蔡壽榮
(中國民用航空西南地區空中交通管理局云南分局,云南昆明,650000)
近年來發展出一種“被動雷達”,該雷達可以通過接受信號而不發出任何信號來探測目標,其工作原理就是利用“盲源分離技術”。盲分離技術在運算過程中并不能預知原始信號和傳輸信號的基本信息,只是通過收到的混合信號實現圖像和信息的直接分離,此過程不必考慮雷達信號的周邊環境和其他可測條件。“二次雷達”(Secondary Surveilance Radar ,SSR)是一種通過地面詢問機對機載應答機的應答信號進行解碼,從而給目標物定位的系統。為準確分離混合在一起的二次雷達信號,我們針對信號模型和分離性能進行深入研究,最后基于盲源分離等變化的自適應分離算法,建立了二次雷達信號盲分離模型。
傳統二次雷達常采用A、C兩種模式進行應答,兩種應答格式相同,均由兩個框架脈沖F1、F2和12個數據脈沖、一個備用脈沖、一個特殊位置編碼脈沖組成,一共是16個信息碼位,其傳統應答模式如圖1所示。

圖1 傳統模式應答格式
二次雷達系統的詢問信號標稱中心頻率和應答信號標稱中心頻率不完全相同,存在一定偏差,受到偏移頻率的影響,二次雷達信號不再是二進制,而是等于零或分布在單位圓上。若之后收到非零信號且該信號滿足Фn=exp(2πnfnT),即二次雷達信號滿足ZCM特性。將信號歸一化后,對于任一采樣點有sk(l)=0或|sk(l)|=1,其中sk(l)表示第k個信號源第l個采樣點的信號,其數學表達式如下:

假設二次雷達使用情況如圖2所示,當詢問機發出詢問時,目標A、B都會收到相應的詢問信號,該詢問發射到目標應答被觸發使得詢問機再次收到應答信號所需時間應該為兩倍目標距離加上應答時間,設A、B兩目標應答時間相同,由于兩個應答目標會出現重疊現象,現根據A、B的信號建立如下模型:

其中,α、β分別為兩個源信號的幅度系數,γ1、γ2分別為目標A、目標B的單脈沖比,s1(t)、s2(t)分別為兩個相互獨立的源信號,ns(t )、nd(t)分別為t時刻的噪聲矢量。

圖2 接收信號模型
對式(2)進行模數轉換,得到觀測信號矩陣模型:

將其排列成2×L維的觀測矩陣,得到如下形式:

已知源信號的幅度系數不會對盲分離結果產生影響,因此在信噪比不低于20dB時,我們可以將噪聲忽略不計,首先估計矩陣A,利用盲源分離思想和式(4)兩邊同乘一個分離矩陣W,有WA=I,從而得到源信號。(AA-1=I,,W=A-1),得到如下表達式:

當γ=γ2時,權值矩陣ω=[-γ2l]T,可求出源信號s1,同理求出s2。
由于二次雷達信號滿足ZCM特性,有:

為了評價二次雷達盲分離算法的分離性能,通常采用分離指數E作為評價標準,其公式如下:

E值越小,表明分離性能越好。
雷達陣列接收機接收的信號一般包括回波信號、雜波信號以及雷達本身熱噪聲等。回波信號一般為正弦信號或調頻信號,雜波信號可通過瑞利分布來描述,利用對數-正態分布可以描述低入射角和復雜地形雜波,K-分布雜波多用于描述海雜波。因此,針對雷達雜波特性主要通過分析瑞利分布,利用對數-正態分布和K-分布雜波來分析二次雷達產生的雜波特性。
ICA是基于各信號之間統計獨立性來做出假設并計算出一個能使變換后的各信號間統計獨立的線性變換矩陣。基于ICA的盲分離也就是要在無先驗條件情況下,通過一組觀測信號x和一組源信號s來得出一個分離矩陣W,其中:X=As(A為未知混合矩陣),具體原理如圖3所示。

圖3 盲分離原理示意圖
如果信噪比充分大,可得白化矩陣

分離算法以x(t)為輸入,
(1)另 i=i+1,k=0
(2)取 k=k+1,計算 y(t)=ωiT(k)x(t),t=1,2,...,T
假設有兩個目標A、B收到詢問信號并將應答信號同時發出,兩個應答信號重疊,利用二次雷達盲分離算法對應答信號進行盲分離,設定參數幅度系數α=β=1,目標A、B的單脈沖比γ1=-0.2,γ2=0.1,在信噪比20dB的條件下,得出利用本文算法對重疊信號進行分離過程的代價函數圖(如圖4所示),可以利用兩個代價函數的最小值對應的單脈沖比來求出混合矩陣A和權值矩陣ω,以此分離源信號。

圖4 代價函數圖
本文提出了一種新的二次雷達信號盲分離算法,通過建立觀測信號的矩陣模型和對二次雷達信號的ZCM特性分析,取代價函數極小值對應的單脈沖比來得到混合矩陣和分離矩陣,最終有效分離出源信號。通過上述分析可以看出,該算法在20dB條件下克服了FastlCA算法的不足,對于二次雷達信號盲分離算法研究具有十分重要的意義。