999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

高中數學解題中如何回避分類討論

2018-09-15 08:56:12龔世杰
科教導刊·電子版 2018年23期

龔世杰

摘 要 分類討論是高中數學學習中的一種重要的思想方法,分類討論對學生思維能力要求比較高,嚴謹的思考是分類討論的基礎,學生學習分類討論的方法時,總是會遇到分類不清,考慮不周全等問題,并且分類討論過程都比較反鎖,所以如何回避分類討論也是需要掌握的技巧,特別是解決選擇填空問題時,更加有效。

關鍵詞 分離參數 正難則反 變換主元 特殊值

中圖分類號:G633.6 文獻標識碼:A

學生在處理需要分類討論的問題時,經常會因思路混亂而無法得出正確答案,面對有些問題中,如何避免討論也是學生需要具備的一種能力,對于分類討論問題,能回避則回避,本文總結了學生學習過程中可能會遇見的能避免討論的常見問題。

1分離變量回避討論

在導數的學習中,經常會涉及到求參數的取值范圍,對于含參數的函數問題,分類討論十分普遍,分離參數是最常見的避免討論的方法,分離參數學生容易掌握,其主要思想是通過分離參數,得到參數與具體函數之間的關系,從而得到參數的范圍。

例1:設函數f(x)=ax22x+2,對于任意的10,求實a數的取值范圍。

解析:由題可分離參數,將a分離出來,則只需要證明a大于等于右式最大值即可,由導數易得實數a的取值范圍是a>。若從二次函數的角度來處理本題,需要討論二次函數開口方向及對稱軸與定義域的大小關系,從而需要進行復雜的分類討論,當a>0時,由拋物線的圖像得a>;當a<0時,經計算端點值解得x∈ ; 當a=0時,不合題意舍去。由上述過程可見分離參數的辦法使得整個問題的處理變得簡潔。

2變換主元回避討論

含參數的問題中,學生習慣性的認為函數中自變量就是x,其實自變量與參數是相互的,當我們把x看做參數,參數就可以看成是自變量,在有些問題中,已知一個參數的范圍求另一個參數的范圍時,可以將已知范圍的參數作為自變量,使得問題得到簡化,在中學數學的學習中常見的是二次或高次函數與一次函數的變換,將曲線的問題變換成直線的問題來解決,從而避免分類討論。

例2:若不等式x2+px>4x+p3對一切0≤p≤4均成立,試求實數x的取值范圍。

解析:由題可將原式變為以p為自變量的函數,顯然它是關于p的一次函數,則要使命題成立,只要有兩個端點處都為正,解得x>3或x<1,本題可以利用二次函數的零點來處理,則需要分類討論。需要分三種情況:(1)當p=2時,x≠1;(2)當21;(3)當0≤p<2時,即x<1或x>3,綜上可得,對任意0≤p≤4均成立,取交集可得x<1或x>3。由過程可見,分類討論的方法較為復雜,并且對學生的要求很高。

3正難則反回避討論

在面對至少,至多等問題時,正面考慮可能會遇到多重情況的討論,此時可考慮從反面考慮,得到參數范圍之后,再求參數范圍的補集。

例3:已知方程4x2ax+1=0在(0,1)內至少有一個實根,求實數a的取值范圍。

解析:從反面考慮若方程4x2ax+1=0在(0,1)內沒有實根,再通過分離參數,易得a<4。若從正面解決該問題,需要分以下幾種情況:(1)當方程原有兩個相等實根時,即a=4時,有根符合題意。當a=4時不和題意舍去,故a=4;(2)當方程4x2ax+1=0有兩個不等實根時,由根的分布通過分兩個情況可得a>4。綜上可得實數a的取值范圍是a≥4。從兩種解法上看,本題從反面考慮時就回避了原方程在(0,1)內有一根或兩個不相等的實根或兩個相等實根的討論,簡化了過程,但是從反面考慮方程沒有實根,因為是定區間上的討論,也需要討論跟與區間端點的討論本解法又采用了分離參數的辦法回避了討論,整個過程簡單清晰,學生更容易掌握和理解,若從正面解決,需要利用二次函數根的分布并且需要討論方程根的個數,相對復雜,因此正難則反的思想也是非常有效的解題策略。

4特殊值法回避討論

特殊值法是通過一些特殊值得到參數的范圍,則參數的范圍為該范圍的子集,從而縮小了參數的范圍,達到避免討論的目的,該方法的重點是合理的選取特殊點,特別是區間的端點及區間內的整數點。

例4:已知函數f(x)=x33(a1)x26ax,當a>0時,若函數f(x)在區間[1,2]上是單調函數,求實數a的取值范圍。

解析:f'(x)=3x36(a1)x6a,因為f(x)在區間[1,2]上是單調函數,則f'(x)在區間[1,2]上恒正或恒負,而:f'(1)=3<0,所以f(x)在區間[1,2]上單調遞減,二次函數f'(x)在區間[1,2]上恒負,易得a≥。如果本題不適用特殊的點縮小考慮范圍,則需要討論函數在區間上單調遞增或單調遞減兩種情況,在每種情況之下,又需要討論二次函數對稱軸與區間的關系,需再進行分類討論,解題過程會非常繁瑣。

解題的方法并不是唯一的,要從多方面去考慮問題,找到最優的解法,如下例題的解法。

例5:設f(x)=ax33x+1,若對于x∈[1,1]總有f(x)≥0成立,求a的值。

解析:由題知f(x)在[1,1]上非負,所以由端點處的值,得2≤a≤4,求導的導函數的兩根,由a得范圍可知,不許討論,導數的兩根均在[1,1]內,所以由導數容易得a≥4。本題若分離參數也可以解決,過程相對復雜,所以要在解題方法中選擇最優解可以提高解題效率。

避免討論的方法還有很多,本文只從以上四種類型探究了避免分類討論的方法,學生在處理涉及到需要討論的問題時,如果能靈活使用上述方法,解決問題的能力將有所提升。

參考文獻

[1] 張永輝.高考數學題型全歸納(上)[M].北京:清華大學出版社,2011.

[2] 文衛星.挑戰高考數學壓軸題[M].上海:華東師范大學出版社,2010.

[3] 李正興.高中數學解題寶典與考點解密[M].上海:上海科學普及出版社,2011.

主站蜘蛛池模板: 毛片免费试看| 国产在线拍偷自揄拍精品| 亚洲一区二区三区在线视频| 在线高清亚洲精品二区| 啪啪永久免费av| 伊人色天堂| 在线视频精品一区| 亚洲三级电影在线播放| 高清精品美女在线播放| 久久国产精品77777| 国产在线视频导航| 国产一区二区网站| 久久国产拍爱| 茄子视频毛片免费观看| 在线播放国产99re| 国产精品极品美女自在线看免费一区二区| 人妻一区二区三区无码精品一区| 亚洲国产中文在线二区三区免| 国模粉嫩小泬视频在线观看| 久久久久国产精品熟女影院| 日韩 欧美 国产 精品 综合| 国产主播一区二区三区| 无码久看视频| 无码一区中文字幕| 91色在线视频| 亚洲色图另类| 亚洲午夜18| 国产剧情国内精品原创| 日韩高清欧美| 亚洲性日韩精品一区二区| 精品久久久久久久久久久| 欧美精品二区| 国产欧美日韩精品综合在线| 国产福利一区在线| 国产一区二区精品高清在线观看| 99性视频| 国产不卡网| 久久99这里精品8国产| 国产精品视频观看裸模| 国产无码制服丝袜| 国产成人福利在线视老湿机| 久久久受www免费人成| 婷婷99视频精品全部在线观看 | 黄色网址免费在线| 日韩人妻无码制服丝袜视频| 她的性爱视频| 国产成人综合久久精品下载| 亚洲国产欧洲精品路线久久| 亚洲国产成人久久精品软件| 丰满人妻被猛烈进入无码| 十八禁美女裸体网站| 欧美午夜性视频| 又黄又湿又爽的视频| 国产综合亚洲欧洲区精品无码| 色婷婷丁香| 青青草原国产av福利网站| 国产成人精品无码一区二| 九色在线观看视频| www.99在线观看| 国内精自线i品一区202| 亚洲区第一页| 亚洲无卡视频| 久久99国产精品成人欧美| 精品亚洲麻豆1区2区3区| 亚洲国产精品国自产拍A| 国产理论最新国产精品视频| 91精品视频在线播放| 国产美女叼嘿视频免费看| 久久精品亚洲专区| 国产精品手机在线观看你懂的| 狠狠做深爱婷婷综合一区| 国产精品无码AⅤ在线观看播放| 日本道综合一本久久久88| 亚洲天堂高清| 国产精品原创不卡在线| 波多野结衣AV无码久久一区| 极品尤物av美乳在线观看| 人人91人人澡人人妻人人爽| 黄色网在线| 美女一级免费毛片| 成人av专区精品无码国产 | 国产99视频在线|