它們吸附鈾的效果隨離子強度變化敏感[40,46]或不敏感的情況均有發生[36,45,47,49-52,54]。Zhang等[45]研究發現離子強度對氧化石墨烯和磺化氧化石墨烯吸附鈾的影響不顯著。Zhao等[36]研究發現在實驗的pH值范圍內偕胺肟磁性氧化石墨烯(AOMGO)對U(VI)的吸附效率幾乎不受離子強度的影響,這主要是由于U(VI)與AOMGO表面偕胺肟基及其他含氧官能團形成了內層表面絡合物,而不是形成外層表面絡合物或者發生離子交換[65]。Sun等[66]報道了pH值>4時離子強度對U(VI)吸附于氧化石墨烯和功能化氧化石墨烯上的影響甚微,同理,也是由于鈾吸附于材料是通過內層表面絡合,且內層表面絡合吸附機制通過常用于確定吸附劑與金屬離子之間的相互作用機制[67-68]的X射線吸收精細結構譜(EXAFS)得以證實。而有些文獻則得出了不一樣的結論,Wang等[46]報道了氧化石墨烯納米帶 (GONRs)吸附鈾的能力對溶液離子強度的變化敏感。Song等[40]研究發現NaClO4濃度的增加會導致環糊精/氧化石墨烯(CD/GO)對鈾的吸附能力下降,因為存在于高離子濃度溶液中的鈾離子,其活性會嚴重下降,從而抑制其轉移到CD/GO表面,此外,高離子強度能夠減少CD/GO材料之間的靜電斥力,從而導致CD/GO產生團聚和吸附能力降低。
達到吸附平衡所需要的反應時間是影響吸附劑對鈾吸附能力的又一重要因素,吸附量隨吸附時間的變化情況也是吸附劑吸附動力學的一個重要特征。在實際應用中,吸附時間的長短及處理周期會影響經濟效益,氧化石墨烯及其復合材料非常大的比表面積及表面豐富的官能團將有利于提高其吸附鈾離子的速率,從而能較快地達到吸附平衡狀態。Shao等[44]研究發現HO-CB[6]/GO對鈾的吸附非常迅速,僅在5min內就能完成90%鈾的吸附,并能夠在20min內達到吸附平衡,HO-CB[6]/GO對鈾的快速吸附有利于其實際應用于去除大體積溶液中的鈾。Li等[35]利用Hummers方法制備得到的單層氧化石墨烯(GO)對鈾的吸附過程迅速,1h內能達到吸附平衡狀態。Gu等[38]研究發現氧化石墨烯-碳納米管(GO-CNTs)在開始2h對U(VI)的吸附量增加較快,然后在9h內逐漸達到平衡。Liu等[41]研究了接觸時間對GO和GO-NH2吸附U(VI)的影響,結果發現在接觸開始吸附速率迅速增加,這歸因在這一階段吸附劑上有大量的空置吸附位點可用。隨著時間的推移,空置的吸附位點逐漸被鈾酰離子填充,吸附變慢;對于GO-NH2,吸附量緩慢增加的時間段為80~240min之間,這是因為該階段為內擴散階段,動力學吸附時間更依賴于內擴散速度,可能需要較長的時間來達到平衡。GO和GO-NH2對U(VI)的吸附平衡時間分別為60min和240min[41]。通常,吸附動力學包括兩個階段:初始階段,該階段吸附迅速,對吸附平衡貢獻很重要,它為瞬時吸附或外表面吸附階段,此階段吸附劑上有大量可用的吸附位點數;第二階段,吸附過程較慢,為逐漸吸附階段,吸附速率受顆粒內擴散控制,一直到吸附達到平衡[41,69 ]。為了研究動力學吸附機理,準一級動力學模型和準二級動力學模型常用于研究氧化石墨烯材料對鈾(VI)的吸附動力學。大量文獻[34,36,38,41-43,45,48]報道的石墨烯基材料對鈾(VI)的吸附符合準二級動力學模型,說明這些材料對鈾(VI)的吸附過程主要受化學作用的控制。
吸附劑用量也是影響吸附的重要參數,在實際應用中是一個重要的考察指標。吸附劑投加量直接影響氧化石墨烯材料與U(Ⅵ)的結合位點數目,進而直接影響 U(Ⅵ)的吸附效率[70]。張偉強等[71]在鈾離子濃度為50mg/L,pH值為5.0的酸性條件下,考察了氨基三亞甲基膦酸改性石墨烯海綿材料(ATMP-GS)用量與鈾離子吸附的關系,結果表明當吸附劑 ATMP-GS用量為7mg時,其對鈾離子的吸附量最大為96mg/g,隨后隨著ATMP-GS用量的增大吸附量出現下降,并在15mg以后不再變化。孫兆勇等[72]研究發現吸附劑用量在0.01~0.03g范圍內,吸附率隨著吸附劑用量的增加而增加,當吸附劑用量由0.01g增加到0.04g時,吸附率增加較明顯,達到35.14%,再增加吸附劑用量時,吸附率增加變得緩慢,僅為0.39%;而吸附量隨吸附劑用量的增加不斷降低。武里鵬等[73]通過實驗研究了在吸附劑用量為0.01~0.03g范圍內,磁性石墨烯對鈾的吸附容量及去除率隨吸附劑用量的變化,結果表明去除率隨吸附劑用量的增加而增大,在吸附劑用量為0.03g時去除率達到了90%以上;而吸附容量與吸附劑用量的關系與前者恰好相反。Song等[40]發現吸附劑用量的增加會提高CD/GO對U(VI)的吸附效率,因為隨著吸附劑用量增加,參與U(VI)吸附的功能位點也隨之增加。本課題組[60]研究發現隨著GOS投加量的增加,U(Ⅵ)吸附率逐漸上升,吸附容量逐漸降低,這是由于隨著GOS用量的增加,GOS與U(Ⅵ)結合位點數目增多,從而使U(Ⅵ)的吸附率上升;但另一方面GOS投加量的增加導致GOS片層之間相互團聚的概率增大,降低了有效結合位點數目,比表面積也隨之減少,導致單位質量吸附劑吸附U(Ⅵ)的結合位點數目減少,所以吸附容量隨之降低。
氧化石墨烯材料吸附鈾的效果受吸附劑用量的影響,通常表現為高吸附劑用量使吸附效率提高,因為U(Ⅵ)結合位點數目增多,而低吸附劑用量使吸附量更大,因其結合位點和表面積能夠得到有效利用[32,59]。因此,在實際應用中,為保證吸附效果且使吸附劑能被充分利用,建議采用適當的吸附劑用量。
目前已有大量關于鈾與GO基材料相互作用的研究,這些研究通過批量實驗研究了不同因素對吸附作用的影響,進行了吸附動力學和吸附熱力學分析,并且采用表面絡合模型、光譜分析和理論計算等手段和方法,從實驗數據和理論模擬、宏觀和微觀等角度闡述了GO基材料對鈾的吸附機制[28,50-58]。一些批量吸附實驗的數據結果可以解釋鈾與GO基材料相互作用的機理,比如由吸附過程對離子強度敏感而對pH不敏感可以推導出吸附作用主要是通過外表面絡合或離子交換,而吸附過程對pH敏感而對離子強度不敏感主要是由于內表面絡合作用[28,35,36]。表面絡合模型可以展示材料表面上鈾絡合物的構成情況,從而可根據鈾絡合物的種類闡述吸附作用機理[54,66]。而通過擴展X射線吸收精細結構光譜(Extended X-ray Absorptionfine Structure Spectroscopy, EXAFS),X射線光電子能譜(X-ray Photoelectric Spectroscopy, XPS),X射線衍射(X-ray Diffraction, XRD),拉曼光譜(Raman Spectroscopy, RS),熒光時間衰減光譜(Time Resolved Laser Fluorescence Spectroscopy, TRLFS),傅里葉變換紅外光譜法(Fourier Transformed Infrared Spectroscopy, FTIR)等光譜手段可以分析材料表面官能團與鈾結合的微觀情況以及從分子水平揭示鈾的形態和微觀結構[27-29]。理論計算如密度泛函理論是評價核素與固體材料之間物理化學作用的一種非常有用的手段[29,74-77],例如,通過理論計算鈾與不同官能團之間的結合能,可以確定物理吸附或化學吸附等的吸附性能,從而得到鈾與材料間的相互作用機理。不同實驗條件下的研究結果表明石墨烯基材料對鈾有很強的吸附能力,主要是由于其表面或邊緣部位充斥著大量的含氧官能團[47,57,77]。



圖3 鈾在NZVI/rGO上的吸附與還原[79]Fig.3 Simultaneous adsorption and reduction of U(VI) onNZVI/rGO[79]

圖4 NZVI 、NZVI/GO、U(VI)作用后的NZVI 和NZVI/GO以及參考樣品的XANES光譜(a)和 EXAFS光譜(b)(T=(25±1)℃,I=0.01mol/L NaClO4,pH 5.0)[79]Fig.4 XANES spectra (a) and Fourier transform (FT) of EXAFSspectra (b) for reference samples and U(VI)-reacted NZVI andNZVI/GO(T=(25±1)℃, I=0.01mol/L NaClO4, pH 5.0)[79]
計算化學研究能從分子水平獲得GO與放射性核素之間所形成配合物的電子結構、形態分布、配位性質和熱力學性質等數據,對闡明放射性核素與GO之間的固液界面作用機理起著重要作用[81-82]。利用理論計算研究得到的放射性核素與GO相互作用數據與實驗結果進行比較和相互驗證,可以使實驗研究更具說服力和可靠性。而對于一些比較難開展的實驗,如所有的錒系元素,特別是具有放射性和毒性的超鈾元素,阻礙了實驗研究開展,理論計算可以提供一條有效的途徑來補充有關錒系元素配合物的電子結構及性質等[76,81]。密度泛函理論(Density Functional Theory,DFT)是理論計算的重要工具之一,它能以有效的方式計算相關能量和形態等基礎數據而在計算化學研究領域得到非常好的應用[83-84]。DFT常用于闡述局部相互作用表面分子的吸收,結合TRLFS,EXAFS,XPS等光譜分析結果能在分子水平上更好地闡明GO等材料與放射性核素的相互作用機制,為評價放射性核素在環境中的物理化學行為提供重要的參考價值。
近年來,一些研究者通過理論計算研究了鈾在石墨烯基材料表面的吸附行為。Wu等[76]利用DFT結合相對論小芯贗勢優化了鈾酰離子和GO之間的22種配合物,研究的含氧官能團有羥基、羧基、氨基和二甲基甲酰胺等,研究結果表明鈾原子和GO上氧原子之間的距離(U-OG)在陰離子GO配合物(鈾酰/GO-/2-)中要短于在中性GO配合物(鈾酰/GO)中,鈾酰/GO-/2-配合物中氫鍵的形成可以提高帶負電的GO對鈾酰離子的結合能力,此外,熱力學計算表明,鈾酰離子更容易與羥基和羧基功能化的陰離子GO配合物發生絡合反應,同時幾何結構和熱力學能量都表明,由羥基和羧基改性的GO對鈾酰離子的結合能力比氨基和二甲基甲酰胺基改性的GO要強得多。偕胺肟基和羧基經常用于修飾石墨烯材料,Wang等[77]采用量子化學計算模擬了鈾與一系列通過烷基鏈嫁接偕胺肟基和羧基等基團的吸附劑之間的相互作用,并研究了不同官能團及其組合對配位結構與萃取穩定性等產生的影響。


圖5 rGOs-鈾酰配合物和GOs-鈾酰配合物的DFT優化幾何結構[66]Fig.5 DFT-optimized geometries of the rGOs-uranyl complexes and GOs-uranyl complexes[66]
氧化石墨烯復合材料由于其巨大的表面積及豐富的表面功能基團對鈾能實現高效的吸附。從目前國內外的研究現狀來看,石墨烯基復合材料對鈾的吸附機理的研究主要通過采用批量吸附實驗研究不同因素對其吸附能力的影響,吸附動力學以及吸附熱力學研究,以及利用表面絡合模型、光譜分析技術與理論計算等方法來實現。然而,由于氧化石墨烯含氧官能團的多樣性(如羥基、羧基、羰基、環氧基等),以及表面功能化修飾引入一些新的官能團,而且鈾在環境中的化學形態變化復雜,因此盡管已有不少有關石墨烯基材料吸附鈾的研究工作,還需深入地開展石墨烯基材料對鈾的吸附行為及其開發應用的研究,可在下述幾個方面進行研究工作:
(1)將實驗、模型模擬及理論計算,宏觀的批量實驗與微觀的光譜技術結合起來運用于研究石墨烯基材料對鈾的吸附行為,將實驗與理論,宏觀與微觀的研究結論互相補充互相驗證,以便更準確深入地揭示石墨烯基材料與鈾的作用機理。
(2)目前研究發現GO基材料對鈾的高效吸附主要歸因于其表面或邊緣的功能官能團,但由于GO基材料表面或邊緣存在不同種類的官能團,不同官能團對吸附鈾的發揮作用大小卻缺乏深層次的理論和實驗研究。
(3)關于氧化石墨烯材料脫附鈾的研究報道不多,應研究溫度、脫附劑種類、離子強度和初始鈾濃度等對脫附效果的影響并探討相關脫附機理,為氧化石墨烯材料在鈾污染處理方面的重復利用提供理論基礎。
(4)隨著氧化石墨烯材料在多學科領域的大量應用,部分GO基材料不可避免會被釋放到自然環境中而成為環境污染物。GO基材料在水中具有高分散性、高吸附性以及高化學活性,其有可能對水環境生態和水生生物造成不利影響[85-88],因此,為保證GO基材料更安全和環保的應用,未來的研究需要進一步明確GO基材料的生態效應及其環境行為,正確評估其環境風險。
參考文獻
[1] 王勁松,鄒曉亮,賈亮,等. α-酮戊二酸改性殼聚糖對低濃度U(Ⅵ)的吸附性能[J].原子能科學技術,2015, 49 (2): 255-262.
WANG J S,ZOU X L, JIA L, et al. Adsorption performance of low-strength U (Ⅵ) on α-ketoglutaric acid modified chitosan[J]. Atomic Energy Science and Technology, 2015, 49 (2): 255-262.
[2] 史冬峰, 唐振平, 黃華勇,等. 磁性氧化石墨烯/β-環糊精復合材料對U(Ⅵ)的吸附性能及機理[J].原子能科學技術, 2016, 50 (9): 1556-1564.
SHI D F, TANG Z P, HUANG H Y, et al. Adsorption characteristic and mechanism of Uranium(Ⅵ) on magnetism graphene oxide/β-cyclodextrin composite[J]. Atomic Energy Science and Technology, 2016, 50 (9): 1556-1564.
[3] 商照榮.貧化鈾的環境污染影響及其對人體健康的危害[J].輻射防護, 2005(1): 56-61.
SHANG Z R. Impact of depleted uranium on environmental and human health[J].Radiation Protection, 2005(1): 56-61.
[4] 周書葵,婁濤,龐朝暉. 放射性廢水處理技術[M].北京: 化學工業出版社, 2012: 7.
ZHOU S K, LOU T, PANG C H. Radioactive waste water treatment technology[M]. Beijing: Chemical Industry Press,2012:7.
[5] WANG J S, BAO Z L, CHEN S G, et al. Removal of uranium from aqueous solution by chitosan and ferrous ions[J]. International Conference on Nuclear Engineering, 2010, 133 (8): 735-740.
[6] MELISA S, GUSTAVO A, ROSA M. Uranium uptake by montmorillonite-biomass complexes[J]. Industrial & Engineering Chemistry Research, 2013, 52(6) : 2273-2279.
[7] YUAN L Y, LIU Y L, SHI W Q, et al. High performance of phosphonate-functionalized mesoporous silica for U(VI) adsorption from aqueous solution[J]. Dalton Trans, 2011, 40: 7446-7453.
[8] ZHANG X F, JIAO C S, WANG J, et al. Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation[J]. Chemical Engineering Journal, 2012, 198: 412-419.
[9] LI X Y, ZHANG M, LIU Y B, et al. Removal of U(VI) in aqueous solution by nanoscale zero-valent iron(nZVI)[J]. Exposure and Health, 2013, 5(1): 31-40.
[10] ZHAO D L, WANG X B, YANG S T, et al. Impact of water quality parameters on the sorption of U(VI) onto hematite[J]. Journal of Environmental Radioactivity,2012,103 (1): 20-29.
[11] BELLONI F, KUTAHYALI C, RONDINELLA V V, et al. Can carbon nanotubes play a role in the field of nuclear waste management?[J]. Environment Science & Technology, 2009, 43: 1250-1255.
[12] LIU H J, XIE S B, XIA L S, et al. Study on adsorptive property of bentonite for cesium[J]. Environment Earth Science, 2016, 75(2): 148.
[13] SCHINDLER M, LEGRAND C A, JR M F H. Alteration, adsorption and nucleation processes on clay-water interfaces: mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale[J]. Geochimica Et Cosmochimica Acta, 2015, 153: 15-36.
[14] VILLA-ALFAGEME M, HURTADO S, MRABET S E, et al. Uranium immobilization by FEBEX bentonite and steel barriers in hydrothermal conditions[J]. Chemical Engineering Journal, 2015, 269: 279-287.
[15] GUNATHILAKE C, GORKA J, DAI S, et al. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions[J]. Journal of Materials Chemistry A, 2015, 3 (21): 11650-11659.
[16] LIU H J, JING P F, LIU, et al. Synthesis of β-cyclodextrin functionalized silica gel and its application for adsorption of uranium(VI)[J]. Journal of Radioanalytical & Nuclear Chemistry, 2016, 310(1): 1-8.
[17] ZHOU L, ZOU H, WANG Y, et al. Adsorption of uranium(VI) from aqueous solution using phosphonic acid-functionalized silica magnetic microspheres[J]. Journal of Radioanalytical & Nuclear Chemistry, 2016, 310(3): 1-9.
[18] HUMELNICU D, BLEGESCU C, GANJU D. Removal of uranium(VI) and thorium(IV) ions from aqueous solutions by functionalized silica: kinetic and thermodynamic studies[J]. Journal of Radioanalytical & Nuclear Chemistry, 2014, 299 (3): 1183-1190.
[19] BARKAT M, NIBOU D, AMOKRANE S, et al. Uranium (VI) adsorption on synthesized 4A and P1 zeolites: equilibrium, kinetic, and thermodynamic studies[J]. Comptes Rendus Chimie, 2015, 18(3): 261-269.
[20] SHARIFIPOUR F, HOJATI S, LANDI A, et al. Kinetics and thermodynamics of lead adsorption from aqueous solutions onto iranian sepiolite and zeolite[J]. International Journal of Environmental Research, 2015, 9(3): 1001-1010.
[21] SHAKUR H R, SARAEE K R E, ABDI M R, et al. Selective removal of uranium ions from contaminated waters using modified-X nanozeolite[J]. Applied Radiation & Isotopes, 2016, 118: 43-55.
[22] BAKATULA E N, MOLAUDZI R, NEKHUNGUNI P, et al. The removal of arsenic and uranium from aqueous solutions by sorption onto iron oxide-coated zeolite[J]. Water Air & Soil Pollution, 2017, 228(1):5.
[23] VAN N R. Moving towards a graphene world[J]. Nature, 2006, 442(7100): 228-229.
[24] SZABO T, BERKESI O, FORGO P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 2006, 18 (11): 2740-2749.
[25] ROMANCHUK A Y, SLESAREV A S, KALMYKOV S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15 (7): 2321-2327.
[26] 王云, 顧澤興, 王正上, 等. 氧化石墨烯納米帶的可控制備及其對鈾的吸附研究[C]∥第十三屆全國核化學與放射化學學術研討會. 大理: 中國化學會, 中國核學會, 2014: 38.
WANG Y, GU Z X, WANG Z S, et al. Controllable preparation of graphene oxide nanoribbons and their adsorption to uranium[C]//The Thirteenth National Conference on nuclear chemistry and radiation chemistry.Dali: Chinese Chemical Society, Chinese Nuclear Society, 2014: 38.
[27] JIN Z X, WANG X X, WANG X K, et al. Sequestration of 4-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies[J]. Environment Science & Technology, 2015, 49: 9168-9175.
[28] WANG X X, YU S J, JIN J, et al. Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions [J]. Science Bulletin, 2016, 61(20): 1583-1593.
[29] WANG X X, YANG S B, WANG X K, et al. Different interaction mechanisms of Eu(III) and243Am(III) with carbon nanotubes studied by batch,spectroscopy technique and theoretical calculation[J]. Environment Science & Technology, 2015, 49: 11721-11728.
[30] CHEN Y T, ZHANG W, WANG X K, et al. Understanding the adsorption mechanism of Ni(II) on graphene oxides by batch experiments and density functional theory studies[J]. Science China Chemistry, 2016, 59: 412-419.
[31] YU S J, WANG X X, WANG X K, et al. Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review[J]. Inorganic Chemistry Frontiers, 2015, 46 (32): 593-612.
[32] 曹明莉,張會霞,張聰,等. 石墨烯及其復合材料在重金屬離子吸附方面的應用[J]. 功能材料, 2016, 47 (8): 08001-08007.
CAO M L, ZHANG H X, ZHANG C, et al. Graphene-containing composite materials for heavy metal ions adsorption[J]. Journal of Functional Materials, 2016, 47 (8): 08001-08007.
[33] 呂生華,朱琳琳,李瑩,等. 氧化石墨烯復合材料的研究現狀及進展[J]. 材料工程, 2016, 44 (12): 107-117.
LYU S H, ZHU L L, LI Y, et al. Current situation and progress of graphene oxide composites[J]. Journal of Materials Engineering, 2016, 44 (12): 107-117.
[34] WANG C L, LI Y, LIU C L. Sorption of uranium from aqueous solutions with graphene oxide[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304 (3): 1017-1025.
[35] LI Z J, CHEN F, YUAN L Y, et al. Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions[J]. Chemical Engineering Journal, 2012, 210: 539-546.
[36] ZHAO Y G, LI J X, ZHANG S W, et al. Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxide composites[J]. RSC Advances, 2013, 3: 18952-18959.
[37] CHENG H X, ZENG K F, YU J T. Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(1): 599-603.
[38] GU Z X, WANG Y, TANG J, et al. The removal of uranium(VI) from aqueous solution by graphene oxide-carbon nanotubes hybrid aerogels[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3):1835-1842.
[39] SHAO D D, LI J X, WANG X K. Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater[J]. Science China Chemistry, 2014, 57(11): 1449-1458.
[40] SONG W C, SHAO D D, LU S S, et al. Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets[J]. Science China Chemistry, 2014, 57(9): 1291-1299.
[41] LIU S J, LI S, ZhANG H X, et al. Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309(2): 607-614.
[42] WANG Z S, WANG Y, LIAO J L, et al. Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308 (3): 1095-1102.
[43] LIU S J, MA J G, ZHANG W Q, et al. Three-dimensional graphene oxide/phytic acid composite for uranium(VI) sorption [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306(2): 507-514.
[44] SHAO L, ZHONG J R, REN Y M, et al. Perhydroxy-CB[6] decorated graphene oxide composite for uranium(VI) removal [J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311 (1):627-635.
[45] ZHANG Z B, QIU Y F, DAI Y, et al. Synthesis and application of sulfonated graphene oxide for the adsorption of uranium(VI) from aqueous solutions [J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2): 547-557.
[46] WANG Y, WANG Z S, GU Z X, et al. Uranium(VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304(3): 1329-1337.
[47] WANG X X, CHEN Z S, WANG X K. Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions [J]. Science China Chemistry, 2015, 58(11): 1766-1773.
[48] ZHAO D L, CHEN L L, SUN M, et al. Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U(VI) from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306(1): 221-229.
[49] TAO X Q, YAO X B, LU S S, et al. Efficient removal of radionuclide U(VI) from aqueous solutions by using graphene oxide nanosheets [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303 (1): 245-253.
[50] LIU X, WANG X X, LI J X, et al. Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions [J]. Science China Chemistry, 2016, 59 (7): 869-877.
[51] ZHAO G X,WEN T,YANG X, et al. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions [J]. Dalton Transactions, 2012, 41 (20): 6182-6188.
[52] ZONG P F, WANG S F, ZHAO Y L, et al. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions[J]. Chemical Engineering Journal, 2013, 220: 45-52.
[53] CHEN S P, HONG J X, YANG H X, et al. Adsorption of uranium(VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite [J]. Journal of Environmental Radioactivity, 2013, 126(4): 253-258.
[54] DING C C, CHENG W C, SUN Y B, et al. Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic, spectroscopic and modeling techniques[J]. Dalton Transactions, 2014, 43: 3888-3896.
[55] SHAO L, WANG X F, REN Y M, et al. Facile fabrication of magnetic cucurbit[6] uril/graphene oxide composite and application for uranium removal [J]. Chemical Engineering Journal, 2016, 286: 311-319.
[56] SHAO D D, HOU G S, LI J X, et al. PANI/GO as a super adsorbent for the selective adsorption of uranium(VI) [J]. Chemical Engineering Journal, 2014, 255: 604-612.
[57] SONG W C, WANG X X , WANG Q, et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides [J]. Physical Chemistry Chemical Physics, 2015, 17: 398-406.
[58] TAN L C, LIU Q, SONG D L, et al. Uranium extraction using a magnetic CoFe2O4-graphene nanocomposite: kinetics and thermodynamics studies [J]. New Journal of Chemistry, 2015, 39: 2832-2838.
[59] TAN L C, WANG J, LIU Q, et al. The synthesis of a manganese dioxide-iron oxide-graphene magnetic nanocomposite for enhanced uranium(VI) removal[J]. New Journal of Chemistry, 2015, 39(2): 868-876.
[60] 王亮,謝水波,楊金輝,等. 氧化石墨烯/二氧化硅復合材料對鈾(Ⅵ)的吸附性能[J]. 中國有色金屬學報, 2016, 26 (6): 1264-1271.
WANG L, XIE S B, YANG J H, et al. Adsorption properties of graphene oxide/silica composite materials for uranium(VI)[J]. The Chinese Journal of Nonferrous Metals, 2016, 26 (6): 1264-1271.
[61] SCHIERZ A, ZNKER H. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption [J]. Environmental Pollution, 2009, 157(4): 1088-1094.
[62] SONG J, KONG H, JANG J. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles [J]. Journal of Colloid & Interface Science, 2011, 359(2): 505-511.
[63] TAHIR S S, RAUF N. Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution [J]. Journal of Chemical Thermodynamics, 2003, 35: 2003-2009.
[64] HU R, SHAO D D, WANG X K. Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions [J]. Polymer Chemistry, 2014, 5(21): 6207-6215.
[65] YANG S T, ZONG P F, REN X M, et al. Rapid and highly efficient preconcentration of Eu(III) by core-shell structured Fe3O4@humic acid magnetic nanoparticles [J]. Acs Applied Materials & Interfaces, 2012, 4 (12): 6891-6900.
[66] SUN Y B, YANG S B, CHEN Y, et al. Adsorption and desorption of U (VI) on functionalized graphene oxides: a combined experimental and theoretical study [J]. Environ Science Technology, 2015, 49: 4255-4262.
[67] SHENG G D, ALSAEDI A, SHAMMAKH W, et al. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation [J]. Carbon, 2016, 99: 123-130.
[68] SHENG G D, HU J, LI H, et al. Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study [J]. Chemosphere, 2016, 148: 227-232.
[69] HAN R P, ZOU W H, WANG Y, et al. Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect [J]. Journal of Environment Radioactivity, 2007, 93:127-143.
[70] WANG H, YUAN X Z, WU Y, et al. Adsorption characteristics and behaviors of graphene oxide for Zn(Ⅱ) removal from aqueous solution[J]. Applied Surface Science, 2013, 279: 432-440.
[71] 張偉強,馬建國,劉淑娟,等. 改性石墨烯海綿材料對鈾的吸附研究[J]. 東華理工大學學報(自然科學版), 2014, 37(2): 230-235.
ZHANG W Q, MA J G, LIU S J, et al. Uranium adsorption on functionalized graphene sponge[J]. Journal of East China Institute of Technology ( Natural Science), 2014, 37(2): 230-235.
[72] 孫兆勇.石墨烯與復合物的制備以及鈾吸附性能研究[D]. 哈爾濱:哈爾濱工程大學, 2013.
SUN Z Y. Synthesis and uranium adsorption characterization of graphene and graphene-based materials[D].Harbin: Harbin Engineering University, 2013.
[73] 武里鵬,毛燕妮,劉淑娟,等. 磁性石墨烯對鈾的吸附性能研究[J]. 江西化工, 2015(2): 99-103.
WU L P, MAO Y N, LIU S J, et al. Study on adsorption of uranium of magnetic graphene[J]. Jiang Xi Hua Gong, 2015(2): 99-103.
[74] XIAO C L, WU Q Y, SHI W Q, et al. Quantum chemistry study of U(VI), Np(V) and Pu(IV, VI) complexes with preorganized tetradentate phenanthrolineamide ligands [J]. Inorganic Chemistry, 2014, 53: 10846-10853.
[75] LAN J H, SHI W Q, CHAI Z F, et al. Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process [J]. Coordination Chemistry Reviews, 2012, 256: 1406-1417.
[76] WU Q Y, LAN J H, SHI W Q, et al. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study [J]. Journal of Physical Chemistry A , 2014, 118: 2149-2158.
[77] WANG C Z, LAN J H, SHI W Q, et al. Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups [J]. Inorganic Chemistry, 2014, 53: 9466-9476.
[78] YANG S T, ZONG P F, SHENG G D, et al. New insight into Eu(Ⅲ)sorption mechanism at alumina/water interface by batch technique and EXAFS analysis[J]. Radiochimica Acta, 2014, 102(1/2): 143-153.
[79] SUN Y B, DING C C,WANG X K, et al. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron [J]. Journal of Hazardous Materials, 2014, 280: 399-408.
[80] SUN Y B, SHAO D D, CHEN C L, et al. Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline [J]. Environmental Science & Technology, 2013, 47: 9904-9910.
[81] WU Q Y, LAN J H, WANG C Z, et al. Understanding the interactions of neptunium and plutonium ions with graphene oxide:Scalar-relativistic DFT investigations[J]. The Journal of Physical Chemistry A, 2014, 118 (44):10273-10280.
[82] 王祥學,李潔,于淑君,等. 放射性核素在天然黏土和人工納米材料上的吸附機理研究[J]. 核化學與放射化學, 2015, 37 (5): 329-340.
WANG X X, LI J, YU S J, et al. Sorption mechanism of radionuclides on clay minerals and manmade nanomaterials[J]. Journal of Nuclear & Radiochemistry, 2015, 37 (5): 329-340.
[83] 杜毅,王建,王宏青,等. 人工納米材料吸附放射性核素的機理研究[J]. 農業環境科學學報, 2016, 35 (10): 1837-1847.
DU Y, WANG J, WANG H Q, et al. Research on sorption mechanism of radionuclides by manufactured nanomaterials[J]. Journal of Agro-Environment Science, 2016, 35 (10): 1837-1847.
[84] WU Q Y, WANG C Z, LAN J H, et al. Theoretical investigation on multiple bonds in terminal actinide nitride complexes[J]. Inorganic Chemistry, 2014, 53 (18): 9607-9614.
[85] LIU S, ZENG T H, HOFMANN M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5 (9): 6971-6980.
[86] AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4 (10): 5731-5736.
[87] DUCH M C, BUDINGER G R S, LIANG Y T, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung [J]. Nano Letters, 2011, 11 (12): 5201-5207.
[88] 呂小慧,陳白楊,朱小山. 氧化石墨烯的水環境行為及其生物毒性[J]. 中國環境科學, 2016, 36 (11): 3348-3359.
Lü X H, CHEN B Y, ZHU X S. Fate and toxicity of graphene oxide in aquatic environment [J]. China Environmental Science, 2016, 36 (11): 3348-3359.