999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

多策略人工蜂群算法在梯級(jí)水電站優(yōu)化調(diào)度中的應(yīng)用

2019-06-24 02:36:04謝海華孫輝龔文引
南水北調(diào)與水利科技 2019年2期

謝海華 孫輝 龔文引

摘要:梯級(jí)水電站優(yōu)化調(diào)度問(wèn)題的準(zhǔn)確、快速求解,是水利學(xué)科領(lǐng)域需解決的基本問(wèn)題。針對(duì)該問(wèn)題,提出了一種新的多策略人工蜂群算法。為更好地平衡算法的全局搜索與局部搜索能力,新算法在兩個(gè)具有代表性的解搜索策略基礎(chǔ)上,對(duì)其融合構(gòu)成新的搜索策略,同時(shí)保留了原有的兩個(gè)解搜索策略。新算法的三個(gè)候選解搜索策略,增強(qiáng)了對(duì)各類(lèi)優(yōu)化問(wèn)題求解的適應(yīng)性。為驗(yàn)證新算法的適應(yīng)性及可行性,不僅在經(jīng)典的基準(zhǔn)測(cè)試函數(shù)中對(duì)其進(jìn)行測(cè)試,并且將其應(yīng)用于梯級(jí)水電站優(yōu)化調(diào)度問(wèn)題。實(shí)驗(yàn)結(jié)果表明,新算法具有適應(yīng)性強(qiáng)、收斂速度快等優(yōu)點(diǎn)。

關(guān)鍵詞:梯級(jí)水電站;優(yōu)化調(diào)度;人工蜂群算法;收斂速度;多策略

中圖分類(lèi)號(hào):TV11文獻(xiàn)標(biāo)志碼:A

Abstract:To accurately and quickly solve the optimal operation problem of cascade hydro-power stations is a challenge in the field of water conservancy.A new multi-strategy artificial bee colony algorithm was proposed in this study.In order to better balance the global search and local search capabilities of the algorithms,two representative solution search strategies were used in this new algorithm,and they were combined to form a new search strategy while retaining the original two solution search strategies.Therefore,the new algorithm contained three candidate solution search strategies in the process of searching new solutions,which was convenient to strengthen the adaptability to various optimization problems.The adaptability and feasibility of the new algorithm were tested in the classic benchmark function and applied to the optimal operation of cascade hydro-power stations.Experimental results showed that the new algorithm had the advantages of stronger adaptability and faster convergence speed.

Key words:cascade hydro-power stations;optimal dispatch;artificial bee colony algorithm;rate of convergence;multi-strategy

梯級(jí)水電站的優(yōu)化調(diào)度,是一個(gè)高維、多約束、非線性問(wèn)題。解決該問(wèn)題的核心是建立準(zhǔn)確反應(yīng)實(shí)際優(yōu)化調(diào)度問(wèn)題的模型和采用適當(dāng)?shù)那蠼夥椒╗1]。目前,優(yōu)化調(diào)度的數(shù)學(xué)模型相對(duì)成熟,但對(duì)于多約束條件下,快速及準(zhǔn)確求解是該問(wèn)題的難點(diǎn)所在。傳統(tǒng)方法和群智能方法是解決優(yōu)化調(diào)度問(wèn)題的主要方法[2-3],其中傳統(tǒng)方法包括:線性規(guī)劃(Linear Programming,LP)[4]、非線性規(guī)劃(Nonlinear Programming,NLP)[5]、動(dòng)態(tài)規(guī)劃(Dynamic Programming,DP)[6]和大系統(tǒng)法(Large-scale System,LS)[7];群智能方法包括:人工蜂群(Artificial Bee Colony,ABC)算法[8]、蟻群算法(Ant Colony Optimization,ACO)[9]、遺傳算法(Genetic Algorithm,GA)[10]、粒子群算法(Particle Swarm Optimization,PSO)[11]等。傳統(tǒng)方法能有效解決單庫(kù)水電站調(diào)度問(wèn)題,但對(duì)于梯級(jí)水電站的優(yōu)化調(diào)度問(wèn)題,不僅方法復(fù)雜且存在“維數(shù)災(zāi)”、易陷入局部最優(yōu)等缺點(diǎn)。相比傳統(tǒng)方法,群智能算法具有實(shí)現(xiàn)簡(jiǎn)單、求解速度快等優(yōu)點(diǎn)[12]。

2005年,土耳其學(xué)者karaboga為解決多變量函數(shù)問(wèn)題,提出了ABC算法,其具有收斂速度快、參數(shù)少、魯棒性強(qiáng)等優(yōu)點(diǎn),并廣泛應(yīng)用至各行業(yè),如機(jī)器人路徑優(yōu)化[13-14]和圖像處理[15]等。相比其他群智能算法,ABC算法對(duì)維度不敏感(問(wèn)題維度的高低不影響ABC算法性能)是它的一個(gè)顯著特點(diǎn)。故本文采用ABC算法求解高維的梯級(jí)水庫(kù)優(yōu)化調(diào)度問(wèn)題。遵循著“算法沒(méi)有最好”的理念,ABC算法亦存在缺點(diǎn),如全局搜索與局部搜索之間的平衡性較差。針對(duì)該問(wèn)題,眾多的研究者提出了許多改進(jìn)方案。較經(jīng)典的有Zhu[16]等人提出的GABC、Gao[17]等人提出的MABC、Kiran[18]等人提出的ABCVSS,其中,Zhu等人針對(duì)ABC算法局部搜索能力弱的缺點(diǎn),將全局最優(yōu)引入到解搜索策略中;Gao等人針對(duì)ABC算法全局搜索與局部搜索能力平衡性差的缺點(diǎn),通過(guò)引入控制參數(shù),以達(dá)到目的;Kiran等人為豐富解搜索策略,構(gòu)成了解搜索策略池,以適應(yīng)多種類(lèi)型優(yōu)化問(wèn)題。

目前的研究表明,更好地平衡ABC算法的全局搜索與局部搜索能力,可有效改善算法的總體性能。為此本文提出了一種新的多策略人工蜂群算法(Multi-strategy Artificial bee colony,MsABC)算法。

[6] YOUNG G K.Finding reservoir operating rules[J].Journal of the Hydraulics Division,1967,93(6):297-322.

[7] ARVANITIDIS N V,ROSING J.Optimal operation of multireservoir systems using a composite representation[J].IEEE Transactions on Power Apparatus & Systems,1970,PAS-89(2):327 -335.

[8] KARABOGA D.An idea based on honey bee swarm for numerical optimization,Technical Report-TR06[M].Erciyes University:Kayseri,Turkey,2005.

[9] DORIGO M,CARO G D.Ant colony optimization:a new meta-heuristic[J].Proceedings of the Congress on Evolutionary Computation,1999,2(4):1470-1477.

[10] GOLDBERG D E.Genetic algorithm in search[Z].Addison-Wesley,Reading,1989.

[11] KENNEDY J,EBERHART R.Particle swarm optimization[C].IEEE International Conference on Neural Networks,1995.Proceedings.IEEE,2002,4:1942-1948.

[12] 焦鈺,王建群,賈洋洋.基于狼群算法的水電站優(yōu)化調(diào)度模型參數(shù)優(yōu)選[J].南水北調(diào)與水利科技,2017,15(2):58-64.(JIAO Y,WANG J Q,JIA Y Y.Parameter analysis of wolf pack search algorithm applied to optimal operation of hydropower station[J].South-to-North Water Transfers and Water Science & Technology,2017,15(2):58-64.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk 2017.02.009.

[13] 黎竹娟.人工蜂群算法在移動(dòng)機(jī)器人路徑規(guī)劃中的應(yīng)用[J].計(jì)算機(jī)仿真,2012,29(12):247-250.(LI Z J.Application of artificial bee colony algorithm in path planning of mobile robot[J].Computer Simulation,2012,29(12):247-250.(in Chinese))

[14] 譚玉新,楊維,徐子睿.面向煤礦井下局部復(fù)雜空間的機(jī)器人三維路徑規(guī)劃方法[J].煤炭學(xué)報(bào),2017,42(6):1634-1642.(TAN Y X,YANG W,XU Z R.Three-dimensional path planning method for robot in underground local complex space[J].Journal of China Coal Society,2017,42(6):1634-1642.(in Chinese)) DOI:10.13225/j.cnki.jccs.2016.1047

[15] 肖永豪.蜂群算法及在圖像處理中的應(yīng)用研究[D].廣州:華南理工大學(xué),2011.(XIAO Y H.Study on artificial bee colony algorithm and its application in image processing[D].Guangzhou:South China University of Technology,2011.(in Chinese))

[16] ZHU G,KWONG S.Gbest-guided artificial bee colony algorithm for numerical function optimization[J].Applied Mathematics & Computation,2010,217(7):3166-3173.

[17] GAO W,LIU S.A modified artificial bee colony algorithm[J].Computers & Operations Research,2012,39(3):687-697.

[18] KIRAN M S,HAKLI H,GUNDUZ M,et al.Artificial bee colony algorithm with variable search strategy for continuous optimization[J].Information Sciences,2015,300:140-157.DOI:10.1016/j.ins.2014.12.043.

[19] GAO W,LIU S,HUANG L.A novel artificial bee colony algorithm based on modified search equation and orthogonal learning[J].IEEE Transactions on Cybernetics,2013,43(3):1011.

[20] CUI L,ZHANG K,LI G.et al.Modified Gbest-guided artificial bee colony algorithm with new probability model[J].Soft Compute.2018(22):2217-2243.DOI:10.1109/TSMCB.2012.2222373.

[21] 王坤.改進(jìn)人工蜂群算法在梯級(jí)水庫(kù)群優(yōu)化調(diào)度中的應(yīng)用[D].南昌:南昌工程學(xué)院,2017.(WANG K.The application of artificial bee colony algorithm in optimal operation of cascade reservoirs is improved[D].Nanchang:Nanchang Institute of Technology,2017.(in Chinese))

[22] KARABOGA D,GORKEMLI B.A quick artificial bee colony (qABC) algorithm and its performance on optimization problems[J].Applied Soft Computing,2014,23(5):227-238.DOI:10.1016/j.asoc.2014.06.035.

[23] 成鵬飛,方國(guó)華,黃顯峰.基于改進(jìn)人工蜂群算法的水電站水庫(kù)優(yōu)化調(diào)度研究[J].中國(guó)農(nóng)村水利水電,2013(4):109-112.(CHENG P F,F(xiàn)ANG G H,HUANG X F.Optimal operation of hydropower station reservoir based on improved bee colony algorithm[J].China Rural Water and Hydropower,2013(4):109-112.(in Chinese))

[24] 李文莉,李郁俠,任平安.基于云變異人工蜂群算法的梯級(jí)水庫(kù)群優(yōu)化調(diào)度[J].水力發(fā)電學(xué)報(bào),2014,33(1):37-42.(LI W L,LI Y X,REN P A.Optimal operation of cascade reservoirs based on cloud variation-artificial bee colony algorithm[J].Journal of Hydroelectric Engineering,2014,33(1):37-42.(in Chinese))

主站蜘蛛池模板: 欧美午夜理伦三级在线观看 | a在线观看免费| 国产全黄a一级毛片| 久久国产乱子伦视频无卡顿| 呦女亚洲一区精品| 国产精品林美惠子在线播放| 九九九精品视频| 精品人妻AV区| 高清色本在线www| jizz国产在线| 51国产偷自视频区视频手机观看| 国产主播在线观看| 三级欧美在线| 免费jizz在线播放| 国产精品成人久久| 人妻夜夜爽天天爽| 国产粉嫩粉嫩的18在线播放91 | 久久激情影院| 国产精品久久久久久久伊一| 一级全黄毛片| 不卡无码网| 韩国福利一区| 久久国产亚洲欧美日韩精品| 性欧美在线| AV无码无在线观看免费| 五月天福利视频| 亚洲精品国产成人7777| 亚洲第一网站男人都懂| 最新日本中文字幕| 国产极品美女在线观看| 国产精品一区在线麻豆| 人妻精品久久久无码区色视| 伊人成色综合网| 中国国产高清免费AV片| 亚洲精品成人福利在线电影| 四虎成人免费毛片| 欧美一级色视频| 亚洲第一黄色网| 国产91丝袜| 天天摸天天操免费播放小视频| 国产精品熟女亚洲AV麻豆| 国产网站一区二区三区| 亚洲Va中文字幕久久一区 | 国产精品无码一二三视频| 性激烈欧美三级在线播放| 青青青国产免费线在| 77777亚洲午夜久久多人| 日本在线国产| 2021天堂在线亚洲精品专区| 精品国产一二三区| 无码网站免费观看| 91无码国产视频| 欧美国产日韩在线观看| 亚洲欧美自拍中文| 真实国产精品vr专区| 亚洲区视频在线观看| 欧美在线视频a| 无码粉嫩虎白一线天在线观看| 欧美日本二区| 亚洲香蕉在线| 亚洲AⅤ波多系列中文字幕| 国产免费a级片| 激情综合婷婷丁香五月尤物| 国产午夜看片| 久久精品无码专区免费| 伊人蕉久影院| 中文字幕丝袜一区二区| 国产精品第一区在线观看| 中文字幕天无码久久精品视频免费| 亚洲精品免费网站| 永久天堂网Av| 国产精品不卡片视频免费观看| 在线观看欧美精品二区| 日本色综合网| 国产精品视频猛进猛出| 在线免费亚洲无码视频| 免费a级毛片视频| 就去吻亚洲精品国产欧美| 国产成人免费观看在线视频| 国产欧美日韩视频一区二区三区| 欧美在线精品怡红院| 日韩一二三区视频精品|