宋楊,劉紅弟,王海波,張紅軍,劉鳳之
?
越橘克隆及其促進花青素積累的功能分析
宋楊,劉紅弟,王海波,張紅軍,劉鳳之
(中國農業科學院果樹研究所/農業部園藝作物種質資源利用重點實驗室/遼寧省落葉果樹礦質營養與肥料高效利用重點實驗室,遼寧興城 125100)
【目的】分離越橘(NAM,ATAF1/2,CUC2)轉錄因子,分析其表達模式并探討其在調控花青素合成過程中的功能,為進一步研究越橘花青素積累的調控機理提供理論基礎?!痉椒ā恳浴簟介伲ā瓺uke’)為試材,克隆。通過農桿菌介導法獲得轉基因擬南芥,比較轉基因和野生型擬南芥花青素積累的差異。利用酵母單雜交和瞬時表達試驗,分析對MYB轉錄因子的轉錄調控?!窘Y果】克隆獲得越橘,該基因CDS為1 032 bp,編碼含有343個氨基酸的蛋白質,含有1個保守的NAC結構域。表達分析顯示,該基因在不同發育階段的果實中均可表達,但表達差異明顯,在粉色和藍色果實中表達量較高,在綠色果實中表達量最低。隨著表達的升高,果實中花青素含量呈遞增的趨勢。分析啟動子序列,發現其序列中包含NAC轉錄因子的結合位點。酵母單雜交和煙草瞬時表達試驗結果表明,VcNAC072可與的啟動子相互作用,并激活其表達。在野生型擬南芥中異位表達,其種子中花青素積累量顯著高于野生型?!窘Y論】推測在越橘果實中正向調節花青素的積累。
越橘;NAC轉錄因子;花青素;表達分析;功能鑒定
【研究意義】越橘亦稱藍莓,作為一種新興的果樹作物之一,近年來其栽培面積和產量穩步增長[1-2]。越橘果實中富含花青素、黃酮醇等次生代謝產物,在提高植物抗逆性和人體免疫力等方面具有一定作用[3-4]。通過分子生物學方法挖掘優異基因,闡釋果實花青素積累的調控機理,對越橘新品種選育和品質改良具有重要意義?!厩叭搜芯窟M展】NAC(NAM,ATAF1/2,CUC2)轉錄因子是一類植物中特有的轉錄因子,其家族成員最顯著的結構特征是其編碼蛋白質的N端含有約150個氨基酸的NAC保守結構域。研究表明,NAC轉錄因子的生物學功能涉及廣泛,包括生長發育[5]、信號轉導[6]、非生物脅迫[7-8]和次生代謝產物合成[9-11]等方面。ODA-YAMAMIZO等[12]發現,擬南芥正調控葉綠素降解和葉片衰老,過量表達使植株表現早衰和葉綠素含量降低。TAKASAKI等[13]也發現,7個擬南芥NAC轉錄因子均表現受ABA誘導表達并調控葉片衰老。玉米Calcium/calmodulin-dependent protein kinase(CCaMK)可通過磷酸化ZmNAC84的絲氨酸位點,調控植株由ABA介導的抗氧化性[14]。在調控次生代謝物質積累方面,最近研究發現紅肉桃可通過激活的表達促進果肉中花青素積累[15]。在蘋果中也發現MdNAC029可通過激活的轉錄,促進愈傷組織中花青素合成[16]。研究表明,NAC蛋白可通過結合靶基因的CACG或GATTGGAT(AT)CA位點調控靶基因的表達,從而影響植物的抗性、衰老和次生代謝物質合成[7-8,16]。【本研究切入點】NAC轉錄因子的研究主要集中在水稻[17]和擬南芥[18]等模式植物。目前,越橘中NAC轉錄因子的研究尚無報道?!緮M解決的關鍵問題】從‘公爵’越橘中分離并鑒定一個NAC轉錄因子,通過表達模式分析、轉基因分析、酵母單雜交及瞬時表達試驗,探討在調控越橘花青素積累過程中的作用,為揭示NAC轉錄因子調控花青素積累提供理論基礎。
試驗于2016年6月—2018年7月在中國農業科學院果樹研究所農業部園藝作物種質資源利用重點實驗室和山東農業大學作物生物學國家重點實驗室進行。
試驗所用的植物材料為8年生越橘品種‘公爵’(‘Duke’)、野生型擬南芥()和本氏煙草()。
從越橘轉錄組數據庫[19]查找NAC基因,并從中篩選發現高表達且在果實成熟過程中呈持續上調表達。根據篩選到的序列設計引物- F/R擴增CDS(coding domain sequence)序列。以越橘果實的cDNA為模板進行PCR擴增。PCR反應程序為:98℃預變性3 min;98℃變性10 s,57℃退火30 s,72℃延伸2 min,30個循環;72℃延伸10 min。PCR產物用1.2%瓊脂糖凝膠電泳并回收目的條帶,連接到克隆載體pEAST blunt zero進行測序。所用的引物序列見表1。
利用軟件CLC Sequence Viewer 6(http://www. cacbio. com)分析VcNAC072蛋白的保守序列。利用軟件Mega 6.0(http://www. megasoftware.net)引入擬南芥NAC蛋白(http://www.arabidopsis.org)對VcNAC072蛋白進行聚類分析。利用NCBI網站上的BLASTx程序進行同源序列比對。
總RNA提取采用TaKaRa公司的植物總RNA提取試劑盒(Code No.9769,Takara,Dalian,China)。以總RNA為模板,反轉錄合成cDNA。在越橘中,qRT-PCR內參基因為。在擬南芥中,以作為內參基因。儀器為Bio-Rad公司的CFX Connect PCR system,試劑為ThermoFisher公司的PowerUpTMSYBRGreen Master Mix(Code No.A25742,Thermo Fisher, China)。反應體系:SYBR Mixture 10.0μL,cDNA 2.0 μL,上、下游引物各0.5 μL,加去離子水至20 μL。PCR反應程序:95℃預變性2 min,95℃變性15 s,58℃退火15 s,72℃延伸1 min,40個循環,每次循環第2步進行熒光采集。最后采用2-ΔΔCT法分析定量數據。所有PCR都設3次重復。實時熒光定量PCR引物見表1。
構建pRI101-過量表達載體,并將其轉化農桿菌GV3101,利用農桿菌侵染花序法轉化野生型擬南芥。在含有卡那霉素的MS固體培養基上篩選T1代轉基因植株。將抗性苗移栽至基質中并放入光照培養箱中進行培養,收獲的T2代種子用于試驗。載體構建時使用的引物見表1。
Y1H具體試驗方法參照Clontech說明書,設計引物擴增的CDS序列,重組至pGADT7酵母表達載體,生成pGADT7-。擴增擬南芥中調控花青素合成的MYB轉錄因子的啟動子序列,連接至pAbAi酵母表達載體,生成pAbAi-pro。將pAbAi-pro轉化至酵母菌株Y1H Gold中,轉化后涂布在氨基酸缺陷培養基SD/-Ura上,并篩選AbA(Aureobasidin A)濃度。再將pGADT7-轉化至重組酵母菌株中,轉化后涂布在含有AbA的氨基酸缺陷培養基SD/-Leu上進行互作篩選。
具體試驗方法參照YIN等[20]和JEFFERSON等[21]。把(GenBank登錄號:NM_104541)的啟動子序列重組至pCAMBIA1301-GUS載體,生成pro-GUS,轉化農桿菌GV3101,再與轉化農桿菌的pRI101-共注射煙草葉片。使用熒光分光光度計測定GUS活性。
參照PERTUZATTI等[22]方法,利用高效液相色譜-質譜法對花青素總量進行測定。儀器為島津LP- 10Avp液相色譜儀,SPD-M10Avp二極管陣列檢測器。根據色譜峰面積計算花青素總量。
使用SPSS軟件進行差異顯著性分析。不同字母代表差異顯著(<0.05)。

表1 本研究中使用的引物
下劃線表示酶切位點Underlines indicate digestion sites
通過RT-PCR技術獲得1條大約1 000 bp的條帶。對克隆所得片段測序分析,結果顯示,的CDS長度為1 032 bp,編碼含有343個氨基酸的蛋白質。使用CLC軟件分析VcNAC072及其他植物NAC蛋白的保守結構域。結果表明,VcNAC072含有保守的NAC結構域(圖1)。將VcNAC072蛋白序列與多個擬南芥NAC蛋白序列進行系統發生分析,以及NCBI序列比對分析發現,VcNAC072與擬南芥ANAC072同源性最高(圖2)。因此將該基因命名為(GenBank登錄號:MH784502)。
在果實不同發育時期,的相對表達量與花青素含量變化見圖3。結果發現,在綠果中表達量最低,隨著果實成熟,表達量持續升高,在藍果中最大??偦ㄇ嗨睾孔兓厔菖c的變化相似,這暗示的持續上調表達可能促進了花青素積累。
轉基因株系(L1和L2)的種子中明顯積累了花青素(圖4-A),其花青素含量均顯著高于野生型,分別為野生型的38.99倍和32.90倍(圖4-B)。qRT-PCR檢測花青素合成相關基因的表達,結果發現,過量表達顯著促進了及花青素合成基因、的表達(圖4-C)。
VcNAC072可與的啟動子互作(圖5)。為進一步研究VcNAC072對的調控方式,構建了pRI101-和pro-GUS載體,在煙草中瞬時表達。結果顯示,共轉VcNAC072和啟動子的煙草葉片中,其GUS相對活性顯著高于對照,為對照的3.57倍,說明VcNAC072可激活的表達(圖6)。
目前,在擬南芥中已鑒定了117個NAC轉錄因子[18]。其中,在植物生長發育和脅迫方面發揮重要作用。例如,正調控植物葉綠素降解,促使葉片衰老[23-24]。被發現能夠響應病原菌侵染[25]。還可正調控植物的干旱和高鹽脅迫響應[26],但NAC072在調控花青素積累過程中的分子機理還不清楚。本研究利用前期轉錄組測序數據,從越橘中分離出1個編碼NAC蛋白的轉錄因子,該基因在花青素含量最高的藍果中表達量最高,并通過轉基因試驗驗證了在野生型擬南芥中過量表達促進花青素積累。Li等[27]和SUN等[28]也利用轉錄測序技術,在越橘中挖掘出多個與果實中花青素積累緊密相關的花青素合成結構基因,如二氫黃酮醇-4-還原酶(Dihydroflavonol-4-Reductase,DFR)和花青素合成酶(Anthocyanin synthase,ANS)等。

圖3 果實發育不同階段VcNAC072表達和花青素含量變化

A:轉基因(L1和L2)和野生型(WT)擬南芥種子中花青素積累情況;B:轉基因和野生型擬南芥種子中花青素含量;C:qRT-PCR檢測花青素合成相關基因的表達,其在WT中的表達量設為1。不同小寫字母表示差異顯著(P<0.05)。下同

圖5 酵母單雜交檢測VcNAC072與AtPAP1啟動子的相互作用

A:相對GUS活性。B:瞬時表達試驗。a:共注射pRI101空載體和AtPAP1pro-GUS;b:共注射pRI101-VcNAC072和AtPAP1pro-GUS A: Quantitative analysis of relative GUS activity. B: Transient expression assay. a: pRI101 empty vector and AtPAP1pro-GUS. b: pRI101-VcNAC072 and AtPAP1pro-GUS
在擬南芥、蘋果和梨等多種植物中,MYB轉錄因子在調節花青素合成過程中起關鍵作用。MYB可通過調控、等花青素合成結構基因的表達影響花青素合成[29-31]。JAAKOLA等[32]的研究也認為歐洲越橘MADS-box轉錄因子可直接或間接調控MYB轉錄因子的表達,進而調控、等基因的轉錄,從而影響幼嫩果實中種子和胎座中花青素的積累。
在本研究中,對轉基因野生型擬南芥進行基因表達分析發現,異位表達可顯著促進MYB轉錄因子及花青素合成結構基因的表達。NAC轉錄因子可通過與其靶基因上的CACG位點結合,調控靶基因的表達[33-34]。本研究通過Y1H技術驗證了VcNAC072能夠與包含CACG位點的啟動子互作,并通過瞬時表達試驗發現VcNAC072可激活的表達。后期將利用凝膠電泳遷移率試驗(EMSA),進一步驗證VcNAC072對啟動子的結合。
本研究克隆獲得越橘NAC轉錄因子,該基因轉化野生型擬南芥表現出促進花青素積累的表型。Y1H和瞬時表達試驗表明VcNAC072可與MYB轉錄因子的啟動子相結合并促進其表達。研究結果為揭示NAC轉錄因子調控花青素積累提供了參考。
[1] 李亞東, 孫海悅, 陳麗. 我國藍莓產業發展報告. 中國果樹, 2016(5): 1-10.
LI Y D, SUN H Y, CHEN L. Report on the development of blueberry industry in China., 2016(5): 1-10. (in Chinese)
[2] 吳林. 中國藍莓35年—科學研究與產業發展. 吉林農業大學學報, 2016, 38(1): 1-11.
WU L. Thirty-five years of research and industry development of blueberry in China., 2016, 38(1): 1-11. (in Chinese)
[3] GORDILLO G, FANG H Q, KHANNA S, HARPER J, PHILIPS G, SEN C K. Oral administration of blueberry inhibits angiogenic tumor growth and enhances survival of mice with endothelial cell neoplasm., 2009, 11(1): 47-58.
[4] BASU A, RHONE M, LYONS T J. Berries: Emerging impact on cardiovascular health., 2010, 68(3): 168-177.
[5] SHAHNEJAT-BUSHEHRI S, TARKOWSKA D, SAKURABA Y, BALAZADEH S.NAC transcription factor JUB1 regulates GA/BR metabolism and signalling., 2016, 2: 16013.
[6] KIM H S, PARK B O, YOO J H, JUNG M S, LEE S M, HAN H J, KIM K E, KIM S H, LIM C O, YUN D J, LEE S Y, CHUNG W S. Identification of a calmodulin-binding NAC protein as a transcriptional repressor in., 2007, 282(50): 36292-36302.
[7] HONG Y B, ZHANG H J, HUANG L, LI D Y, SONG F M. Overexpression of a stress-responsive NAC transcription factor geneimproves drought and salt tolerance in rice., 2016, 7(e0116646): 4.
[8] YU X W, LIU Y M, WANG S, TAO Y, WANG Z K, MIJITI A, WANG Z, ZHANG H, MA H. A chickpea stress-responsive NAC transcription factor,, confers enhanced tolerance to drought stress in transgenic., 2016, 79(2): 187-197.
[9] KO J H, YANG S H, PARK A H, LEROUXEL O, HAN K H. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in., 2007, 50(6): 1035-1048.
[10] ZHONG R, DEMURA T, YE Z H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of., 2006, 18(11): 3158-3170.
[11] YAMAGUCHI M, KUBO M, FUKUDA H, DEMURA T. Vascular-related NAC-domain7 is involved in the differentiation of all types of xylem vessels inroots and shoots., 2008, 55(4): 652-664.
[12] ODA-YAMAMIZO C, MITSUDA N, SAKAMOTO S, OGAWA D, OHME-TAKAGI M, OHMIYA A. ANAC046 is a positive regulator of chlorophyll degradation and senescence inleaves., 2016, 6: 23609.
[13] TAKASAKI H, MARUYAMA K, TAKAHASHI F, FUJITA M, YOSHIDA T, NAKASHIMA K, MYOUGA F, TOYOOKA K, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence., 2015, 84(6): 1114-1123.
[14] ZHU Y, YAN J W, LIU W J, LIU L, SHENG Y, SUN Y, LI Y Y, SCHELLER H, JIANG M Y, HOU X L, NI L, ZHANG A Y. Phosphorylation of a NAC transcription factor by a calcium/ calmodulin-dependent protein kinase regulates abscisic acid-induced antioxidant defense in maize., 2016, 171(3): 1651-1664.
[15] ZHOU H, WANG K L, WANG H L, GU C, DARE A, ESPLEY R, HE H P, ALLAN A, HAN Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors., 2015, 82(1): 105-121.
[16] 安建平, 宋來慶, 趙玲玲, 由春香, 王小非, 郝玉金. 蘋果愈傷組織超表達促進花青苷積累. 園藝學報, 2018, 45(5): 845-854.
AN J P, SONG L Q, ZHAO L L, YOU C X, WANG X F, HAO Y J. Overexpression ofpromotes anthocyanin accumulation in apple calli., 2018, 45(5): 845-854. (in Chinese)
[17] NURUZZAMAN M, MANIMEKALAI R, SHRRONI A M. Genome-wide analysis of NAC transcription factor family in rice., 2010, 465(1/2): 30-44.
[18] KIM S G, LEE S, SEO P J, KIM S K, KIM J K, PARK C M. Genome-scale screening and molecular characterization of membrane- bound transcription factors inand rice., 2010, 95(1): 56-65.
[19] SONG Y, LIU H D, ZHOU Q, ZHANG H J, ZHANG Z D, LI Y D, WANG H B, LIU F Z. High-throughput sequencing of highbush blueberry transcriptome and analysis of basic helix-loop-helix transcription factors., 2017, 16(3): 591-604.
[20] YIN X R, ALLAN A C, CHEN K S, FERGUSON I B. Kiwifruit EIL and ERF genes involved in regulating fruit ripening., 2010, 153(3): 1280-1292.
[21] JEFFERSON R A, KAVANAGH T A, BEVAN M W. GUS fusions:-glucuronidase as a sensitive and versatile gene fusion marker in higher plants., 1987, 6(13), 3901-3907.
[22] Pertuzatti P B, Barcia M T, Rebello L P G, Gómez- Alonso S, Duarte R M T, Duarte M C T, Godoy H T, Hermosín-Gutiérrez I. Antimicrobial activity and differentiation of anthocyanin profiles of rabbiteye and highbush blueberry using HPLC-DAD-ESI-MS and multivariate analysis., 2016, 26: 506-516.
[23] ZHU X Y, CHEN J Y, XIE Z K, GAO J, REN G D, GAO S, ZHOU X, KUAI B K. Jasmonic acid promotes degreening via MYB2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes., 2015, 84(3): 597-610.
[24] LI S, GAO J, YAO L Y, REN G D, ZHU X Y, GAO S, QIU K, ZHOU X, KUAI B K. The role of ANAC072 in the regulation of chlorophyll degradation during age- and dark- induced leaf senescence., 2016, 35(8): 1729-1741.
[25] HUANG J C, PIATER L A, DUBERY I A. The NAC transcription factor gene ANAC072 is differentially expressed inin response to microbe-associated molecular pattern (MAMP) molecules., 2012, 80(80): 19-27.
[26] TRAN L S, NAKASHIMA K, SAKUMA Y, SIMPSON S D, FUJITA Y, MARUYAMA K, FUJITA M, SEKI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Isolation and functional analysis ofstress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter., 2004, 16(9): 2481-2498.
[27] LI X Y, SUN H Y, PEI J B, DONG Y Y, WANG F W, CHEN H, SUN Y P, WANG N, LI H Y, LI Y D.sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidant., 2012, 511(1): 54-61.
[28] SUN H Y, LIU Y S, GAI Y Z, GENG J M, CHEN L, LIU H D, KANG L M, TIAN Y W, LI Y D.sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation., 2015, 16(1): 652.
[29] BOREVITZ J O, XIA Y J, BLOUNT J, DIXON R, LAMB C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis., 2000, 12(12): 2383-2393.
[30] TAKOS A, JAFFé F, JACOB S, BOGS J, ROBINSON S, WALKER A. Light-induced expression of agene regulates anthocyanin biosynthesis in red apples., 2006, 142(3): 1216-1232.
[31] YAO G F, MING M L, ALLAN A, GU C, LI L T, WU X, WANG R Z, CHANG Y J, QI K J, ZHANG S L, WU J. Map-based cloning of the pear geneidentifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis., 2017, 92: 437-451.
[32] JAAKOLA L, POOLE M O, JONES M, K?M?R?INEN- KARPPINEN T, KOSKIM?KI J, HOHTOLA A, H?GGMAN H D, FRASER P, MANNING K J, KING G. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits., 2010, 153(4): 1619-1629.
[33] SAKURABA Y, KIM Y S, HAN S H, LEE B D, PAEK N C. Thetranscription factor NAC016 promotes drought stress responses by repressingtranscription through a trifurcate feed-forward regulatory loop involving NAP., 2015, 27(6): 1771-1787.
[34] QU Y T, DUAN M, ZHANG Z Q, DONG J L, WANG T. Overexpression of theNAC transcription factorenhances cold tolerance in., 2016, 129: 67-76.
Molecular Cloning and Functional Characterization ofReveals Its Involvement in Anthocyanin Accumulation in Blueberry
SONG Yang, LIU HongDi, WANG HaiBo, ZHANG HongJun, LIU FengZhi
(Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture/Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Xingcheng 125100, Liaoning)
【Objective】The objective of this study was to isolate a transcription factor(NAM, ATAF1/2, CUC2) from blueberry by PCR technology and studying its expression, and to identify its role in anthocyanin biosynthesis. This study laid the foundation for further study of the molecular mechanism ofaffecting anthocyanin biosynthesis in blueberry. 【Method】The blueberrygene was cloned by PCR technology from the fruits of blueberry (‘Duke’). The transgenicwere generated via-mediated transformation. The differences in the anthocyanin accumulation were compared between transgenic and wild-type. The yeast one-hybrid (Y1H) and transient expression assays were carried out to test the transcriptional regulation of MYB transcription factorby. 【Result】A blueberrywas cloned from blueberry. Sequence analysis showed that the coding domain sequence (CDS) ofwas 1 032 bp, which encoded 343 amino acids. Protein structure analysis showed that VcNAC072 contained a NAC domain. Expression analysis showed thatwas expressed at different developmental stages of the blueberry fruits. However, the expression levels varied, with the highest expression level in pink fruits and blue fruits and the relatively low transcript levels in green fruits. The content of anthocyanin in fruits was increased with the elevation of relative expression of. The sequence ofpromoter was analyzed and a NAC binding motif was found. The VcNAC072 protein could interact with the promoter of. Moreover, the VcNAC072 could induce the expression ofand favorably contributed to anthocyanin accumulation in seeds of transgenic. 【Conclusion】It was speculated thatup-regulated anthocyanin accumulation in fruits of blueberry.
blueberry; NAC transcription factor; anthocyanin; expression analysis; functional identification
10.3864/j.issn.0578-1752.2019.03.010
2018-08-27;
2018-09-28
山東農業大學作物生物學國家重點實驗室開放課題項目(2018KF08)、遼寧省農業領域青年科技創新人才培養計劃項目(2015059)、中國農業科學院科技創新工程、國家自然科學基金(31301754)、中央級公益性科研院所基本科研業務費專項
宋楊,E-mail:songyang1225@163.com。通信作者劉鳳之,E-mail:liufengzhi6699@126.com
(責任編輯 趙伶俐)