999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Infl uence of the Exchange-Correlation Functional on the Non-Interacting Kinetic Energy and Its Implications for Orbital-Free Density Functional Approximations

2018-07-03 09:57:44FINZELKatiBULTINCKPatrick
物理化學學報 2018年6期

FINZEL Kati,BULTINCK Patrick

Department of Inorganic and Physical Chemistry,Ghent University,281 Krijgslaan,9000 Ghent,Belgium.

1 Introduction

Functional development for the non-interacting kinetic energy1–4has recently regained in interest,as two major research lines:orbital-free density functional theory and embedding approaches benefi t from an appropriate functional description.The fi rst kinetic energy functional dates back to Thomas and Fermi5,6in 1928,even much earlier than the theoretical foundations of density functional theory(DFT)led by Hohenberg and Kohn in their seminal paper7.However,fi nding appropriate density-based functional approximations for the kinetic energy has been proven to be severely diきcult.Thus,the orbital-based Kohn-Sham method(KS)8became the most popular variant of density functional theory.A big issue in the design of kinetic energy functionals is to avoid the variationally obtained electron density to fall into the structureless bosonic-like solution,a well-known defect that is inherently related to the problem of imposing proper N-representability conditions on the functional9–11.

First work was done using conventional gradient expansion techniques5,6,12–15and extended by generalized gradient approximations motivated by conjoint arguments16–18or the fulfillment of additional constraints19–21. But also information-theory motivated functionals22–24,functionals based on response theory25,26,and expansions in terms of moment densities27were studied.In practice it is very diきcult to fi nd suitable kinetic energy functional approximations,which are able to yield electron densities with proper N-fermionic behavior,like for example the atomic shell structure of the radial electron density28–31.This failure is attributed to an insuきcient incorporation of the Pauliexclusion principle21,32,33in the Pauli kinetic energy and the corresponding Pauli potential34.Both terms were intensively studied in the literature35–43as they represent the only unknown part of the kinetic energy functional and the corresponding potential,respectively.Recently,an ad hoc formalism how to construct approximations for the Pauli potential,which are able to yield properly structured electron densities44–47has been presented.A generalized method how to design functional approximations with specifi ed functional derivatives48hasbeen published consecutively.

This work focuses on another important aspect for the design of kinetic energy density functionals:its implicit orbital-dependence.While the explicit orbital-dependence for the kinetic energy is obvious,namely finding a density-based approximation for the kinetic energy which is known in terms of orbitals,the implicit orbital-dependence of the kinetic energy is more subtle.This additional dependence is due to the fact that only the total Fermi potential49is a pure density functional,whereas its both components:the kinetic and the exchange-correlation part,depend on the chosen system,and are thus,orbital-dependent.Whereas this aspect is well-known for the non-interacting versus the real interacting system50,the same applies to the non-interacting Kohn-Sham system itself,due to the diあerent treatment of the exchange-correlation eあects when using diあerent functionals.In fact,the intense relationship between the kinetic and the exchange energy density is known since long time and has lead to the conjoint hypothesis,which was intensively applied in the development of kinetic energy density functional approximations by employing the same enhancement factor for both terms:the kinetic and the exchange component16–18.Here,however,the implicit orbital-dependence is tested or the exact noninteracting kinetic energy.Therefore,the Section 2 deals with the origin of the implicit orbital-dependence for the exact non-interacting kinetic energy,formally derived within an orbital-free formalism,but the numerical data presented in the Section 3 is taken from a conventional KScalculation.

2 Theory

It is a well-known fact that for density functional approximations the exchange and correlation terms are usually treated together as both parts signifi cantly infl uence one another33,51.The aim of this work is to show that the same applies to the kinetic energy if one aims to target orbital-free density functional calculations.The following section deals with theorbital-freederivation of theabove aspect.In contrast,the numerical investigation is carried out with the help of the KS system in order to exclude errors originating from the kinetic energy functional expression itself.

The Hohenberg-Kohn theorems7provide the theoretical foundation for a direct minimization of the total electronic energy of the system E with respect to its electron density ρ(→r)subject to the constraint that the latter stays appropriately normalized to the number of electrons N(0= μ[∫ρ(→r)d→r ?N]):

whereby the introduced Lagrange multiplierμequals the chemical potential51.It is possible to split the total energy of the system into energy terms which are independent of the particles nature,and consequently also apply to boson-type particles EB[ρ],and the remaining energy termswhich account for thefermionic natureof theelectrons EF[ρ]:

with:

and:

Strictly speaking,theexact correlation functional isnot apurely fermioniceあectasitcounterbalancesthesimplescalingbehavior of the non-interacting kinetic energy resulting from the choice of the KSsystem52.For simplicity,however,thelabel XCiskept as notation.Hereby,the von Weizs?cker kinetic energy TW[ρ]12,the electron-nuclear attraction EZ[ρ](for a system with M nuclei),and the Hartree repulsion energy EH[ρ]belong to the bosonic-like type functionals,and thus,are known as explicit density functionals:

Note that ground-state functionals of the bosonic-type can always be derived by placing the appropriately normalized square root of the electron density into the corresponding orbital-dependent wavefunction expressions.In contrast,the fermionic parts,the Pauli kinetic energy TP[ρ]and the exchange-correlation energy EXC[ρ],are unknown and must be approximated in density functional calculations.By knowledge of the remaining unknown fermionic terms,the electron density could directly be determined from the Euler Eq.(1),whereby each potential vkis the functional derivative of the corresponding density functional vk= δEk/δρ for the energy termsin Eq.(2):

Notice,that the Fermi-potential vF,which isdefi ned asthesum of the kinetic and potential contribution originating from the unknown fermionic energy terms:

is an explicit density functional and can,at least at the solution point,trivially be obtained from Eq.(8).In practice,the individual parts,however,arenot puredensity functionals,they havean additional orbital dependence.

At the solution point the formal functional derivative of the Pauli kinetic energy,the so-called Pauli potential,can for a single Slater determinant wavefunction(Hartree-Fock(HF)or Kohn-Sham(KS))be expressed in terms of the eigenvalues∈iand eigenfunctions Φi(→r)of the corresponding single particle operator35,53:

with τ(→r)=1/2|?Φi(→r)|2being the positive kinetic energy density,tW(→r)= 1/8|?ρ(→r)|2/ρ(→r)being the Weizs?cker kinetic energy density.At the solution point,cf.Eq.(8),the exchange-correlation potential is then numerically equivalent to:

immediately revealing themutual orbital dependenceof thepair vP([{Φi}];→r),vXC([{Φi}];→r).For example,the Pauli potential forthereal interactingsystemdescribed by HFtheory isobtained from the HF eigenfunctions and eigenvalues.In that case,the corresponding exchange-correlation potential(it is a matter of taste whether one would like to call the remaining piece a pure exchange or an exchange-correlation potential,both versions exists in the literature49,54,55)is the Slater potential56.On the other hand it is well-known that the Slater potential is diあerent fromthe KSpotential yielding the HFelectron density54,55,57,in which case theeigenfunctionsof the non-interacting KSsystem are used to evaluate the Paulipotential.

This is caused by the implicit orbital-dependence of the individual pieces vP([{Φi}];→r)and vXC([{Φi}];→r),whereas their sum is orbital-independent,and,thus equal for the HFand the KS system49.Even if the individual components vP([{Φi}]; →r)and vXC([{Φi}];→r)could be modeled correctly by density based approximations,those approximations must be diあerent for the interacting and the non-interacting systems.In the present case,the impact on the potentials is large,as the KS and the Slater potential significantly diあer from one another.The impact on the kinetic energy however,is surprisingly small as shown by the work of G?rling and Ernzerhof58.In thisstudy,theimpact on the kinetic energy for the non-interacting KSsystem itself for various treatments of exchange-correlation eあects is investigated.The origin of that dependenceisasin thepreviousexampledueto thesplitting of the total Fermi potential into a kinetic and an exchange-correlation contribution and the mutual infl uence on one another.

In the KSformalism8the non-interacting kinetic energy is given explicitly in termsof orbitals:

with Φi(→r)obeying the KSeigenvalue equation:

whereby the local multiplicative eあective potential is given by:

Subtracting veあ([ρ];→r)Φi(→r)from Eq.(13),multiplying with Φ?i(→r)from the left,and inserting into Eq.(12)yields:

Theaboveexpressionisformally apuredensity functionalforthe non-interactingkineticenergy(asrequired inorbital-freedensity functional theory).However,sinceitwasobtained inthespiritof the KSformalism,it still requiressolving for the N independent particles via Eq.(14)in order to obtain theeigenvalues∈i.From Eqs.(14)and(15)thedirectinfl uenceof vXC([{Φi}];→r)on Ts[ρ]is immediately visible,which is the major aspect of this work.Theorder of magnitude for thisdependence is illustrated in the following section.

3 Results and discussion

KS calculations have been performed with the Gaussian program59for the atoms He,Ne,Ar,Kr,and the CO molecule.The cc-pVQZ basis set60was employed and the following exchange-correlation functionals were tested:LDA8,Xα61,PW9162,63,PBE64,VSXC65,revTPSS66,and B3LYP67.

Fig.1 compiles the diあerences of the non-interacting kinetic energy with respect to the values obtained from LDA ΔTs=TXCs?TLDAsusing various functionals for He,Ne,Ar,and Kr.As can been seen from the dataΔTsincreases with increasing number of electronsin thesystem and is of the order of a few Hartree.Recall that the correlation contribution to the kinetic energy,which is the diあerence between the interacting HF kinetic energy and the non-interacting KS kinetic energy(yielding the HF density)is of the order of a few millihartrees only58.Therefore,the infl uence of the exchange-correlation functional on the non-interacting kinetic energy is of high signifi cance and should be considered when searching for suitabledensity-based functional approximationsfor thekinetic energy.

Table1 Bond distancesin for CO using LDA,Xα,PW91,PBE,VSXC,revTPSS,and B3LYP(shown in thediagonal line)aswell astheir combinationsusing T sX C and theremaining total potential energy V XC using theindicated XC functional.

Fig.1 DiあerencesΔT s=T XC s ?T LDA s (in Hartree)for XC being Xα,PW91,PBE,VSXC,revTPSS,and B3LYPfor He,Ne,Ar,and Kr,respectively.

From a chemists viewpoint,more crucial than the infl uence onthetotal energy,istheinfl uenceon bond dissociationenergies and bond distances,whichisduetothefactthattheentanglement betweenthekinetic and thepotentialenergy dependsonthebond nuclear coordinates.In case of a dimer,the total kinetic energy as a function of bond distance R:contains a kinetic component TXCs(R)and a potential energy VXC(R)(including the nuclear repulsion).As shown before,both terms depend on the chosen XC functional.If the kinetic energy and the exchange-correlation energy would be suきciently independent of one another(and in the current design of kinetic energy functionals they are treated as if),then the kinetic and potential energy terms as a function of bond distances should roughly be interchangeable for two separate KS calculations obtained with diあerent exchange-correlation functionals.Meaning that the sum of kinetic energy(as a function of bond distance)obtained from an LDA calculation and the remaining potential energy from a PBE calculation should somehow perform as a(possibly weighted)average of the two functionals.To test this assumption,all 49 combinationsusing LDA8,Xα61,PW9162,63,PBE64,VSXC65,revTPSS66,and B3LYP67have been employed in order to obtain the corresponding total energy curves.The bond dissociation curves(total energy of the molecule minus the total energy of thefragments)asafunction of bond distanceare exemplarily shown for the combinations of Xα61,PW9162,63,and PBE64,see Fig.2.The bond distances and dissociation energies for the complete set are compiled in Tables 1 and 2,respectively.As can be seen from Fig.2 the energy minima of the combined functional curves do in general not lie between the minima of the pure(realizable)functional calculations.The same trend is observed for the larger test set,cf.Table 1.Obviously,the mutual infl uence of the kinetic energy and the exchange-correlation functional is large as it shifts the energy minimum beyond the weighted average of the individual energy minima.Therefore,in the design and performance of kinetic energy functionals,theexchange-correlation component isof crucial importanceasthefinal resultssignifi cantly depend upon it.Finally,the performance of a kinetic energy functional must be documented with the corresponding exchangecorrelation component as its stand-alone performance is not reproducibleand thus,of no value.

Fig.2 Bond dissociation energy curves versus distancefor the CO moleculecalculated with XC being Xα(shown in black),PW91(shown in red),and PBE(shown in green),and various combinations T sXC (R)and V XC(R).

Notice that,the splitting for the combined data curves with respect to the dissociation energies is even much larger than for the bond distances itself,cf.Table 2.Due to the signifi cant infl uence of the kinetic and exchange-correlation component on each other,the virial ratio is no more fulfi lled for various combinations and consequently,for the corresponding kineticenergy density functional whentrained toreproducetheoriginal KSdata.

Table2 Bond dissociation energies(in Hartrees)for CO using LDA,Xα,PW91,PBE,VSXC,revTPSS,and B3LYP(shown in thediagonal line)aswell as their combinations using T sX C and theremaining total potential energy V using the indicated X C functional.

The above analysis shows that the infl uence of the exchange-correlation functional on the kinetic energy(even if treated correctly within the KSapproach)is beyond the order of chemical accuracy.An uncorrelated treatment of individual kinetic and potential components may signifi cantly alter chemical bonding concepts as it severely infl uences bond distances and dissociation energies.

4 Conclusions

The infl uence of the exchange-correlation potential on the non-interacting kinetic energy is of the order of a few Hartree for total energies.Compared to other eあects,like for example the kinetic correlation contribution,the direct infl uence of the functional choice has a rather large infl uence.Moreover,the mutual dependence of the kinetic and the exchange-correlation functional signifi cantly infl uences bond distances(beyond weighted averages)and the virial ratio.Therefore,the chosen exchange-correlation functional type must be considered in the design of orbital-free density based approximations for the kinetic energy in order to assure the reproducibility of the performance.

Acknowledgement:K.F.wishes to thank Miroslav Kohout for fruitful discussions and substantial encouragement over years.Sofi e Van Damme is gratefully acknowledged for carefully reading the manuscript and valuable criticisms.

(1)Ho,G.S.;Lignères,V.L.;Carter,E.A.Comput.Phys.Comm.2008,179,839.doi:10.1016/j.cpc.2008.07.002

(2)Karasiev,V.;Sjostrom,T.;Trickey,S.B.Computer Phys.Commun.2014,185,3240.doi:10.1016/j.cpc.2014.08.023

(3)Lehtom?ki,J.;Makkonen,I.;Caro,M.A.;Harju,A.;Lopez-Acevedo,O.J.Chem.Phys.2014,141,234102.doi:10.1063/1.4903450

(4)Ghosh,S.;Suryanarayana,P.J.Comput.Phys.2016,307,634.doi:10.1016/j.jcp.2015.12.027

(5)Thomas,L.H.Proc.Cambridge Philos.Soc.1927,23,542.doi:10.1017/S0305004100011683

(6)Fermi,E.Zeitschrift für Physik 1928,48,73.doi:10.1007/BF01351576

(7)Hohenberg,P.;Kohn,W.Phys.Rev.B 1964,136,864.doi:10.1103/PhysRev.136.B864

(8)Kohn,W.;Sham,L.J.Phys.Rev.A 1965,140,1133.doi:10.1103/PhysRev.140.A1133

(9)Ayers,P.W.;Liu,S.Phys.Rev.A 2007,75,022514.doi:10.1103/PhysRevA.75.022514

(10)Lude?a,E.V.;Illas,F.;Ramirez-Solis,A.Int.J.Mod.Phys.B 2008,22,4642.doi:10.1142/S0217979208050395

(11)Kryachko,E.S.;Lude?a,E.V.Phys.Rep.2014,544,123.doi:10.1016/j.physrep.2014.06.002

(12)von Weizs?cker,C.F.Z.Phys.1935,96,431.doi:10.1007/BF01337700

(13)Kirzhnits,D.A.Sov.Phys.JETP 1957,5,64.

(14)Hodges,C.H.Can.J.Phys.1973,51,1428.doi:10.1139/p73-189

(15)Murphy,D.R.Phys.Rev.A 1981,24,1682.doi:10.1103/PhysRevA.24.1682

(16)Lee,H.;Lee,C.;Parr,R.G.Phys.Rev.A 1991,44,768.doi:10.1103/PhysRevA.44.768

(17)Fuentealba,P.;Reyes,O.Chem.Phys.Lett.1995,232,31.doi:10.1016/0009-2614(94)01321-L

(18)Tran,F.;Wesolowski,T.A.Int.J.Quantum Chem.2002,89,441.doi:10.1002/qua.10306

(19)Lee,D.;Constantin,L.A.;Perdew,J.P.;Burke,K.J.Chem.Phys.2009,130,034107.doi:10.1063/1.3059783

(20)Karasiev,V.;Chakraborty,D.;Trickey,S.B.Many-Electron Approachesin Physics,Chemistry and Mathematic;Delle Site,L.;Bach,V.Eds.;Springer Verlag:Heidelberg,Germany,2014;pp.113–134.

(21)Karasiev,V.;Trickey,S.B.Adv.Quantum Chem.2015,71,221.doi:10.1016/bs.aiq.2015.02.004

(22)Ghiringhelli,L.M.;Delle Site,L.Phys.Rev.B 2008,77,073104.doi:10.1103/PhysRevB.77.073104

(23)Ghiringhelli,L.M.;Hamilton,I.P.;Delle Site,L.J.Chem.Phys.2010,132,014106.doi:10.1063/1.3280953

(24)Trickey,S.;Karasiev,V.V.;Vela,A.Phys.Rev.B 2011,84,075146.doi:10.1103/PhysRevB.84.075146

(25)Wang,Y.A.;Carter,E.A.Theoretical Methodsin Condensed Phase Chemistry;Schwarz,S.D.Ed.;Kluwer:New York,NY,USA,2000;pp.117–184.

(26)Shin,I.;Carter,E.A.J.Chem.Phys.2014,140,18A531.doi:10.1063/1.4869867

(27)Ayers,P.W.;Lucks,J.B.;Parr,R.G.Acta Chimica et Physica Debrecina 2002,34,223.

(28)Bartell,L.S.;Brockway,L.O.Phys.Rev.1953,90,833.doi:10.1103/PhysRev.90.833

(29)Waber,J.T.;Cromer,D.T.J.Chem.Phys.1965,42,4116.doi:10.1063/1.1695904

(30)Weinstein,H.;Politzer,P.;Srebrenik,S.Theor.Chim.Acta 1975,38,159.doi:10.1007/BF00581473

(31)Schmider,H.;Sagar,R.;Smith,V.H.,Jr.Can.J.Chem.1992,70,506.doi:10.1139/v92-072

(32)Yang,W.Phys.Rev.A 1986,34,4575.doi:10.1103/PhysRevA.34.4575

(33)Dreizler,R.M.;Gross,E.K.U.Density Functional Theory;Springer Verlang:Berlin Heidelberg,Germany,1990.

(34)March,N.H.Phys.Lett.A 1986,113,476.doi:10.1016/0375-9601(86)90123-4

(35)Levy,M.;Ou-Yang,H.Phys.Rev.A 1988,38,625.doi:10.1103/PhysRevA.38.625

(36)Nagy,A.Acta Phys.Hung.1991,70,321.doi:10.1007/BF03054145(37)Nagy,A.;March,N.H.Int.J.Quantum Chem.1991,39,615.doi:10.1002/qua.560390408

(38)Nagy,A.;March,N.H.Phys.Chem.Liq.1992,25,37.doi:10.1080/00319109208027285

(39)Holas,A.;March,N.H.Int.J.Quantum Chem.1995,56,371.doi:10.1002/qua.560560423

(40)Amovilli,C.;March,N.H.Int.J.Quantum Chem.1998,66,281.doi:10.1002/(SICI)1097-461X(1998)66:4<281::AIDQUA3>3.0.CO;2-R

(41)Nagy,A.Chem.Phys.Lett.2008,460,343.doi:10.1016/j.cplett.2008.05.077

(42)Nagy,A.Int.J.Quantum Chem.2010,110,2117.doi:10.1002/qua.22497

(43)Nagy,A.J.Chem.Phys.2011,135,044106.doi:10.1063/1.3607313

(44)Finzel,K.Int.J.Quantum Chem.2015,115,1629.doi:10.1002/qua.24986

(45)Finzel,K.J.Chem.Phys.2016,144,034108.doi:10.1063/1.4940035

(46)Finzel,K.Theor.Chem.Acc.2016,135,87.doi:10.1007/s00214-016-1850-8

(47)Finzel,K.Int.J.Quantum Chem.2016,116,1261.doi:10.1002/qua.25169

(48)Finzel,K.;Ayers,P.W.Theor.Chem.Acc.2016,135,255.doi:10.1007/s00214-016-2013-7

(49)Finzel,K.;Ayers,P.W.Int.J.Quantum Chem.2017,117,E25364.doi:10.1002/qua.25364

(50)Finzel,K.;Baranov,A.I.Int.J.Quantum Chem.2016,117,40.doi:10.1002/qua.25312

(51)Parr,R.G.;Yang,W.Density-Functional Theory of Atomsand Molecules;Oxford University Press:New York,NY,USA,1989.

(52)Levy,M.;Perdew,J.P.Phys.Rev.A 1985,32,2010.doi:10.1103/PhysRevA.32.2010

(53)Bartolotti,L.J.;Acharya,P.K.J.Chem.Phys.1982,77,4576.doi:10.1063/1.444409

(54)Ryabinkin,I.G.;Kananenka,A.A.;Staroverov,V.N.Phys.Rev.Lett.2013,111,074112.doi:10.1103/PhysRevLett.111.013001

(55)Kohut,S.V.;Ryabinkin,I.G.;Staroverov,V.N.J.Chem Phys.2014,140,18A535.doi:10.1063/1.4871500

(56)Slater,J.C.Phys.Rev.1951,81,385.doi:10.1103/PhysRev.81.385

(57)G?rling,A.Phys.Rev.A 1992,46,3753.doi:10.1103/PhysRevA.46.3753

(58)G?rling,A.;Ernzerhof,M.Phys.Rev.A 1995,51,4501.doi:10.1103/PhysRevA.51.4501

(59)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Montgomery,J.A.,Jr.;Vreven,T.;Kudin,K.N.;Burant,J.C.;et al.Gaussian 16,Revision A.03;Gaussian,Inc.:Wallingford,CT,USA,2016.

(60)Woon,D.E.;Dunning,T.H.J.J.Chem.Phys.1993,98,1358.doi:10.1063/1.464303

(61)Slater,J.C.Phys.Rev.1969,179,28.doi:10.1103/PhysRev.179.28

(62)Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.;Pederson,M.R.;Singh,D.J.;Fiolhais,C.Phys.Rev.B 1992,46,6671.doi:10.1103/PhysRevB.46.6671

(63)Perdew,J.P.;Burke,K.;Wang,Y.Phys.Rev.B 1996,54,16533.doi:10.1103/PhysRevB.54.16533

(64)Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77,3865.doi:10.1103/PhysRevLett.77.3865

(65)Van Voorhis,T.;Scuseria,G.E.J.Chem.Phys.1998,109,400.doi:10.1063/1.476577

(66)Perdew,J.P.;Ruzsinszky,A.;Gábor,I.;Constantin,A.L.;Sun,J.Phys.Rev.Lett.2009,103,026403.doi:10.1103/PhysRevLett.103.026403

(67)Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/1.464913

主站蜘蛛池模板: 亚洲成人在线免费| 亚洲国产在一区二区三区| 嫩草影院在线观看精品视频| 欧日韩在线不卡视频| 免费毛片a| 91久草视频| 青草视频久久| 青青久在线视频免费观看| 久久久久无码精品国产免费| 国产99视频免费精品是看6| 免费在线看黄网址| 欧美中文字幕在线播放| 色哟哟色院91精品网站| 久久久久人妻一区精品| 国产无码制服丝袜| 91午夜福利在线观看| 亚洲伊人久久精品影院| 天天爽免费视频| 亚洲精品在线91| a在线亚洲男人的天堂试看| 欧美不卡二区| 就去吻亚洲精品国产欧美| 操美女免费网站| 日韩午夜伦| 国产网友愉拍精品| 99热精品久久| 五月婷婷丁香色| 三上悠亚精品二区在线观看| 波多野结衣久久精品| 亚洲第一成网站| 日韩精品亚洲精品第一页| 国产超碰一区二区三区| 91亚洲国产视频| 日本久久久久久免费网络| 亚洲va在线∨a天堂va欧美va| 日韩在线中文| 欧美va亚洲va香蕉在线| 婷婷午夜天| 日韩欧美中文在线| 成年av福利永久免费观看| 日韩国产高清无码| 国产一二三区在线| 亚洲无线观看| 中国成人在线视频| av天堂最新版在线| 久久96热在精品国产高清| 欧美激情首页| 亚洲一区二区三区麻豆| 国产资源免费观看| 欧美中文字幕在线视频| 精品免费在线视频| 中国国产一级毛片| 毛片手机在线看| 国产av无码日韩av无码网站| 久久久久免费精品国产| 国产偷国产偷在线高清| 国产欧美一区二区三区视频在线观看| www.狠狠| 亚洲综合久久成人AV| 亚洲精品爱草草视频在线| 波多野结衣第一页| 亚洲色图在线观看| 精品国产自在现线看久久| 日韩专区第一页| 国产精品大尺度尺度视频| 精品国产免费人成在线观看| 欧美在线一二区| 久久综合成人| 午夜毛片福利| 国产精品极品美女自在线看免费一区二区| 亚洲成a人片77777在线播放| 国产成人1024精品下载| 成人综合在线观看| 亚洲专区一区二区在线观看| 国产精品亚洲五月天高清| 国产精品黄色片| 欧美区在线播放| 91精品久久久无码中文字幕vr| 午夜老司机永久免费看片| 熟妇人妻无乱码中文字幕真矢织江| 一本无码在线观看| 国产人碰人摸人爱免费视频|