趙麗華
比和比例是數(shù)學學習中比較重要的一個模塊,因為有很多計算都會運用到本模塊的知識,而且能夠提升運算的速度,所以在學習的過程中,我們一定要為學生打牢基礎(chǔ)、提升能力。出現(xiàn)問題后本著哪兒錯哪兒講的原則,進行有針對性的指導(dǎo),這樣才能促進學生對本模塊知識內(nèi)容的理解。
一、比和比例易錯題成因分析
小學數(shù)學學習的過程中,比和比例是學生們必須學習的一個知識模塊,但是在這個模塊的學習時學生經(jīng)常會出現(xiàn)錯誤,其主要原因就是對比和比例的內(nèi)涵理解不夠透徹,我們都知道比和比利實際上是一種除法關(guān)系,但是學生對于這種除法關(guān)系不能夠很好的理解,而且在面對2:1這個問題的時候,可能不知道可以寫成2÷1,這就會對比的化簡造成一定的困難,而且在實際應(yīng)用的過程中往往存在著一些粗心大意,面對問題往往由于觀察不夠仔細而造成錯誤,這都是造成學生失分的原因。
二、比和比例易錯題分層指導(dǎo)對策
(一)化簡題計算題
數(shù)學學習過程中計算能力是保證數(shù)學成績的一個重要因素,所以在比例模塊學習的過程中,就需要提高學生數(shù)學計算題的正確率。學生最常出錯的題是化簡成最簡整數(shù)比和解比例,這些問題出現(xiàn)的學生就是因為他們的計算能力不夠強,對知識的理解不夠扎實,這樣就要在抓基礎(chǔ)的同時提升運算能力,所以這一部分的練習量需要酌情增加,只有這樣,學生才能把基礎(chǔ)打牢。
(二)為學生理清比例的概念
在學習比例模塊知識的過程中,由于小學生理解能力不強,所以他們對正比例、反比例、等比例這些概念理解的不夠深入。為此,作為教師一定要在課堂教學中將這些概念深入他們的內(nèi)心,使得學生能夠充分的理解,這樣做題的過程中才不會出現(xiàn)錯誤。例如,有一些學生就不明白,正方形的面積和邊長是成正比例的(正方形的邊長一定),這就需要我們教師來為他們演示一下,讓學生通過直觀觀察來理解什么是正比例。這樣學生在做題的時候,就會對所學的內(nèi)容有一個更好的運用。
(三)應(yīng)用題要建立模型
應(yīng)用題的學習中對于學生來說考驗他們對基礎(chǔ)知識的掌握能力便是應(yīng)用環(huán)節(jié),所以在面對應(yīng)用題的時候,教師可以鼓勵學生通過數(shù)學建模來理解應(yīng)用題中的數(shù)量關(guān)系,這樣在列關(guān)系式的時候就完全可以參照剛才建立的數(shù)學模型,既節(jié)約時間也提升了學生對所學基礎(chǔ)知識的應(yīng)用程度,更能夠保證學生的得分率。
數(shù)學的學習是對抽象邏輯思維的培養(yǎng)過程,比和比例的學習則是為學生后續(xù)進行的數(shù)學學科學習奠定基礎(chǔ),所以面對問題我們一定要找出癥結(jié)所在,通過設(shè)計多樣化的訓練來提高學生的理解能力,這樣在做題的過程中就能夠減少錯誤出現(xiàn)的概率并保證學生的得分率。