

[摘要] 目的 探討血清和腦脊液中S100蛋白質β(S100β)、白細胞介素1β(IL-1β)、白細胞介素6(IL-6)聯合檢測對青壯年創傷性顱腦損傷(TBI)診斷和預后評估的價值。方法 選取青島市市立醫院神經外科術后轉入ICU治療的青壯年TBI病人132例作為觀察組(輕型35例,中型55例,重型42例),以同期需行腦脊液穿刺檢查的非TBI住院青壯年病人50例作為對照組。采用電化學發光法檢測兩組病人血清和腦脊液中S100β、IL-1β、IL-6的含量。應用受試者工作特征曲線(ROC曲線)分析S100β、IL-1β、IL-6聯合檢測對TBI的診斷價值,分析血清S100β、IL-1β、IL-6水平與TBI病人預后的相關性。結果 觀察組重型病人血清和腦脊液中S100β、IL-1β、IL-6含量均顯著高于對照組(F=8.351~8.967,P<0.05)。觀察組血清中S100β、IL-1β、IL-6的含量與腦脊液中的含量均呈正相關關系(r=0.83~0.89,P<0.05)。血清S100β、IL-1β、IL-6檢測及三者聯合檢測診斷TBI的ROC曲線下面積分別為0.810、0.758、0.703和0.922。觀察組血清和腦脊液中S100β、IL-1β、IL-6的表達水平與青壯年TBI預后呈負相關關系(F=8.671~9.371,P<0.05)。結論 血清和腦脊液中S100β、IL-1β、IL-6水平與青壯年TBI病人病情嚴重程度和預后密切相關,且三者聯合檢測診斷效率高于單獨檢測。
[關鍵詞] 顱腦損傷;S100蛋白質類;白細胞介素1β;白細胞介素6;診斷;預后
[中圖分類號] R446.1;R651 "[文獻標志碼] A "[文章編號] "2096-5532(2019)04-0461-05
[ABSTRACT] Objective To investigate the value of combined measurement of S100β, interleukin-1β (IL-1β), and interleukin-6 (IL-6) in serum and cerebrospinal fluid in the diagnosis and prognostic evaluation of young adults with traumatic brain injury (TBI). "Methods A total of 132 young adult patients with TBI who underwent surgery and were then transferred to the intensive care unit in Department of Neurosurgery in Qingdao Municipal Hospital were enrolled as observation group, among whom 35 had mild TBI, 55 had moderate TBI, and 42 had severe TBI; 50 young adult patients without TBI who were hospitalized and underwent cerebrospinal fluid puncture were enrolled as control group. Electrochemical luminescence was used to measure the levels of S100β, IL-1β, and IL-6 in serum and cerebrospinal fluid. The receiver operating characteristic (ROC) curve was used to observe the value of combined measurement of S100β, IL-1β, and IL-6 in the diagnosis of TBI, and the correlation of serum S100β, IL-1β, and IL-6 with the prognosis of TBI patients was analyzed. "Results The patients with severe TBI had significantly higher levels of S100β, IL-1β, and IL-6 in serum and cerebrospinal fluid than those in the control group (F=8.351-8.967,Plt;0.05). In the observation group, the levels of S100β, IL-1β, and IL-6 in serum were positively correlated with their levels in cerebrospinal fluid (r=0.83-0.89,Plt;0.05). The measurement of serum S100β, IL-1β, or IL-6 alone had an area under the ROC curve of 0.810, 0.758, and 0.703, respectively, while combined measurement of serum S100β, IL-1β, and IL-6 had an area of 0.922. In the observation group, the expression levels of S100β, IL-1β, and IL-6 in serum and cerebrospinal fluid were negatively correlated with the prognosis of young adults with TBI (F=8.671-9.371,Plt;0.05). "Conclusion The levels of S100β, IL-1β, and IL-6 in serum and cerebrospinal fluid are closely associated with disease severity and prognosis of young adult patients with TBI, and combined measurement of S100β, IL-1β, and IL-6 has a higher diagnostic efficiency than the measurement of S100β, IL-1β, or IL-6 alone.
[KEY WORDS] craniocerebral trauma; S100 proteins; interleukin-1beta; interleukin-6; diagnosis; prognosis
創傷性顱腦損傷(TBI)是神經外科常見的急癥,顱腦外傷是青壯年的首要死亡原因[1]。因此,"TBI的及時診療及其預后的精準判斷就顯得尤為重要。近年來的研究發現,TBI發生后機體產生級聯應激性炎癥反應和免疫應答,進而引起神經細胞損傷、凋亡[2-3]。很多生物標志物與TBI密切相關,如 S100蛋白質β(S100β)、白細胞介素1β(IL-1β)、白細胞介素6(IL-6)等[4-6]。目前,我國診斷TBI的主要方法是影像學檢查,且臨床中用以輔助判斷的實驗室指標大多為S100β[7],比較單一。本研究測定了青壯年TBI病人血清和腦脊液中S100β、IL-1β、IL-6的表達水平,采用受試者工作特征曲線(ROC曲線)[8]評估三者聯合檢測對TBI的診斷價值,并探討上述指標對評估TBI預后的臨床意義。
1 資料與方法
1.1 一般資料
2017年5月—2018年5月,選取青島市市立醫院神經外科術后轉入ICU治療的青壯年TBI病人132例作為觀察組,其中男性77例,女性55例;年齡28~55歲,平均(40.5±11.2)歲。TBI病人均經臨床確診,均符合TBI診療指南的標準[9]。根據格拉斯哥昏迷評分(GCS評分)的標準[10],輕型35例(GCS評分13~15分),中型55例(GCS評分9~12分),重型42例(GCS評分3~8分)。以我院同期需行腦脊液穿刺檢查的非TBI住院青壯年病人50例作為對照組,其中男33例,女17例;年齡 24~56 歲,平均(38.9±12.7)歲。兩組病人的性別、年齡差異無統計學意義。兩組病人采血和腦脊液前均未用藥物,均無器官功能衰竭、腫瘤等嚴重疾病;排除消化道出血、血液病、顱內感染等影響因素;符合腦脊液采集的適應證。本研究經青島市市立醫院倫理委員會批準,病人及家屬均知情同意。
1.2 研究方法
1.2.1 標本采集 TBI病人傷后12 h內于生化促凝管中采集靜脈血5 mL,腰椎穿刺留取3 mL腦脊液。對照組病人因病情需要于入院后12 h內于生化促凝管中采集靜脈血5 mL,腰椎穿刺留取腦脊液3 mL。所有標本均送我院檢驗科檢查。
1.2.2 檢測方法 應用ROCHE Cobase 602電化學發光儀(瑞士羅氏公司)及原裝配套試劑盒,采用電化學發光法測定血和腦脊液中S100β、IL-1β、IL-6含量,操作嚴格按照說明書進行。
1.2.3 隨訪 本組病人均獲得隨訪。采取電話或門診隨訪的形式,由工作人員在病人出院3個月及6個月后分別進行隨訪。根據Glasgow預后分級(GOS)[10]評價病人目前的預后狀態,4~5分為預后良好,2~3分為預后不良,1分為死亡。
1.3 統計學處理
采用SPSS 18.0軟件進行統計學處理。符合正態分布計量資料結果以±s表示,組間比較采用方差分析;相關性分析采用Pearson 相關分析;繪制ROC曲線,并計算ROC曲線下面積(AUC),分析S100β、IL-1β、IL-6聯合檢測對TBI的診斷價值。以P<0.05為差異有統計學意義。
2 結 "果
2.1 各組血清S100β、IL-1β、IL-6水平的比較
重型TBI病人血清S100β、IL-1β、IL-6水平均明顯高于對照組病人,差異有統計學意義(F=8.351~8.769,P<0.05);輕型和中型TBI病人血清S100β、IL-1β、IL-6水平與對照組相比,差異均無統計學意義(P>0.05)。見表1。
2.2 各組腦脊液S100β、IL-1β、IL-6水平的比較
重型TBI病人腦脊液S100β、IL-1β、IL-6水平均明顯高于對照組病人,差異有統計學意義(F=8.367~8.967,P<0.05);輕型和中型病人腦脊液S100β、IL-1β、IL-6水平與對照組相比,差異均無統計學意義(P>0.05)。見表2。
2.3 血清和腦脊液中S100β、IL-1β、IL-6的相關性
TBI病人血清中S100β、IL-1β、IL-6的含量與腦脊液中的含量均呈正相關關系(r=0.83~0.89,"P<0.05)。
2.4 血清S100β、IL-1β和IL-6聯合檢測對TBI的診斷價值
ROC曲線分析顯示,血清S100β、IL-1β、IL-6檢測及三者聯合檢測診斷TBI的AUC分別為0.810、0.758、0.703和0.922,以聯合檢測的靈敏度和特異度最高。見表3。
2.5 血清S100β、IL-1β和IL-6水平與TBI預后的相關性
隨訪6個月,獲得之前采集血液標本病人的預后信息:死亡15例,預后不良30例,預后良好87例。不同預后各組病人血清S100β、IL-1β和IL-6表達水平比較差異均有統計學意義(F=8.671~8.849,P<0.05)。見表4。Spearman相關分析顯示,血清S100β、IL-1β和IL-6水平均與GOS評分呈負相關關系(r=-0.426~-0.366,P<0.05),提示血清S100β、IL-1β和IL-6水平越高,GOS評分越低,病人預后越差。
2.6 腦脊液S100β、IL-1β和IL-6水平與TBI預后的相關性
隨訪6個月,獲得之前采集腦脊液標本病人的預后信息:死亡6例,預后不良12例,預后良好34例。不同預后各組病人腦脊液S100β、IL-1β和IL-6水平比較差異均有統計學意義(F=8.948~9.371,P<0.05)。見表5。Spearman相關分析顯示,腦脊液S100β、IL-1β和IL-6水平與GOS評分呈負相關關系(r=-0.372~-0.252,P<0.05),提示腦脊液S100β、IL-1β和IL-6水平越高,GOS評分越低,病人預后越差。
3 討 "論
TBI在外傷中僅次于四肢骨折,位居第2位,且主要患病人群為青壯年[11]。隨著醫療水平的提高和先進醫療設備的引進,即使加以嚴密的護理和治療,TBI病人仍有42.50%的病死率和15.00%的致殘率[12]。TBI病人入院時通常情況緊急,大多臨床醫生只能依靠神經學檢查和CT檢查來進行即時診斷[13-14]。到目前為止,雖然還未有TBI診斷及預后評估的明確方法,但是有關生物標志物已成為TBI診斷及預后判斷的首選[15]。生物標志物特指能夠客觀反映正常生理過程、致病過程的指示物,甚至能夠反映治療的藥理學反應[16-18]。最新的研究顯示,S100β以及炎癥因子是具有研究價值的診斷TBI及評估其預后生物標志物[19]。
S100β屬于Ca2+結合蛋白超家族,該超家族的蛋白質常作為重要的實驗室生物標志物用于成人和兒科檢驗醫學中[20-21]。腦損傷發生后,病人出現急性炎癥反應,同時S100β的合成和分泌增加,以利于損傷部位的修復。TBI發生后,血-腦脊液屏障通透性增加,通過該屏障S100β于外周釋放,引起外周血中S100β含量升高。本研究結果表明,血和腦脊液中S100β的含量與腦損傷的嚴重程度以及預后相關,這一結論與有關研究的觀點一致[22]。
病人發生TBI后,大腦神經元因應激反應發生以炎癥和免疫反應為主的損傷,進而導致腦組織死亡。有研究表明,細胞因子IL-1β和IL-6可促進炎癥因子的聚集,從而導致血-腦脊液屏障受損[23-24]。生理狀態下腦組織中的IL-1β和IL-6含量極少,缺血低氧狀態下其含量會迅速增加,引起嗜酸性粒細胞、單核細胞以及中性粒細胞等大量炎癥細胞聚集和激活,導致腦組織繼發性水腫,同時也改變內環境穩態,使血管內外滲透壓差增大,血管結構發生變化,進而破壞血-腦脊液屏障,引發腦組織繼發性損傷[25]。本研究結果顯示,IL-1β和IL-6的含量與腦損傷的嚴重程度以及預后相關,顱腦損傷越嚴重,血清及腦脊液中IL-1β和IL-6的含量越高,病人預后"越差。
TBI的年發病率為(180~250)/10萬,青壯年是TBI的主要群體。TBI在青壯年死亡原因中占第1位,致死率高。因此,本研究選取28~55歲年齡段的病人為研究對象,探究TBI診斷及預后評估的敏感方法。本文研究結果顯示,輕型和中型TBI病人S100β、IL-1β和IL-6水平與對照組比較差異均無統計學意義。這可能是由于輕型和中型TBI病人的神經細胞未被破壞,血-腦脊液屏障沒有明顯損傷性改變[2,26]。重型TBI病人S100β、IL-1β和IL-6水平與對照組相比較,差異具有統計學意義,且Spearman相關性分析顯示三者的含量與GOS評分均呈負相關關系,提示TBI病人的S100β、IL-1β和IL-6水平與疾病嚴重程度相關,并且其含量變化與預后具有密切聯系。同時,本研究采用ROC曲線分析,客觀評價血清S100β、IL-1β和IL-6檢測及三者聯合檢測對TBI的診斷價值。結果顯示,血清S100β、IL-1β和IL-6水平診斷TBI的AUC分別為0.810、0.758和0.703,按照SWEETS的判斷標準(AUC在0.7~0.9表明診斷試驗具有相當的準確性,AUC大于0.9則代表準確性較高),三者可作為TBI的診斷標志物,并且可用于評判病情及指導預后。而S100β、IL-1β和IL-6聯合檢測的AUC為0.922,相較于單獨檢測某一指標,三者聯合檢測對TBI的診斷價值更高。
綜上所述,血清和腦脊液中S100β、IL-1β、IL-6水平與青壯年TBI病人病情嚴重程度和預后密切相關,三者均可作為評價顱腦創傷程度和判斷預后的輔助實驗室指標,且三者聯合檢測診斷效率高于單獨檢測。
[參考文獻]
[1] 張碩,王峰,孫奎勝,等. 重型顱腦損傷患者肺部感染發生率與吸煙的關系[J]. 中華神經外科疾病研究雜志, 2013,12(2):175-176.
[2] LASKOWSKI R A, CREED J A, RAGHUPATHI R. Pathophysiology of mild TBI:implications for altered signaling pathways[J]. Journal of Neuroinflammation, 2015,12(1):120-122.
[3] GRIFFIN G D. The injured brain:TBI, mTBI, the immune system, and infection:connecting the dots[J]. Military Medicine, 2011,176(4):364-368.
[4] HUIE J R, DIAZ-ARRASTIA R, YUE J K, et al. Testing a multivariate proteomic panel for traumatic brain injury biomarker discovery:a TRACK-TBI pilot study[J]. Journal of Neurotrauma, 2019,36(1):100-110.
[5] HASHIZAKI T, NISHIMURA Y, TERAMURA K A, et al. Differences in serum IL-6 response after 1 degrees C rise in core body temperature in individuals with spinal cord injury and cervical spinal cord injury during local heat stress[J]. International Journal of Hyperthermia, 2019,35(1):541-547.
[6] ORIS C, PEREIRA B, DURIF J, et al. The biomarker S100B and mild traumatic brain injury:a meta-analysis[J]. Pediatrics, 2018,141(6):e20180037.
[7] HOOSHMAND M, SOROUSHMEHR S M R, WILLIAMSON C, et al. Automatic midline shift detection in traumatic brain injury [J]. Conference Proceedings, 2018,2018:131-134.
[8] 鄒莉玲,余小金,閔捷,等. ROC曲線在醫學診斷中的應用與進展[J]. 東南大學學報(醫學版), 2003,22(1):67-70.
[9] CARNEY N, TOTTEN A M, O’REILLY C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition[J]. Neurosurgery, 2016,80(1):6-15.
[10] WANG Xiaogang, GAO Ding, LI Tao, et al. The correlation analysis of prehospital GCS score of brain injury patients and prognosis[J]. Chinese Journal for Clinicians, 2015,87(1):23-25.
[11] DEKOSKY S T, ASKEN B M. Injury cascades in TBI-related neurodegeneration[J]. Brain Injury, 2017,31(9):1177-1182.
[12] IORIO-MORIN C, FORTIN D, BLANCHARD J. TBI prognosis calculator:a mobile application to estimate mortality and morbidity following traumatic brain injury[J]. Clinical Neuro-logy and Neurosurgery, 2016,142:48-53.
[13] CROKE L. Mild TBI in children:guidance from the CDC for diagnosis and treatment[J]. American Family Physician, 2019,99(7):462-464.
[14] PIKSTRA A R A, METTING Z, FOCK J M, et al. The juvenile head trauma syndrome-deterioration after mild TBI:diagnosis and clinical presentation at the Emergency Department[J]. European Journal of Paediatric Neurology, 2017,21(2):344-349.
[15] THOMPSON W H, THELIN E P, LILJA A A, et al. Functional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury[J]. NeuroImage Clinical, 2016,12:1004-1012.
[16] BOGOSLOVSKY T, GILL J, JEROMIN A, et al. Fluid biomarkers of traumatic brain injury and intended context of use[J]. Diagnostics, 2016,6(4):37.
[17] AGOSTON D V, SHUTES-DAVID A, PESKIND E R. Bio-fluid biomarkers of traumatic brain injury[J]. Brain Injury, 2017,31(9):1195-1203.
[18] WANG K K, YANG Z H, ZHU T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury[J]. Expert Review of Molecular Diagnostics, 2018,18(2):165-180.
[19] PARK S H, HWANG S K. Prognostic value of serum levels of S100 calcium-binding protein B,g"neuron-specific enolase, and interleukin-6 in pediatric patients with traumatic brain injury[J]. World Neurosurgery, 2018,118:e534-e542.
[20] HEIZMANN C W. S100 proteins:diagnostic and prognostic biomarkers in laboratory medicine[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2019,1866(7):1197-1206.
[21] MICHETTI F, D’AMBROSI N, TOESCA A, et al. The S100B story:from biomarker to active factor in neural injury[J]. Journal of Neurochemistry, 2019,148(2):168-187.
[22] WELCH R D, AYAZ S I, LEWIS L M, et al. Ability of se-rum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury[J]. Journal of Neurotrauma, 2016,33(2):203-214.
[23] HELMY A, GUILFOYLE M R, CARPENTER K L, et al. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury[J]. Journal of Cerebral Blood Flow and Metabolism, 2016,36(8):1434-1448.
[24] WEBSTER K M, SUN M J, CRACK P, et al. Inflammation in epileptogenesis after traumatic brain injury[J]. Journal of Neuroinflammation, 2017,14(1):10-12.
[25] HELMY A, CARPENTER K L, MENON D K, et al. The cytokine response to human traumatic brain injury:temporal profiles and evidence for cerebral parenchymal production[J]. Journal of Cerebral Blood Flow and Metabolism, 2011,31(2):658-670.
(本文編輯 馬偉平)