溫榮坤
摘 要: 為了提高大數據環境下關聯數據挖掘的效率和精度,提出基于分數偏微積分分類數學模型的關聯挖掘方法?;谄⒎e分原理塑造基于偏微積分方程的融合算法模型,實現大數據分類過程中的差異性數據融合;再通過偏微分分類數學模型的雙邊界收斂控制,在數據集合融入偏微積分分類數據模型,通過增減量支持向量完成數據的模糊控制,采用約束捆綁聚類算法對數據模型實施挖掘,獲取子序列,在最小迭代次數和收斂下,通過測度信息調控,采用高斯核函數挖掘關聯數據序列。實驗結果說明,所提關聯數據挖掘方法具有較高的挖掘效率和精度,穩定性強。
關鍵詞: 偏微積分分類; 數學模型; 關聯挖掘; 分數階; 收斂控制; 挖掘效率
中圖分類號: TN911?34 文獻標識碼: A 文章編號: 1004?373X(2018)13?0095?05
Abstract: An association mining method based on fractional partial calculus classification mathematical model is put forward to improve the efficiency and accuracy of association data mining under the environment of big data mining. On the basis of partial calculus principle, the fusion algorithm model based on partial calculus equations is constructed to realize the difference data fusion in the large data classification process. By means of the dual?boundary convergence control of partial differential classification mathematical model, the data set is integrated into the data model of partial calculus classification. The variation of support vector is used to realize the fuzzy control of data. The constraint bundling clustering algorithm is used to mine the data model to obtain the sub sequences. Under the conditions of minimum iteration times and convergence, the Gaussian kernel function is used to mine the association data sequence by means of measuring information control. The experimental results show that the proposed association data mining method has high mining efficiency and accuracy, and strong stability.
Keywords: partial calculus classification; mathematical model; association mining; fractional order; convergence control; mining efficiency
當前社會的信息化水平不斷提升,形成了海量的大數據,大數據分類問題成為不同領域研究的熱點問題。高效的大數據關聯挖掘方法,為人們尋求有價值的信息提供基礎,對于提升社會的信息化進程具有重要應用價值。隨著計算數學研究領域的不斷擴張,分析偏微積分方程的穩定解以及收斂性問題逐漸引起人們的關注[1]。因此,本文提出基于分數偏微積分分類數學模型的關聯挖掘方法,提高大數據環境下關聯數據挖掘的效率和精度。
1.1 基于偏微積分分類融合算法的數學模型
當前在關聯數據挖掘領域中廣泛采用偏微積分原理,其能夠提高關聯數據的高頻區域,動態存儲數據的低頻區域,使得數據的干擾因素增加。而偏微積分原理提升數據低頻區域時,存儲數據的最低頻區域,其對階次的選擇要求較高[2]。如果采用小階次將降低干擾效果,采用大階次會形成模糊問題。偏微積分原理解決離散數據過程中,無法處理待挖掘數據中噪聲的干擾問題。本文在關聯數據挖掘過程中采用偏微積分原理,塑造關聯數據挖掘模型,實現基于偏微積分原理的差異性數據融合,提高關聯數據挖掘效率。
1.1.1 偏微積分方程
偏微積分方程是由整數階偏微分方程的轉化產生的,偏導數是將整數階微分方程中對函數影響因子的偏導數項進行替換得到[3]。偏微積分方程為:


針對大數據環境下的關聯數據挖掘問題,本文提出基于偏微積分分類數學模型的關聯數據挖掘方法。實驗證明該方法提高了數據挖掘效率以及精度,獲得了令人滿意的效果。
[1] 潘大勝,陳志福,覃煥昌.基于模糊關聯迭代分區的挖掘優化方法研究[J].科學技術與工程,2016,16(24):235?238.
PAN Dasheng, CHEN Zhifu, QIN Huanchang. Research on mining optimization based on fuzzy association iterative partition [J]. Science technology engineering, 2016, 16(24): 235?238.
[2] 馬瑞,周謝,彭舟,等.考慮氣溫因素的負荷特性統計指標關聯特征數據挖掘[J].中國電機工程學報,2015,35(1):43?51.
MA Rui, ZHOU Xie, PENG Zhou, et al. Considering the data mining of statistical parameters of temperature factors associa?ted feature data mining [J]. Proceedings of the CSEE, 2015, 35(1): 43?51.
[3] 周發超,王志堅,葉楓,等.關聯規則挖掘算法Apriori的研究改進[J].計算機科學與探索,2015,9(9):1075?1083.
ZHOU Fachao, WANG Zhijian, YE Feng, et al. Research on association rules mining algorithm Apriori improvement [J]. Computer science and exploration, 2015, 9(9): 1075?1083.
[4] 張松,張琳.一種數據挖掘中的W?PAM限制聚類算法[J].計算機科學,2016,43(z2):447?450.
ZHANG Song, ZHANG Lin. A W?PAM constrained clustering algorithm in data mining [J]. Computer science, 2016, 43(S2): 447?450.
[5] 徐開勇,龔雪容,成茂才.基于改進Apriori算法的審計日志關聯規則挖掘[J].計算機應用,2016,36(7):1847?1851.
XU Kaiyong, GONG Xuerong, CHENG Maocai. The audit log association rules mining algorithm based on improved Apriori [J]. Computer applications, 2016, 36(7): 1847?1851.
[6] 劉自然,王律強,李愛民,等.改進Apriori算法對試車臺監測數據的關聯挖掘[J].中國測試,2015,41(4):106?109.
LIU Ziran, WANG Lüqiang, LI Aimin, et al. Improve the association of the Apriori algorithm to the monitoring data of the test platform [J]. China test, 2015, 41(4): 106?109.
[7] 胡維華,馮偉.基于分解事務矩陣的關聯規則挖掘算法[J].計算機應用,2014,34(z2):113?116.
HU Weihua, FENG Wei. Association rule mining algorithm based on decomposition transactional matrix [J]. Computer applications, 2014, 34(S2): 113?116.
[8] 李濤,林陳,王麗娜.一種改進的相關項對挖掘算法研究[J].計算機仿真,2016,33(8):223?228.
LI Tao, LIN Chen, WANG Lina. An improved correlation for the research of mining algorithms [J]. Computer simulation, 2016, 33(8): 223?228.
[9] 黃立鋒,鄧玉輝.可時間局部性感知的塊I/O關聯挖掘算法[J].小型微型計算機系統,2015,36(5):990?995.
HUANG Lifeng, DENG Yuhui. Temporal locally sexy block I/O association mining algorithm [J]. Minicomputer system, 2015, 36(5): 990?995.
[10] 王英博,馬菁,柴佳佳,等.基于Hadoop平臺的改進關聯規則挖掘算法[J].計算機工程,2016,42(10):69?74.
WANG Yingbo, MA Jing, CHAI Jiajia, et al. Improved association rules mining algorithm based on Hadoop platform [J]. Computer engineering, 2016, 42(10): 69?74.