劉家玲 王仕敏 卓召振 袁軍
[摘要] 調節性T細胞(Treg)是一群具有負調節機體免疫反應的淋巴細胞??梢种颇[瘤相關抗原T細胞免疫,影響腫瘤免疫治療效果以及疫苗活化。清除CD4+CD25+T細胞(Treg)可抑制腫瘤生長,但會引起自身免疫性疾病,這與Treg細胞維持自身免疫耐受有關。Treg根據來源可分為胸腺來源的天然調節性T細胞(nTreg)和外周誘導型調節性T細胞(iTreg)。雖然調節性T細胞在不同癌癥類型和組織中表型多樣且具有異質性,但都共表達CD4、CD25、foxp3分子標記。由于其腫瘤異質性和器官異質性,因此在腫瘤免疫治療中靶向Treg細胞策略也不同。腫瘤免疫治療中可清除Treg或清除限制Treg細胞免疫抑制的功能蛋白例如GITR、T-bet、Neoropilin-1、CTLA-4、IDO或PD-1。在清除Treg細胞時為防止引起自身免疫性疾病通常加入OVA疫苗;目前已獲FDA批準Ipilimumab治療黑色素瘤的分子機制就是靶向Treg細胞的CTLA-4。本文通過對Treg的表型、異質性及靶向Treg的腫瘤治療策略的綜述,為將來針對Treg治療時,避免免疫紊亂提供研究思路。
[關鍵詞] 調節性T細胞(Treg);腫瘤免疫治療;腫瘤微環境
[中圖分類號] R392.12 [文獻標識碼] A [文章編號] 1673-7210(2018)04(a)-0046-05
[Abstract] Regulatory T cell (Treg) is a group of lymphocytes with negetive regulation of inhibiting tumor-associated antigen T cell-mediated immune responses, targeted agents may influence tumor immunotherapy and vaccine activation. Systemic removal of CD25+CD4+ T cells perhaps elicit tumor growth in rodents, but also increasing the severity of the autoimmune diseases as peripheral self-tolerance is maintained by Treg cells. According to sources of Regulatory T cells, it can be classfied as two population of nTreg and iTreg cells. Regulatory T cells are phenotypically diversity and functionally heterogeneous in different types of tumor and tissues, whereas conferring the same marker of CD4, CD25 and foxp3. Because of its tumor heterogeneity and organ heterogeneity, therefore, the strategy of targeting Treg cells in tumor immunotherapy is different. On the other hand, removal Treg cell strategies is different in tumor immunotherapy, it can remove regulatory T cells (Treg) or dampen the function of Treg cells through limit its immunosuppression protein, such as GITR, T-bet, Neoropilin-1, CTLA-4, IDO or PD-1. The autoimmunities can be prevented by inoculating OVA vaccine when removing Tregs .Ipilimumab, which has recently been FDA-approved for therapy patients with advanced melanoma mechnism is targeting CTLA- 4 in Treg cells. In this paper, we review the phenotype, heterogeneity and tumor therapy strategies of Treg treatment in order to avoid immune disorders in the future.
[Key words] Regulatory T cells; Tumor immunotherapy; Tumor microenvironment
1 調節性T細胞(Treg)研究簡史
調節性T細胞(Treg)在免疫系統中發揮著舉足輕重的作用,但是其發現可追溯到1980s的“抑制性”淋巴細胞,最早建立起來的Treg細胞概念也只有20多年。1982年Powell等[1]在X-相關綜合征(IPEX;也稱X-相關自身免疫性變應性失調綜合征即XLAAD)疾病中發現了foxp3基因的突變,而且人類foxp3基因與scurfy突變小鼠的foxp3基因具有同源性。直到1995年人們對Treg細胞進行分子標記,即CD4+CD25+ T細胞(CD25即IL-2受體),這是最早認識的調節性T細胞亞群,在小鼠和人身上均可表達CD25。隨后的研究證明該轉錄因子foxp3對Treg細胞分化和功能具有重要作用,并進一步深入研究了Treg細胞胞內分子標記的CD4+CD25+foxp3+T細胞[2-4]。調節性T細胞(Treg)被定義為一群可表達轉錄因子forkhead boxP3 (foxp3)基因的免疫抑制性淋巴細胞。Foxp3不僅是Treg細胞的分子標記而且對調節性T細胞的功能和生成有著重要作用,即便CD25-的調節性T細胞表達foxp3后也具有免疫抑制功能[5],這與天然調節性CD4+CD25+T細胞相同。Fontenot構建的foxp3突變小鼠中證明了foxp3對于胸腺中的CD4+CD25+調節性T細胞生成很重要[6]。foxp3+與foxp3-細胞相比,對T細胞的刺激反應較弱,其IL-2和IL-10產生減少。數據表明foxp3表達與IL-10的mRNA數目增加有關[7]。然而這類T細胞功能差異是與foxp3表達數目相關,還是和細胞純化手段或與體內細胞分化相關,目前尚不清楚。
2 人與小鼠Treg細胞表型比較
利用調節性T細胞(Treg)表面分子標記識別不同亞型的調節性T細胞對于研究調節性T細胞的來源、免疫抑制功能和不同亞型之間相互作用關系非常重要。一般情況下人和小鼠的標記都可用CD4+CD25+(IL-2Ra),對于小鼠分選或染色Treg細胞常用CD4+CD25+CD45Rblow標記[8],但是人的Treg細胞上CD25上調表達則大多在受到活化的狀態下[9]。人的CD4+CD25hiTreg細胞可表達IL-10,低表達IFN-γ,在體外刺激過的CD4+CD25-細胞可表達foxp3[10-11]。并且人類的全血Treg細胞可用CD127(IL7R)標記即CD4+CD25+CD127low [12],抑制性的CD4+T細胞低表達CD127,該分子與foxp3表達水平相反,與CD25表達無關,CD4+CD25+CD127low/negfoxp3+也可作為nTreg分子標記[13];最近研究表明人與小鼠的Treg細胞雖然foxp3具有同源性,但存在很多差別,例如IL-35只表達在小鼠Treg細胞而人的Treg不表達IL-35[14]。
3 靶向清除Treg細胞及異質性
3.1 治療策略一:Treg表達的功能性膜蛋白
Treg細胞在很多腫瘤組織中相對較高例如乳腺癌、肺癌、肝癌、胰腺癌、腸癌和惡性黑色素瘤[15],若CD8+T細胞和Treg細胞比例低則預后較差[16]。Treg表達的很多蛋白如CCR4、CD25、CTLA-4、PD-1和GITR,在效應T細胞上也可表達,只是腫瘤組織中Treg細胞可表達這些蛋白而效應T細胞中則呈現低表達[17]。這為阻斷Treg免疫抑制功能蛋白提供治療方案的可行性,但同時意味著如果要阻斷Treg表面蛋白CD25、CTLA-4、PD-1和GITR就要把握好阻斷劑量、時間和給藥方式。人的CD4+foxp3+調節性T細胞具有表型功能異質性,可根據foxp3表達水平和膜表面分子CD45RA和CD25可將分成三種不同的亞型:①效應Treg(efoxp3),分子標記foxp3hiCD45RA-CD25hi,該細胞群為終末分化高度抑制性T細胞;②幼稚型Treg細胞,分子標記foxp3loCD45RA+CD25lo,該群細胞受到抗原刺激后誘導成eTreg細胞;③非Treg細胞,分子標記為foxp 3loCD45RA-CD25lo,該群細胞不具有免疫抑制功能,能分泌促炎因子[18]。
腫瘤組織和外周血中大多數T細胞包括Treg細胞都可表達趨化因子受體CCR4,腫瘤組織之所以可以募集如此多的CCR4+Treg細胞是受到腫瘤浸潤性巨噬細胞CCL20的趨化的影響[19]。在健康或癌癥患者外周血中CCR4可特異性地表達在終末分化抑制性調節性T細胞CD45RA-foxp3hi CD4+Treg(eTreg)細胞上,但在CD45RA+foxp3loCD4+ naive Treg細胞上無表達,相比外周血,腫瘤浸潤性CD45RA-foxp3hi CD4+Treg(eTreg)更具有免疫抑制性功能并在腫瘤組織中高表達,特異性地阻斷CCR4可清除掉eTreg,并抑制腫瘤生長[20]。已有研究表明腫瘤組織高表達的IDO和PD-L1可募集Treg細胞,而該募集機制需依賴于IFN-γ和CD8+T細胞表達的CCR4趨化因子[21],Treg細胞是受免疫系統趨化而非癌細胞,PD-L1上調是因為PTEN的活化而Akt信號通路受抑制[22]。既然腫瘤組織中的Treg細胞受CD8+CCR4+T細胞募集,那么為什么腫瘤生長沒有受到抑制,可能的原因也許是腫瘤中共刺激分子B7-1和B7-2分子低表達,可能抗原呈遞受到抑制,另一方面腫瘤組織大量分泌的IL-10細胞因子可抑制抗原呈遞細胞DC活性,使抗原呈遞受阻[23]?,F在對于黑色瘤的治療最新的研究藥物就是靶向CTLA-4的Ipilimumab,該藥物已獲歐盟批準用于轉移性(晚期)黑色素瘤[24]。其作用機制依賴于腫瘤微環境中巨噬細胞Fcγ受體來清除腫瘤病灶中表達CTLA-4的效應T細胞(Teff)和調節性T細胞(Treg),但是會增加淋巴結中腫瘤特異性CD4+效應T細胞的Treg[25]。GITR共刺激分子可在CD4+T和CD8+T細胞上低表達,但在Treg細胞上高表達[26]。如果阻斷GITR或其配體將可抑制Treg細胞的免疫抑制功能。現在用于臨床實驗的阻斷GITR和OX40聯用,OX40是組成型表達在Treg細胞的表面分子[27]。
3.2 治療策略二:直接清除Treg細胞
清除Treg的方法目前有PC61以及denileukin diftitox(Ontak),這些藥物都是靶向CD25間接阻斷Treg,其中denileukin diftitox(Ontak)在臨床實驗中用于治療腎細胞癌和黑色素瘤[28-29]。但是阻斷CD25同時也具有副作用,雖然清除了Treg細胞但同時腫瘤中的CD25+效應T細胞也會部分被刪除,嚴重地破壞胰島素分泌。轉基因的DEREG小鼠可以選擇性地清除總的foxp3+Treg而不影響CD25+效應T細胞[30]。在Klages等[31]的實驗中利用了DEREG小鼠建立了OVA表達的B16黑色素瘤模型,該模型不僅很好地抑制腫瘤生長而且由于Treg-OVA聯用即達到了治療黑色素瘤效果同時又不會引起糖尿病副作用,為黑色素瘤治療提供了新的研究方案。
雖然清除Treg細胞可促進免疫監視,但會引起自身免疫疾病、干擾效應T細胞作用以及活化髓系DC細胞瞬時表達CD25[32]。目前FDA批準的阻斷CD25單克隆抗體藥物Daclizumab雖不會介導胞毒活性但是會選擇性下調CD25hiCD45RAneg Treg細胞數量并使CD45RAnegTregs細胞重新分泌IFN-γ,在臨床實驗中將Daclizumab與腫瘤疫苗聯用清除Treg細胞,可同時增加CD4+和CD8+T細胞數量,而用于治療乳腺癌,將Daclizumab與DC疫苗聯用時,雖然CD25+T細胞被清除但不會促進DC疫苗的T細胞效應[33]。與另一種通過阻斷IL-2R的Denileukin diftitox(Ontak)藥物相比,清除IL-2R α-chain(CD25)的Daclizumab藥物更為有效[34]。雖然Daclizumab藥物作用機制是阻斷IL-2信號通路,但是不會影響所有的Treg細胞,而是有選擇性的干擾CD45RAnegfoxp3+Treg細胞,并不會影響CD45RA+Treg細胞數量及功能[35]。也許正是因為有CD45RA+Treg細胞存在以致于在阻斷CD25+是沒有引起自身免疫性疾病。
不同腫瘤組織靶向Treg細胞策略也要有所不同。這是因為Treg細胞異質性,不同組織Treg細胞屬性也有所不同,例如皮膚中Treg細胞表達CD103和CCR4,如果清除這些分子信號,將會引起皮膚類的自身免疫疾病[36];在結腸炎中Treg細胞都是CCR7表達會抑制Treg細胞遷移到淋巴結[37];在EAE模型中Treg細胞遷移到Th17細胞介導的炎性環境中依賴于Treg細胞表達CCR6[38]等。卵巢癌中的Treg細胞特征是可表達TH1相關趨化因子受體CXCR3而CCR4+Treg或CCR6+Treg細胞數量在卵巢癌中比較少[39],這也充分顯示出了Treg細胞的腫瘤異質性特征。這類卵巢癌中大量募集的CXCR3+Treg細胞可特異性調控I型T細胞免疫效應,特別是在實體瘤中,由于導致對有效抗腫瘤免疫的抑制[40]。人的結腸癌中也發現有大量的Treg細胞增殖促進腫瘤生長,但是這些Treg細胞與健康人的Treg細胞不一樣,該群Treg細胞可共表達foxp3+和RORγt+轉錄因子,也就是說結腸癌中的Treg細胞低表達IL-10但會高表達IL-17[41]。相類似的情況也在小鼠的遺傳性息肉疾病中被發現,如果在小鼠息肉疾病中清除foxp3+細胞中的RORγt+轉錄因子可維持Treg的穩態及抗炎作用及促進免疫監督達到治療息肉疾病的效果。清除IL-6、IL-23和IL-17或TNF-α將減少息肉的數量但是不影響RORγt+表達,如果清除IL-17將不會影響RORγt+Treg細胞數量還會導致息肉增加[41]。由此推測在腫瘤治療中尤其是結腸癌如何更好的平衡Treg抗炎和抑炎特性尤為關鍵:靶向RORγt+Treg細胞也許是潛在的治療結腸癌的靶點。Blatner等[41]的研究說明治療結腸癌需要平衡Treg細胞亞群而不是單獨直接清除Treg細胞,如果單獨地促進IL-17炎性反應也許會加重腫瘤細胞浸潤性,靶向RORγt也許會是更好控制Treg細胞數量及炎性反應的更好治療措施。
綜上所述,無論是腫瘤、感染或者是自身免疫性疾病,Treg表型、作用和功能都有不同。單純的靶向清除Treg細胞并不是最好的治療策略,它依賴于特異性的疾病背景,清除Treg時還要注意Treg所引發的自身免疫性疾病等問題。
4 結語
雖然現在人們對Treg研究越來越多,但對于Treg是如何發揮免疫抑制功能仍然還有很多未知。首先,對于Treg細胞不穩定原因還沒有完全弄清楚,其次靶向Treg細胞除了抑制調節性T細胞功能分子或轉錄因子foxp3外是否還有其他信號通路可用。如何做到在腫瘤免疫治療中使Treg細胞既維持免疫穩態又能下調免疫抑制功能達到治療效果都還需進一步探討。如果能找到開啟Treg分化成TH細胞的開關也許將會對腫瘤免疫治療帶來新的治療方案。
[參考文獻]
[1] Bennett CL,Christie J,Ramsdell F,et al. The immune dysregulation,polyendocrinopathy,enteropathy,X-linked syndrome (IPEX) is caused by mutations of FOXP3 [J]. Nature Genetics,2001,27(1):20.
[2] Hori S,Nomura T,Sakaguchi S. Control of Regulatory T Cell Development by the Transcription Factor Foxp3 [J]. Science,2003,299(5609):1057.
[3] Vignali DA,Collison LW,Workman CJ. How regulatory T cells work [J]. Nature Reviews Immunology,2008,8(7):523.
[4] Rothstein DM,Camirand G. New insights into the mechanisms of Treg function [J]. Current Opinion in Organ Transplantation,2015,20(4):376.
[5] Zhao H,Liao X,Kang Y. Tregs: Where We Are and What Comes Next? [J]. Front Immunol,2017,8.
[6] Fontenot JD,Gavin MA,Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells [J]. Nature Immunology,2003,4(4):330.
[7] Zhou X,Jeker LT,Fife BT,et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity [J]. Journal of Experimental Medicine,2008,205(9):1983-1991.
[8] Deng G,Nagai Y,Xiao Y,et al. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation [J]. Journal of Biological Chemistry,2015,290(33):20211-20220.
[9] Fontenot JD,Rasmussen JP,Williams LM,et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3 [J]. Immunity,2005,22(3):329-341.
[10] Levings MK,Sangregorio R,Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function [J]. Journal of Experimental Medicine,2001,193(11):1295-1302.
[11] Zhao Y,Guo H,Qiao G,et al. E3 Ubiquitin Ligase Cbl-b Regulates Thymic-Derived CD4+CD25+ Regulatory T Cell Development by Targeting Foxp3 for Ubiquitination [J]. Journal of Immunology,2015,194(4):1639-1645.
[12] Seddiki N,Santnernanan B,Martinson J,et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells [J]. Journal of Experimental Medicine,2006,203(7):1693-1700.
[13] Liu W,Putnam AL,Zhou XY,et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells [J]. Journal of Experimental Medicine,2006,203(7):1701-1711.
[14] Collison LW,Workman CJ,Kuo TT,et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function [J]. Nature,2007,450(7169):566.
[15] Nishikawa H. Regulatory T cells in cancer immunotherapy [J]. Rinsho Ketsueki,2014,55(10):2183-2189.
[16] Sato E,Olson SH,Nishikawa H,et al. Intraepithelial CD8+ Tumor-Infiltrating Lymphocytes and a High CD8+/regulatory T Cell Ratio Are Associated with Favorable Prognosis in Ovarian Cancer[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(51):18538.
[17] Gavin MA,Rasmussen JP,Fontenot JD,et al. Foxp3-dependent programme of regulatory T-cell differentiation [J]. Nature,2007,445(7129):771-775.
[18] Miyara M,Yoshioka Y,Kitoh A,et al. Functional delineation and differentiation dynamics of human CD4+T cells expressing the FoxP3 transcription factor [J]. Immunity,2009,30(6):899.
[19] Liu J,Zhang N,Li Q,et al. Tumor-Associated Macrophages Recruit CCR6+Regulatory T Cells and Promote the Development of Colorectal Cancer via Enhancing CCL20 Production in Mice [J]. PLoS One,2011,6(4):e19495.
[20] Sugiyama D,Nishikawa H,Maeda Y,et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells,evoking antitumor immune responses in humans [J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(44):17945-17950.
[21] Spranger S,Spaapen RM,Zha Y,et al. Up-Regulation of PD-L1,IDO,and Tregs in the Melanoma Tumor Microenvironment Is Driven by CD8+T Cells [J]. Science Translational Medicine,2013,5(200):200ra116.
[22] Song M,Chen D,Lu B,et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer [J]. PLoS One,2013,8(6):e65821.
[23] Steinbrink K,Jonuleit H,Müller G,et al. IL-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8+,T cells resulting in a failure to lyse tumor cells [J]. Journal of Dermatological Science,1999, 16(5):1634-1642.
[24] Hao C,Tian J,Liu H,et al. Efficacy and safety of anti-PD-1 and anti-PD-1 combined with anti-CTLA-4 immunotherapy to advanced melanoma: A systematic review and meta-analysis of randomized controlled trials [J]. Medicine,2017,96(26):e7325.
[25] Simpson TR,Li F,Montalvoortiz W,et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma [J]. Journal of Experimental Medicine,2013, 210(9):1695-1710.
[26] Shimizu J,Yamazaki S,Takahashi T,et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance [J]. Nature Immunology,2002,3(2):135.
[27] Valzasina B,Guiducci C,Dislich H,et al. Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR [J]. Blood,2005,105(7):2845.
[28] Dannull J,Su Z,Rizzieri D,et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells [J]. Journal of Clinical Investigation,2005,115(12):3623-3633.
[29] Mahnke K,Schnfeld K,Fondel S,et al. Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro [J]. International Journal of Cancer Journal International Du Cancer,2007,120(12):2723-2733.
[30] Katharina L,Christoph L,Cathy D,et al. Selective depletion of Foxp3+regulatory T cells induces a scurfy-like disease [J]. Journal of Experimental Medicine,2007,204(1):57-63.
[31] Klages K,Mayer CK,Loddenkemper C,et al. Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma [J]. Cancer Research,2010,70(20):7788-7799.
[32] Rech AJ,Mick R,Martin S,et al. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients [J]. Science Translational Medicine,2012,4(134):134ra62.
[33] Rech AJ,Mick R,Recio A,et al. Phase I study of anti-CD25 mab daclizumab to deplete regulatory T cells prior to telomerase/survivin peptide vaccination in patients (pts) with metastatic breast cancer (MBC)[J]. Journal of Clinical Oncology,2010,28(15_suppl),2508.
[34] de Vries IJ,Castelli C,Huygens C,et al. Frequency of Circulating Tregs with Demethylated FOXP3 Intron 1 in Melanoma Patients Receiving Tumor Vaccines and Potentially Treg-Depleting Agents[J]. Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2011,17(4):841.
[35] Sutmuller RPM,Van DLM,Andrea VE,et al. Synergism of Cytotoxic T Lymphocyte-Associated Antigen 4 Blockade and Depletion of Cd25+Regulatory T Cells in Antitumor Therapy Reveals Alternative Pathways for Suppression of Autoreactive Cytotoxic T Lymphocyte Responses [J]. Journal of Experimental Medicine,2001,194(6):823.
[36] Dudda JC,Perdue N,Bachtanian E,et al. Foxp3+ regulatory T cells maintain immune homeostasis in the skin [J]. Journal of Experimental Medicine,2008,205(7):1559-1565.
[37] Schneider MA,Meingassner JG,Martin L,et al. CCR7 is required for the in vivo function of CD4+CD25+regulatory T cells [J]. Journal of Experimental Medicine,2007,204(4):735.
[38] Yamazaki T,Yang XO,Chung Y,et al. CCR6 Regulates the Migration of Inflammatory and Regulatory T Cells [J]. Journal of Immunology,2008,181(12):8391-8401.
[39] Redjimi N,Raffin C,Raimbaud I,et al. CXCR3+ T regulatory cells selectively accumulate in human ovarian carcinomas to limit type I immunity [J]. Cancer Research,2012,72(17):4351-4360.
[40] Ohtani H,Yoshie O. Morphometric analysis of the balance between CXCR3+ T cells and FOXP3+ regulatory T cells in lymphocyte-rich and conventional gastric cancers [J]. Virchows Archiv An International Journal of Pathology,2010,456(6):615.
[41] Blatner NR,Mulcahy MF,Dennis KL,et al. Expression of RORγt Marks a Pathogenic Regulatory T Cell Subset in Human Colon Cancer [J]. Science Translational Medicine,2012,4(164):164ra159.