張 林 惠 鑫 陳俊英
(1.西北農林科技大學水土保持研究所,陜西楊凌 712100; 2.西北農林科技大學水利與建筑工程學院,陜西楊凌 712100)
噴灌均勻度是噴灌系統設計的一個重要參數,單噴頭水量分布是噴灌均勻度計算的最基本資料之一[1-3]。關于噴灌水量分布和均勻度計算方面,以往的研究較多[4-13]。朱興業等[4]采用Matlab語言編制程序,對不同噴頭組合間距下的水量分布及均勻系數進行了模擬仿真計算,初步提出了旋轉式射流噴頭在正方形布置時的最佳組合間距。嚴海軍等[5]對兩種園林地埋式噴頭組合噴灑性能進行了模擬試驗,結果表明,在最大零漏噴范圍內,噴灌均勻系數與組合形式關系不大,主要取決于噴頭結構及其徑向水量分布。TARJUELO等[6-7]分別研究了噴頭在無風和有風條件下水量分布的影響因素,結果表明,風速對水量分布的影響顯著。MANTOVANI等[8]和LI[9]分析了噴灌均勻性對作物產量的影響。ZHANG等[10]、MATEOS[11]均對大田尺度下噴灌均勻性進行了研究,初步建立了大田尺度下噴灌系統均勻度計算模型。這些研究對噴灌系統設計及技術推廣應用起到了重要作用。但縱觀這些研究,主要以平地噴灌為主。隨著噴灌技術逐步向丘陵山區發展,坡地噴灌系統設計成為當前急需解決的重要技術問題。
坡地噴灌水量分布對于坡地噴灌系統設計至關重要,但受地形影響,實測坡地噴灌水量分布往往比較困難,而平地水量分布獲取相對簡單,因此有學者試圖通過一些方法將噴灌水量分布由平地轉換到坡地,從而便于坡地噴灌研究。陳學敏等[14]基于動力學原理推導出水滴運動方程,并結合水量平衡原理,構建出坡地噴灌水量分布計算模型,但模型假定水流在噴嘴出口處就完全碎裂,這與實際不太相符,影響了計算結果的準確性。向清江等[15]以射流軌跡計算公式[16]為基礎,采用網格變換的方式實現了平地和坡地之間水量分布數據的轉換,但該方法在假定射流的射程損失時過于簡化,因此數據轉換準確性還需進一步驗證;張以升等[17]以彈道理論為基礎,考慮水滴運動蒸發,建立了坡地噴灌水量分布計算模型,但該模型做了較多假設,使得模型只能在較為理想的狀態下使用,不具有普適性。
針對上述問題,本文以坡地噴頭射程計算公式[18]為基礎,根據噴頭射流方向總水量守恒原理,構建噴灌水量分布由平地轉換到坡地的計算模型,并通過試驗驗證模型的正確性。最后利用該模型,分析噴頭工作壓力、布置方式和間距等對坡地噴灌水量分布的影響,以期為坡地噴灌系統設計提供一定的科學依據。
引用文獻[18]推導出的坡地噴頭射程計算公式
Rup=R0cosβ(1-tanβcot(θ+β))
(1)
Rdown=R0cosβ(1+tanβcot(θ-β))
(2)
式中Rup——噴頭在上坡方向的射程,m
Rdown——噴頭在下坡方向的射程,m
R0——噴頭在平地上的射程,m
β——投影角,即噴射水流運動軌跡線在坡面上的投影線和平地上的投影線之間的夾角,(°)
θ——噴射水流運動軌跡線與平地的夾角,即射流末端水滴落地角度,(°)
已知地形坡度,給定噴頭在坡面上的旋轉角,可計算出投影角
(3)
式中i——地形坡度
α——噴頭旋轉角,(°)
當0°≤α≤180°時,β取正號;當180°<α<360°時,β取負號。
在噴頭工作參數(如壓力等)不變的條件下,噴頭出流量會保持不變,假定噴頭旋轉速度均勻,那么無論是平地或坡地,不同旋轉角下沿噴頭射流方向上總水量保持不變。已知地形坡度,根據上述坡地噴頭射程計算公式,可以獲得不同噴頭旋轉角下的坡面射程;結合平地上實測的噴頭徑向水量分布數據,基于沿噴頭射流方向總水量守恒原理,利用噴頭坡面射程與平地射程比例,將平地實測水量轉換為坡地水量,進而獲得整個坡面水量分布。
2.2.1上坡方向坐標轉換
如圖1所示,曲線O′M′nMn為上坡方向噴頭射流運動軌跡,射流在平地上的落點為Mn,在上坡面對應的落點為M′n,假定Mn在平地上的坐標為(xn,yn)(其橫、縱坐標軸所在平面為平地地面)、M′n在上坡面上的坐標為(x′n,y′n)(其橫、縱坐標軸所在平面為坡面),通過對圖1解立體幾何可知Mn的橫、縱坐標為
(4)
M′n的橫、縱坐標為
(5)
平地直線OMn上任意點Mn-1的橫、縱坐標為
(6)
在上坡面與點Mn-1相對應的點M′n-1的橫、縱坐標為
(7)

圖1 上坡方向平-坡坐標轉換示意圖Fig.1 Sketch of coordinate transformation from flat ground to sloping land in uphill direction
2.2.2下坡方向坐標轉換
(8)
M′m的橫、縱坐標為
(9)
平地直線OMm上任意點Mm-1的橫、縱坐標為
(10)
在下坡面與點Mm-1相對應的點M′m-1的橫、縱坐標為
(11)

圖2 下坡方向平-坡坐標轉換示意圖Fig.2 Sketch of coordinate transformation from flat ground to sloping land in downhill direction
2.3.1上坡方向水量轉換
由沿噴頭射流方向總水量守恒原理可知,平地直線OMn上的水量與上坡面直線OM′n上的水量相等,因此可將平地直線OMn上的水量折算到上坡面直線OM′n上。引入折算系數λ,上坡方向水量折算系數λup為
(12)
平地上的噴灌水量是已知的,假定平地直線上點Mn處和任意點Mn-1處的噴灌強度分別為Pn和Pn-1,則上坡面對應點M′n處的噴灌強度P′n為
(13)
任意點Mn-1在上坡面對應點M′n-1處的噴灌強度P′n-1為
(14)
2.3.2下坡方向水量轉換
同上,下坡方向水量折算系數λdown為
(15)
假定平地直線上點Mm處和任意點Mm-1處的噴灌強度分別為Pm和Pm-1,則下坡面對應點M′m處的噴灌強度P′m為
(16)
任意點Mm-1在上坡面對應點M′m-1處的噴灌強度P′m-1為
(17)
通過上述方法,可將實測平地徑向射線上的水量轉換到坡地上,進而獲得整個坡面上的水量分布。
應用Eclipse作為開發工具,對坡地噴灌水量分布計算進行程序化處理,圖3為噴灌水量分布由平地向坡地轉換計算程序流程圖。

圖3 噴灌水量分布由平地向坡地轉換計算程序框圖Fig.3 Programming flow chart for transforming sprinkler water distribution from flatground into sloping land
為了驗證水量分布轉換模型的正確性,在西北農林科技大學灌溉水力學實驗廳測試單噴頭在不同坡度和壓力下的水量分布。試驗裝置由高度可調支架和鋼槽、雨量筒、壓力傳感器、變頻恒壓供水節能控制柜、加壓泵、不銹鋼水箱、PVC管和閥門等組成,如圖4所示。

圖4 坡地噴灌水量分布試驗裝置圖Fig.4 Experimental setup for sprinkler water distribution on sloping land1.雨量筒 2.鋼槽 3.高度可調節支架 4.壓力傳感器 5.擋水薄膜 6.噴頭
測試噴頭為雨鳥LF1200型噴頭,噴嘴尺寸為2.18 mm,噴射仰角為17°,工作壓力范圍為170~410 kPa。噴灌的地形坡度通過高度可調支架和寬0.15 m的鋼槽實現,試驗前,根據擬試驗的坡度,計算不同控制點的高程,調節可調支架高度,將鋼槽架設在支架上,進而形成試驗所需的坡面。為了減小坡長,降低坡高,便于試驗操作,將測試噴頭分別鉛直布置于坡面底端和頂端,安裝高度為30 cm(廠家推薦的安裝高度)。試驗時,先將噴頭布置于坡面頂端,記錄其向下坡噴灑的水量分布,然后在壓力等其他試驗條件完全一樣的情況下,再將噴頭布置于坡面底端,記錄其向上坡噴灑的水量分布,將上坡和下坡的水量分布數據合在一起即為該噴頭在整個坡面上的水量分布。為了防止噴頭噴灑出的水滴四處亂濺,損壞其他試驗設備,在噴頭周圍安裝一道弧形擋水薄膜。壓力傳感器為西安新敏CYB型(量程為0~500 kPa,精度0.1%),將其安裝在噴頭進口處,并用防水塑料袋包裹,壓力傳感器與采集器連接,每隔5 s采集一次壓力數據,最后求平均值。雨量筒高度為14.0 cm,開口直徑為10.6 cm,將雨量筒布置在鋼槽中,采用網格線法布置,網格在地面上的投影間距為1 m×1 m,共布置12行,每行11個雨量筒,共布置121個,觀測記錄雨量筒中水的體積,并轉換成水深,從而獲得每個測點處的噴灌強度(測點水深與噴灌時間的比值)。
試驗因素為噴頭工作壓力和地形坡度。在廠家推薦噴頭工作壓力范圍內選3個水平,分別為200、300、400 kPa,地形坡度有3個水平,分別為0.05、0.10、0.15,共測試9組,每次測試1 h,每組重復3次,每個測點處的噴灌強度取3次測試的平均值。
限于篇幅,選擇其中3組(壓力200 kPa、坡度0.05;壓力300 kPa、坡度0.10;壓力400 kPa、坡度0.15)實測水量分布與模擬結果進行對照,將這3組分別記為P200I0.05、P300I0.10和P400I0.15。圖5給出了模擬與實測水量分布的對照結果。坐標(0,0)為噴頭位置,縱坐標正方向為坡面的上坡方向,縱坐標負方向為坡面的下坡方向。

圖5 單噴頭水量分布模擬值與實測值對比Fig.5 Comparisons of simulated and measured water distributions for single sprinkler

圖6 模擬與實測噴灌強度頻率對比Fig.6 Comparison of simulated and measured spray intensity frequency values
從水量分布圖來看,模擬與實測的水量分布圖形均為“雞蛋形”,上部扁而寬,下部長而尖。從水量分布規律來看,模擬與實測的水量分布均為噴頭附近水量較多,遠離噴頭水量較少,上坡方向水量相對集中,下坡方向水量相對稀疏。從噴灌強度峰值來看,模擬的3組(P200I0.05、P300I0.10、P400I0.15)噴灌強度峰值分別為4.05、3.65、2.91 mm/h,實測的分別為3.97、3.98、3.29 mm/h,其相對偏差為2.20%、8.32%和11.47%。從噴灌強度平均值來看,模擬的3組(P200I0.05、P300I0.10、P400I0.15)噴灌強度平均值分別為1.00、0.96、0.98 mm/h,實測的分別為0.91、0.87、1.05 mm/h,其相對偏差為10.30%、10.20%和7.12%。
圖6給出了模擬與實測的噴灌強度頻率的對比情況。從圖中可以看出,模擬的不同壓力和坡度下各級噴灌強度的頻率與實測值基本吻合。綜上,總體而言,模擬結果能夠較好地反映坡地噴灌水量分布規律。模擬與實測結果之所以出現差異,一是因為坡地噴頭射程公式計算出的坡面射程與實測值之間有一定誤差,二是噴灌水量由平地轉換到坡地時,采用了均勻折算。

圖7 不同噴頭布置方式下組合噴頭坡面水量分布Fig.7 Water distributions for combined sprinklers with different sprinkler layouts on sloping land

圖8 不同噴頭間距下組合噴頭坡面水量分布Fig.8 Water distributions for combined sprinklers with different sprinkler spacings on sloping land
圖7給出了噴頭工作壓力為300 kPa、間距為R0、坡度為0.15時2種布置方式(方形和三角形)下組合噴頭坡面水量分布情況。在方形布置下,4個噴頭分別位于方形4個頂點,如圖7a所示,在噴頭附近和方形噴灑區域中偏下位置的圓環上水量分布較多,其各點噴灌強度均大于3.1 mm/h,且該區域占整個方形噴灑區域面積的43.8%;相鄰兩噴頭之間的水量分布相對較少,尤以方形上部兩噴頭之間的水量最少,這是因為方形上部兩噴頭之間的水量主要是以單噴頭下坡水量疊加而成,而單噴頭下坡水量分布較上坡稀疏。在三角形布置下,3個噴頭分別位于三角形3個頂點,如圖7b所示,噴頭附近水量分布較多,三角形噴灑區域中的其他地方水量相對較少。另外,方形和三角形布置方式下的組合噴灌均勻度CU(用Christiansen方法[19]計算)分別為84.2%和86.0%,三角形布置的CU略高于方形布置,說明三角形布置更利于坡地單噴頭水量分布的疊加。因此,在坡地噴灌系統設計時,若僅從噴灌均勻性角度考慮,建議優先采用三角形布置方式。
圖8給出了噴頭工作壓力為300 kPa、坡度為0.15、三角形布置方式下不同噴頭間距對坡面水量分布的影響。從圖8中可以看出,不同間距下噴頭附近水量較多,且隨著噴頭間距的增大,水量分布越來越不均勻,4個噴頭間距下(0.8R0、R0、1.2R0、1.4R0)的組合噴灌均勻度CU分別為88.7%、86.0%、80.4%和77.1%。當噴頭間距為0.8R0時,雖然組合噴灌均勻度CU高達88.7%,能滿足噴灌質量要求,但是較小的噴頭間距,將會增加噴灌系統中的噴頭數量,導致系統成本上升。因此,在坡地噴灌系統設計時,若選用雨鳥LF1200型噴頭,綜合考慮噴灌均勻性和系統成本兩個因素,建議噴頭間距選用1.0~1.2倍平地噴頭射程為宜。
圖9給出了噴頭工作壓力為300 kPa、間距為R0、三角形布置方式下坡度對組合噴頭坡面水量分布的影響。從圖9中可以看出,不同坡度下的組合噴灑水量分布極為相似,均是三角形下部兩噴頭附近水量分布較多,其他地方水量相對較少,這與單噴頭水量分布疊加有關,三角形下部兩噴頭附近水量主要是由單噴頭上坡水量疊加而成,而上坡水量分布較下坡水量分布集中,尤以上坡噴頭附近水量最多。另外,隨著坡度的逐漸增大,組合噴灌均勻度CU有所降低,坡度為0.10、0.20和0.30所對應的CU分別為86.1%、84.5%和82.0%,均能滿足噴灌均勻性要求,說明在一定坡度范圍內,地形坡度對坡面水量分布及組合噴灌均勻度的影響較小,因此在實際坡地噴灌系統設計時,當地形坡度不是特別陡峭時,應重點考慮噴頭工作壓力、間距和布置方式等其他參數的選取。

圖9 不同坡度下組合噴頭坡面水量分布Fig.9 Water distributions for combined sprinklers under different slopes

圖10 不同噴頭工作壓力下組合噴頭坡面水量分布Fig.10 Water distributions for combined sprinklers with different sprinkler pressures
圖10給出了噴頭間距為R0、坡度為0.15、三角形布置方式下不同工作壓力對組合噴頭坡面水量分布的影響。從圖10中可以看出,當噴頭工作壓力為100 kPa時,其水量分布極不均勻,噴頭附近水量較多,其噴灌強度可達到2.8 mm/h以上,三角形中部水量普遍較少,其噴灌強度基本處于1.0~2.8 mm/h之間,且CU僅為44.6%;隨著噴頭工作壓力的逐漸增大,當工作壓力為200 kPa時,噴頭附近噴灌強度在2.8 mm/h以上的區域增大,占整個三角形噴灑區域的比例達到56%,較工作壓力為100 kPa時增加了16%,CU雖有所增加,達到64.5%,但仍低于國家《噴灌工程技術規范》中規定的75%的標準[20],不能滿足灌溉要求。因此,從灌溉質量考慮,不建議雨鳥LF1200型噴頭在低壓下運行。當噴頭工作壓力增大至300 kPa時,水量分布相對均勻,CU達到86.0%,均勻度較高,能夠滿足灌溉要求。當噴頭工作壓力進一步增大至400 kPa時,水量分布更為均勻,且CU高達89.7%。雖然更高的工作壓力有助于提高噴灌均勻性,但是工作壓力的增大意味著噴灌系統運行費用的上升,因此綜合考慮噴灌均勻性和經濟性,在坡地噴灌系統設計時,建議雨鳥LF1200型噴頭工作壓力選用300 kPa較為合適。
(1)以坡地噴頭射程計算公式為基礎,根據噴頭射流方向總水量守恒原理,構建了噴灌水量分布由平地轉換到坡地的計算模型,且模型模擬的水量分布與實測水量分布基本吻合,其相對偏差在10%左右,說明該模型具有一定的準確性,模擬結果能夠較好地反映坡地噴灌水量分布規律。
(2)基于雨鳥LF1200型噴頭,應用該模型分別研究了噴頭布置方式、噴頭間距、地形坡度和工作壓力等因素對坡地噴灌水量分布和組合噴灌均勻度的影響,結果表明,三角形布置下的噴灌水量分布均勻性略高于方形布置;隨著噴頭間距的增大,組合噴灌均勻度呈下降趨勢;低壓條件下,組合噴灌均勻度相對較低,不能滿足灌溉質量要求,隨著噴頭工作壓力的增大,組合噴灌均勻度逐漸增大;一定坡度范圍內,坡度對坡面噴灌水量分布和組合噴灌均勻度的影響較小。
(3)在坡地噴灌系統設計時,若選用雨鳥LF1200型噴頭,建議噴頭布置方式優先選用三角形,噴頭間距宜選用1.0~1.2倍的平地噴頭射程,且噴頭工作壓力不易過低,應在廠家推薦的工作壓力范圍內選用300 kPa為宜。