張威威 李榮斌



摘要:
研究了合金中Al含量的增加對鑄態(tài)FeNiMnCr0.75Alx(x=0.25,0.5,0.75,原子分數(shù))高熵合金晶體結(jié)構(gòu)及力學性能的影響。采用X射線衍射儀(XRD)和透射電子顯微鏡(TEM)對合金的微觀結(jié)構(gòu)及形貌進行分析,采用維氏硬度計和MTS萬能試驗機測試合金的硬度和室溫壓縮性能。試驗結(jié)果表明,鑄態(tài)下,F(xiàn)eNiMnCr0.75Alx高熵合金均由bcc和fcc兩種晶體結(jié)構(gòu)的相構(gòu)成。隨著Al含量的增加,合金中bcc結(jié)構(gòu)的相的相對含量逐漸增加,導致硬度和壓縮屈服強度也隨之升高,應變量降低;且Al含量的增加最終也促使合金中無序bcc結(jié)構(gòu)的相逐漸轉(zhuǎn)變?yōu)镹i∶(Mn + Al)=1∶1(原子分數(shù)比)型有序bcc結(jié)構(gòu)的相。
關(guān)鍵詞:
FeNiMnCr0.75Alx高熵合金; 晶體結(jié)構(gòu); 力學性能
中圖分類號: TG 132 文獻標志碼: A
Study of Microstructure and Mechanical Properties of FeNiMnCr0.75Alx High-entropy Alloys
ZHANG Weiwei LI Rongbin2
(1.School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
2.Institute of Materials Science, Shanghai Dianji University, Shanghai 201306, China)
Abstract:
In the present work,the effect of the Al content on the microstructure and mechanical properties of FeNiMnCr0.75Alx high-entropy alloy have been investigated.The microstructure and morpology were analysed by X-ray diffractometer and Transmission electron microscopy.The hardness and compressive properties were measured by Vickers hardness tester and MTS materials testing machine.From the experimental results,the crystallographic structures of the as-cast alloys consist of the bcc and fcc phases.With the additions of Al content,the relative volume fraction of bcc phase increases,resulting in the increase of the Vickers hardness,yield strength and the decrease of the strain.Morever,the increase of Al content make the bcc phase transform from the disordered phase into the ordered Ni∶(Mn+Al)=1∶1(atomic fraction ratio) type bcc phase.
Keywords:
FeNiMnCr0.75Alx high-entropy alloy; microstructure; mechanical properties
高熵合金又稱多主元合金,被定義為由5種及5種以上組元按照等原子比或近等原子比,且各組元原子分數(shù)為5%~35%配比而成[1]。傳統(tǒng)合金發(fā)展經(jīng)驗認為,合金組成元素越多越容易形成金屬間化合物或復雜相[2-4],這些金屬間化合物或復雜相會使合金力學性能及加工性能惡化,比如硬脆化,難以加工等[5-6]。波爾茲曼關(guān)于熵變和焓的假設[7]及研究[8-10]表明,多主元高熵合金在凝固后不僅沒有形成大量的金屬間化合物和復雜相,反而形成了結(jié)構(gòu)簡單的固溶相[11]。
試驗選擇FeNiMnCr0.75Alx高熵合金作為研究對象,主要基于以下兩點。
(1) 試驗證明,F(xiàn)eNiMnCr0.75高熵合金鑄態(tài)下具有單一相且高溫穩(wěn)定,相似成分的27Fe28Ni27Mn18Cr高熵合金[12]從室溫至700 ℃高溫,經(jīng)受3和5.8 MeV Ni離子輻照,輻照損傷0.03~10情況下依然保持fcc(面心立方)結(jié)構(gòu)的相,同時該合金未發(fā)生相變,即該成分合金相結(jié)構(gòu)穩(wěn)定性好,并具有優(yōu)異的塑性和延展性。
(2) Al可促進bcc(體心立方)結(jié)構(gòu)的相生成,改善和提高合金的綜合力學性能。等物質(zhì)的量的FeNiMnCrAl高熵合金[13]以fcc和b2(bcc有序相)結(jié)構(gòu)的混合相為基底,枝晶區(qū)用bcc和b2結(jié)構(gòu)的相(鑲嵌在bcc相基底)結(jié)構(gòu),且具有良好的力學性能。(FeCoNiCrMn)100-xAlx(x=0~20,原子分數(shù))[14]高熵合金隨著合金中Al含量的增加,屈服強度從209 MPa(Al0)逐漸升高至832 MPa(Al11),同時應變量降低至7.7 %(Al11)。
本文通過改變合金中Al含量來改變合金晶體結(jié)構(gòu),以期望獲得力學性能優(yōu)異的FeNiMnCr0.75Alx高熵合金。
1 試驗方法
試驗用原料為Al,Ni,Mn,F(xiàn)e,Cr等高純金屬(純度≥99.9 %,質(zhì)量分數(shù)),利用WK-Ⅱ型非自耗電弧熔煉爐進行合金的熔煉。為了避免熔煉過程中合金的氧化,熔煉加熱前抽真空,使爐腔內(nèi)的真空度高于3.0×10-3 Pa,并在氬氣保護氣氛下熔煉。反復熔煉4~5次,保證合金成分均勻,采用銅模分別吸鑄成2 mm和9 mm合金棒材。采用BRUKER D8型X射線衍射儀(XRD)(Cu Ka)對所制備的合金棒材的晶體結(jié)構(gòu)進行分析,掃描速度為1°/min。采用TECNAIG2S-TWIN型透射電子顯微鏡(TEM)對合金組織形貌和微觀結(jié)構(gòu)進行觀察和分析,并用TEM自帶的能譜儀(EDS)測定微區(qū)成分。從2 mm合金棒材上截取長度為4 mm的圓柱體作為壓縮試樣,在MTS萬能試驗機上進行室溫壓縮試驗,壓縮速率為4×10-4 mm/s,每個成分合金至少取3個試樣進行測試。從 9 mm合金棒材上橫向截取厚度為3 mm的圓柱片作為硬度試樣,采用維氏硬度計測量試樣硬度,載荷9.8 N,保壓時間15 s,每個試樣測試15個點,最終硬度取其算術(shù)平均值。
2 試驗結(jié)果與分析
2.1 Al含量對合金微觀結(jié)構(gòu)的影響
圖1為鑄態(tài)FeNiMnCr0.75Alx(x=0.25,0.5,0.75,原子分數(shù))高熵合金的XRD圖譜。從圖1中可以看出,當x=0.25時,合金由fcc和bcc結(jié)構(gòu)的相組成,此時fcc結(jié)構(gòu)的相的晶格常數(shù)為0.365 5 nm,將其稱之為fcc1。當x=0.5和0.75時,合金中出現(xiàn)fcc結(jié)構(gòu)的相的(220)晶面的衍射峰,此fcc結(jié)構(gòu)的相的晶格常數(shù)為0.584 0 nm,將其稱之為fcc2。合金由bcc和fcc2結(jié)構(gòu)的相組成。圖1中bcc結(jié)構(gòu)的相的最強峰(110)和fcc結(jié)構(gòu)的相的最強峰(111)或(220)的峰強比Ibcc/Ifcc可用來估算合金中兩種相的相對體積分數(shù)[15]??梢钥闯觯S著合金中Al含量的增加,Ibcc/Ifcc的值逐漸增大,x=0.25時,I(110)bcc/I(111)fcc1的值為0.48,說明合金此時主要由fcc結(jié)構(gòu)的相組成;當x=0.5時,I(110)bcc/I(220)fcc2的比值發(fā)生了明顯的變化,由0.48增大至1.92,說明此時合金主要由bcc結(jié)構(gòu)的相組成,只含有極少量的fcc2結(jié)構(gòu)的相。因而隨著Al含量的增加,合金中bcc結(jié)構(gòu)的相的相對體積分數(shù)增大,fcc結(jié)構(gòu)的相的晶格常數(shù)發(fā)生了較大的改變。與此同時,bcc結(jié)構(gòu)的相逐漸從無序相轉(zhuǎn)變?yōu)镹i∶(Mn+Al)=1∶1(原子分數(shù)比)型有序bcc結(jié)構(gòu)的相[16]。為了深入研究Al含量對FeNiMnCr0.75Alx(x=0.25,0.5,0.75)高熵合金的影響,對其微觀結(jié)構(gòu)開展進一步研究。
圖1 鑄態(tài)FeNiMnCr0.75Alx高熵合金的XRD圖譜
Fig.1 XRD patterns of the as-cast FeNiMnCr0.75Alx
high-entropy alloys
圖2和圖3分別為鑄態(tài)FeNiMnCr0.75Alx(x=0.25,0.5,0.75)高熵合金的TEM圖。從圖2和圖3的選區(qū)衍射花樣中可以看出,合金的明場像中的沉淀相為bcc結(jié)構(gòu),基底相為fcc1(x=0.25)和fcc2(x=0.5和0.75)結(jié)構(gòu)。由衍射花樣計算出bcc,fcc1和fcc2結(jié)構(gòu)的相的晶格常數(shù)依次為:0.287 1,0.365 3和0.584 2 nm。
圖2 鑄態(tài)FeNiMnCr0.75Al0.25和FeNiMnCr0.75Al0.5高熵合金TEM圖
Fig.2 TEM images and selected area diffration patterns of the as-cast FeNiMnCr0.75Al0.25 high-entropy alloys
圖3 鑄態(tài)FeNiMnCr0.75Al0.75高熵合金TEM圖
Fig.3 TEM images of theas-cast FeNiMnCr0.75Al0.75 high-entropy alloys
表1,表2和表3分別為圖2和圖3中標有1,2,3,4區(qū)域的成分分析。從成分分析可以看出,從合金x=0.25到x=0.5發(fā)現(xiàn),bcc結(jié)構(gòu)的沉淀相中Fe和Cr的原子分數(shù)大幅降低,Ni和Al的原子分數(shù)大幅增加,Mn的原子分數(shù)保持相對穩(wěn)定,且x=0.5時,Ni∶(Mn+Al)≈1(原子個數(shù),下同);從合金x=0.5增至x=0.75后發(fā)現(xiàn),bcc結(jié)構(gòu)的沉淀相中,F(xiàn)e和Cr的原子分數(shù)進一步降低,Ni和Al的原子分數(shù)進一步增加,Mn的原子分數(shù)保持相對穩(wěn)定,且Ni∶(Mn+Al)≈1(x=0.75)。從圖3(c)中選區(qū)衍射花樣F中可知,枝晶區(qū)(DR)中bcc結(jié)構(gòu)的沉淀相為有序bcc結(jié)構(gòu)的相。且從成分可知,Ni∶(Mn+Al)≈1,此時的bcc結(jié)構(gòu)的相可以認為是Ni∶(Mn+Al)=1∶1型有序bcc結(jié)構(gòu)的相。故隨著合金中Al含量的增加,bcc結(jié)構(gòu)的相逐漸趨于有序。
表1 鑄態(tài)FeNiMnCr0.75Al0.25高熵合金TEM 圖2(a)中1,2區(qū)域成分分析(原子分數(shù))
Tab.1 Compositions analyse of the regions 1,2 marked
in TEM image Fig.2(a) of the as-cast FeNiMnCr0.75Al0.25
high-entropy alloy(atom fraction)
表2 鑄態(tài)FeNiMnCr0.75Al0.5高熵合金TEM 圖2(d)中1,2,3,4區(qū)域成分分析(原子分數(shù))
Tab.2 Composition analyse of the regions 1,2,3,4
marked in TEM image Fig.2(d) of the as-cast
FeNiMnCr0.75Al0.5 high-entropy alloy(atom fraction)
表3 鑄態(tài)FeNiMnCr0.75Al0.75高熵合金TEM
圖3(b),(d)中1,2,3,4區(qū)域成分分析(原子分數(shù))
Tab.3 Composition analyse of the regions 1,2,3,4
marked in TEM images Fig.3(b),(d) of the as-cast
FeNiMnCr0.75Al0.75 high-entropy alloy(atom fraction)
2.2 Al含量對合金硬度的影響
圖4為不同Al含量鑄態(tài)FeNiMnCr0.75Alx高熵合金的硬度曲線。從圖4中可以看出,隨著Al含量的增加,合金的硬度逐漸升高。結(jié)合表4可知,Al含量從x=0.25增至x=0.5時,合金的硬度明顯升高,從220.2(HV)升高至384.4(HV)。 Al含量從x=0.5增至x=0.75時,硬度升高相對較小,從384.4(HV)升高至422.5(HV)。從圖1的XRD圖譜分析結(jié)果中可知,Al含量從x=0.25增至x=0.5時,bcc結(jié)構(gòu)的相含量顯著增加。Al含量從x=0.5增至x=0.75時,bcc結(jié)構(gòu)的相含量增加較小。合金硬度值隨著Al含量的增加而升高主要是由于Al含量的增加促進了合金中硬脆bcc結(jié)構(gòu)的相含量的增加。
圖4 鑄態(tài)FeNiMnCr0.75Alx(x=0.25,0.5,0.75) 高熵合金硬度曲線
Fig.4 Hardness of the as-cast FeNiMnCr0.75Alx (x=0.25,0.5 and 0.75) high-entropy alloys
表4 鑄態(tài)FeNiMnCr0.75Alx(x=0.25,0.5,0.75) 高熵合金力學性能
Tab.4 Mechanical properties of the as-cast
FeNiMnCr0.75Alx(x=0.25,0.5 and 0.75)
high-entropy alloys
2.3 Al含量對合金壓縮性能的影響
圖5為室溫下鑄態(tài)FeNiMnCr0.75Alx高熵合金真實壓縮應力-應變曲線。結(jié)合表4可知,當x=0.25時,合金的壓縮屈服強度僅為450.5 MPa,壓縮應變量大于60%;當x=0.5時,合金的壓縮屈服強度達到1 411.1 MPa,壓縮應變量降低至49.5%;當x=0.75時,合金的壓縮屈服強度進一步升高至1 571.8 MPa,壓縮應變量降低為46.0%。從圖5中可以明顯看出,x=0.5相較于x=0.25,合金的屈服強度顯著升高,同時壓縮應變量顯著降低。而x=0.75相較于x=0.5,合金的屈服強度有所升高,同時壓縮應變量略有降低,但變化不大。主要是由于Al含量從x=0.25增至x=0.5后,合金中硬脆bcc結(jié)構(gòu)的相含量明顯增加;Al含量從x =0.5增至x=0.75時,合金中硬脆bcc結(jié)構(gòu)的相含量略有增加。
圖5 鑄態(tài)FeNiMnCr0.75Alx高熵合金
室溫壓縮應力-應變曲線
Fig.5 Typical compressive stress-strain
curves of the as-cast FeNiMnCr0.75Alx
highh-entropy alloys at room temperature
3 結(jié) 論
(1) 合金中bcc結(jié)構(gòu)的相含量隨著Al含量的增加而增加。fcc結(jié)構(gòu)的相從Al含量為x=0.25到x=0.50發(fā)生了從fcc1到fcc2結(jié)構(gòu)的相轉(zhuǎn)變。
(2) 合金中bcc結(jié)構(gòu)的相隨著Al含量的增加,相結(jié)構(gòu)從無序bcc結(jié)構(gòu)(x=0.25)逐漸轉(zhuǎn)變?yōu)镹i∶(Mn+Al)=1∶1 型有序bcc結(jié)構(gòu)(x=0.75)。
(3) 隨著Al含量的升高,合金的硬度和屈服強度逐漸增加,壓縮應變量下降。
參考文獻:
[1] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
[2] GREER A L.Confusion by design[J].Nature,1993,366(6453):303-304.
[3] 趙冠楠,耿開杰,鄭增,等.Al-Fe合金相變研究現(xiàn)狀[J].有色金屬材料與工程,2016,37(6):301-308.
[4] 孫揚善,余新泉,薛烽,等.Fe3Al金屬間化合物的研究[J].材料導報,2000,14(8):66-67.
[5] KINGTON A V,NOBLE F W.σ phase embrittlement of a type 310 stainless steel[J].Materials Science & Engineering A,1991,138(2):259-266.
[6] CHASTELL D J,F(xiàn)LEWITT P E J.The formation of the σ phase during long term high temperature creep of type 316 austenitic stainless steel[J].Materials Science & Engineering,1979,38(2):153-162.
[7] REN M X,LI B S,F(xiàn)U H Z.Formation condition of solid solution type high-entropy alloy[J].Transactions of Nonferrous Metals Society of China,2013,23(4):991-995.
[8] ZHANG W R,LIAW P K,ZHANG Y.Science and technology in high-entropy alloys[J].Science China Materials,2018,61(1):2-22.
[9] 高家誠,李銳.高熵合金研究的新進展[J].功能材料,2008,39(7):1059-1061.
[10] 劉源,李言祥,陳祥,等.多主元高熵合金研究進展[J].材料導報,2006,20(4):4-6.
[11] 趙紅艷.高熵固溶體合金的相組成和力學性能研究[D].大連:大連理工大學,2015.
[12] KUMAR N A P,LI C,LEONARD K J,et al.Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation[J].Acta Materialia,2016,113:230-244.
[13] MUNITZ A,MESHI L,KAUFMAN M J.Heat treatments effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy[J].Materials Science & Engineering A,2017,689:384-394.
[14] HE J Y,LIU W H,WANG H,et al.Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J].Acta Materialia,2014,62(1):105-113.
[15] ZHANG Q,XU H,TAN X H,et al.The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl)x,(x=0-1.2) high-entropy alloys[J].Journal of Alloys and Compounds,2017,693:1061-1067.
[16] TSAI M H,YUAN H,CHENG G M,et al.Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy[J].Intermetallic,2013,33(2):81-86.