☉江蘇省灌云縣楊集高級中學(xué) 高 原
說到數(shù)學(xué)寫作,很多人往往認(rèn)為是教師的事,與學(xué)生無關(guān).其實(shí),學(xué)習(xí)與研究從來都是密不可分的,讓學(xué)生在學(xué)習(xí)數(shù)學(xué)的同時(shí)來研究數(shù)學(xué),引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)寫作,遠(yuǎn)遠(yuǎn)比讓他們多做幾道練習(xí)題有意義得多.因?yàn)閿?shù)學(xué)寫作能綜合培養(yǎng)學(xué)生的多種能力,如寫作能力、知識(shí)的整合能力、數(shù)學(xué)探究能力等.那么,教師引導(dǎo)學(xué)生寫什么?通過數(shù)學(xué)寫作又如何提高學(xué)生的綜合能力呢?筆者結(jié)合高中數(shù)學(xué)教學(xué)實(shí)踐,談幾點(diǎn)不成熟的看法,以期拋磚引玉.
我們知道,當(dāng)學(xué)完一個(gè)單元的知識(shí)后,教師往往要引導(dǎo)學(xué)生對本單元的知識(shí)加以回顧與總結(jié)——總結(jié)知識(shí),提煉方法.而當(dāng)這個(gè)任務(wù)交給學(xué)生來完成時(shí),就演變成了“數(shù)學(xué)寫作”,學(xué)生通過自己的第二次學(xué)習(xí),以小論文的形式呈現(xiàn)出來,能不斷提升他們對本單元知識(shí)的認(rèn)識(shí),更能體現(xiàn)他們對本單元知識(shí)的掌握情況,教師能從小論文中看出學(xué)生是否掌握了本單元的重點(diǎn)與難點(diǎn).與此同時(shí),通過對小論文的修改,又能培養(yǎng)學(xué)生“做數(shù)學(xué)”的嚴(yán)謹(jǐn)態(tài)度.
如何寫好這類小論文,教師應(yīng)加以引導(dǎo).學(xué)生單元總結(jié)性的小論文的寫作,同樣要體現(xiàn)教學(xué)基本原則,即以教師為主導(dǎo),學(xué)生為主體.教師可以依據(jù)教學(xué)大綱的要求,列出寫作提綱,提出問題,至于小論文的寫作形式,完全由學(xué)生決定.
例如,對于《集合》這一章,教師可以讓學(xué)生從集合的概念、集合的性質(zhì)和集合的運(yùn)算三個(gè)方面加以總結(jié),可以談對集合概念的理解,可以談對集合的三個(gè)性質(zhì)即元素的互異性、無序性和確定性的理解,也可以談對集合并交補(bǔ)三種運(yùn)算的理解.引導(dǎo)學(xué)生從書本知識(shí)即理論出發(fā),配以恰當(dāng)?shù)睦}來回歸解題實(shí)踐.小論文篇幅長短不限,只要把道理說清楚就行.
小論文完成后,教師可以發(fā)動(dòng)學(xué)生對小論文進(jìn)行評價(jià),評出最佳論文并請作者當(dāng)眾宣讀,這不僅能讓全班學(xué)生資源共享,共同提高,而且還增強(qiáng)了數(shù)學(xué)寫作的趣味性,從而促使學(xué)生積極向上,寫出更好更優(yōu)秀的小論文,在寫作的潛移默化中,學(xué)生的各種能力也得到了鍛煉.
學(xué)習(xí)是一項(xiàng)艱苦的腦力勞動(dòng),尤其是數(shù)學(xué)學(xué)習(xí),自始至終學(xué)生的思維必須全程參與,即便如此,學(xué)生也會(huì)在學(xué)習(xí)中犯這樣或那樣的錯(cuò)誤,這其實(shí)并不是壞事,教師可以將其變廢為寶,引導(dǎo)學(xué)生把對錯(cuò)解的反思寫成數(shù)學(xué)小論文.這樣的數(shù)學(xué)寫作,不僅能培養(yǎng)學(xué)生數(shù)學(xué)思維的批判性,同時(shí)還能讓他們感知數(shù)學(xué)學(xué)習(xí)其實(shí)也是一個(gè)“在曲折中前進(jìn)”的過程,從而將人生哲理滲透在數(shù)學(xué)寫作中.
錯(cuò)解反思類的數(shù)學(xué)寫作,一般分三步進(jìn)行:首先,教師根據(jù)學(xué)生作業(yè)的反饋曬出種種錯(cuò)解;其次,由學(xué)生選擇與自己有關(guān)的錯(cuò)解并加以訂正;最后,學(xué)生從中自由選擇兩三個(gè)錯(cuò)解并以數(shù)學(xué)小論文的形式加以剖析反思,以防重蹈覆轍.
例如,在學(xué)習(xí)《常用邏輯用語》的時(shí)候,學(xué)生往往將否命題與非命題混淆,在命題改寫時(shí)往往忽視量詞的變化,為此班上有位學(xué)生寫出了《我的邏輯用語的糾錯(cuò)手記》,本文從中摘錄一段,與大家分享.
“p或q的否定”是什么?
例1已知命題p:“?x∈[1,2],x2-a≥0”,命題q:“?x0∈R,x02+2ax0+2-a=0”,若命題“p或q”是假命題,問:實(shí)數(shù)a是否存在?若存在,求出它的取值范圍;若不存在,請說明理由.
錯(cuò)解:因?yàn)槊}“p或q”是假命題,所以“p或q”的否定是真命題,即“?p或?q”是真命題,即p或q為假命題.
若p為真命題,則a≤x2恒成立,因?yàn)閤∈[1,2],所以a≤1.
若q為真命題,即x2+2ax+2-a=0有實(shí)根,則Δ=4a2-4(2-a)≥0,即a≥1或a≤-2.
因?yàn)椤皃或q”為假命題,故有a>1或-2<a<1,所以實(shí)數(shù)a的取值范圍為a>1或-2<a<1.
剖析:“p或q”的否定不是“?p或?q”,而是“?p且?q”.
正解:若p為真命題,a≤x2恒成立,因?yàn)閤∈[1,2],所以a≤1.
若q為真命題,即x2+2ax+2-a=0有實(shí)根,則Δ=4a2-4(2-a)≥0,即a≥1或a≤-2.
由題意知,“?p且?q”是真命題,故有a>1且-2<a<1,所以實(shí)數(shù)a不存在.
我的感悟:“或”與日常生活中的用語“或”的意義不同.對于邏輯用語中“或”的理解我們可以借助于集合中的并集的概念:在A∪B={x|x∈A或x∈B}中的“或”是指“x∈A”與“x∈B”中至少有一個(gè)成立,可以是“x∈A且x?B”,也可以是“x?A且x∈B”,也可以是“x∈A且x∈B”,邏輯用語中的“或”與并集中的“或”的含義是一樣的.故“p或q”的否定是“?p且?q”.
數(shù)學(xué)教學(xué)的根本目的,是數(shù)學(xué)思維能力的培養(yǎng),尤其是創(chuàng)造性思維的培養(yǎng).在日常教學(xué)中,我們一貫倡導(dǎo)一題多解,一題多變,其實(shí)目的就一個(gè),培養(yǎng)學(xué)生數(shù)學(xué)思維的求異性,讓學(xué)生舉一反三,融會(huì)貫通.教師可以將課堂上的探究延伸到課外,這其實(shí)也是學(xué)生數(shù)學(xué)寫作的一個(gè)極好的題材.
由于一題多解類或一題多變類的探究對思維能力的要求較高,僅靠一人的智慧可能無法完成,而群眾的力量是無窮的,教師可以讓學(xué)生自由組合成探究小組,集思廣益,共同研究,并一起將其寫成小論文的形式.對于優(yōu)秀的小論文,教師可以推薦給相關(guān)的數(shù)學(xué)學(xué)習(xí)報(bào)進(jìn)行發(fā)表,此舉更能調(diào)動(dòng)學(xué)生的積極性.學(xué)生間相互合作,互相啟發(fā),數(shù)學(xué)思維能力也在不知不覺中得到鍛煉與提升.
例如,在學(xué)習(xí)了《不等式》后,兩位學(xué)生合作,寫下了《一題五證 凸顯解題“正能量”》小論文,下面摘錄部分內(nèi)容與大家共享.
常言道,得道多助,失道寡助.數(shù)學(xué)解題,“道”在何方?一題五解,為你開道,凸顯解題正能量.
例2若a>0,b>0,a3+b3=2,求證:a+b≤2,ab≤1.
證法一:(綜合法)因?yàn)閍>0,b>0,a3+b3=2,
所以(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6=3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0,即(a+b)3≤23.
點(diǎn)評:綜合法(執(zhí)因索果),是論證題常用的方法.當(dāng)容易找出條件與結(jié)論的聯(lián)系時(shí),這種方法是首選.
證法二:(換元法、判別式法)設(shè)a,b為方程x2-mx+n=0的兩根,則
因?yàn)閍>0,b>0,所以m>0,n>0,且Δ=m2-4n≥0. (1)
因?yàn)?=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n),所以n
所以-m3+8≥0,即m≤2.所以a+b≤2.
由2≥m,得4≥m2.因?yàn)閙2≥4n,所以4≥4n,即n≤1.所以ab≤1.
點(diǎn)評:換元法主要有三角代換、均值代換兩種,在應(yīng)用換元法時(shí),要注意代換的等價(jià)性.如果作差以后的式子可以整理為關(guān)于某一個(gè)變量的二次式,則考慮用判別式法證.
……
注:小論文還有證法三(放縮法)、證法四(比較法)和證法五(反證法),限于本文篇幅,已略去.
學(xué)習(xí)即研究,應(yīng)該在平時(shí)的教學(xué)中培養(yǎng)學(xué)生的研究能力.引導(dǎo)學(xué)生做學(xué)問,理應(yīng)成為素質(zhì)教育和培養(yǎng)學(xué)生數(shù)學(xué)核心素養(yǎng)的一項(xiàng)極其重要的工作.我們一直在講學(xué)習(xí)的目的是教會(huì)學(xué)生學(xué)習(xí),教會(huì)學(xué)生如何研究問題.數(shù)學(xué)課教給學(xué)生的不僅僅是數(shù)學(xué)知識(shí),還有數(shù)學(xué)思想與方法,通過數(shù)學(xué)思想與方法的不斷滲透,加強(qiáng)學(xué)生對客觀世界科學(xué)的認(rèn)識(shí).從某種角度看,數(shù)學(xué)知識(shí)并不是十分重要的,時(shí)間長了總會(huì)遺忘,而數(shù)學(xué)方法和研究數(shù)學(xué)的精神卻往往能使人終身受益,這也是數(shù)學(xué)寫作的好素材.
這類數(shù)學(xué)寫作,一般以對數(shù)學(xué)方法或數(shù)學(xué)知識(shí)應(yīng)用的研究為主,通過寫作,可以快速培養(yǎng)學(xué)生的數(shù)學(xué)研究能力.在實(shí)際操作中,教師可以先提供一類問題或一個(gè)性質(zhì),讓學(xué)生通過研究來總結(jié)其解法或應(yīng)用,最終再以數(shù)學(xué)小論文的形式呈現(xiàn)出來.既然是研究,當(dāng)然需要必要的文獻(xiàn)資料作為支撐,所以應(yīng)允許學(xué)生查閱課外資料,請教有關(guān)教師,這樣可以大大拓展他們的知識(shí)面,這也是這類數(shù)學(xué)寫作的意義所在.例如,在學(xué)習(xí)了函數(shù)的性質(zhì)之后,可以讓學(xué)生研究函數(shù)的性質(zhì)在解題中的應(yīng)用,小論文的題目可以是《函數(shù)單調(diào)性的幾個(gè)應(yīng)用》《函數(shù)單調(diào)性與奇偶性的綜合應(yīng)用》《如何判斷函數(shù)的奇偶性》《函數(shù)的值域求法研究》等,限于篇幅,學(xué)生的寫作這里便不再分享.
從目前來看,數(shù)學(xué)寫作是方興未艾的新事物,正在被廣大數(shù)學(xué)教學(xué)工作者所接受,基于數(shù)學(xué)核心素養(yǎng)的數(shù)學(xué)教學(xué),應(yīng)該倡導(dǎo)學(xué)生的全面發(fā)展和綜合素質(zhì)的提高,而數(shù)學(xué)寫作正與此相吻合.如何擺脫應(yīng)試教學(xué)的束縛,數(shù)學(xué)寫作或許是一條極好的途徑.