王曉嬌,張仁陟,齊 鵬,焦亞鵬,蔡立群,武 均,2,謝軍紅
Meta分析有機肥施用對中國北方農田土壤CO2排放的影響
王曉嬌1,4,張仁陟1,2,3※,齊 鵬1,2,3,焦亞鵬1,蔡立群1,2,3,武 均1,2,謝軍紅2,5
(1. 甘肅農業大學資源與環境學院,蘭州 730070;2. 甘肅農業大學甘肅省干旱生境作物學重點實驗室,蘭州 730070;3. 甘肅省節水農業工程技術研究中心,蘭州 730070;4. 甘肅農業大學管理學院,蘭州 730070;5. 甘肅農業大學農學院,蘭州 730070)
為了探明中國北方地區不同氣候類型、施肥措施、有機肥類型和試驗年限下,有機肥施用(單施有機肥、有機無機肥配施)對生育期農田土壤CO2排放量的影響,該研究以不施肥、施用無機肥分別作為對照,根據已發表的相關田間試驗數據,采用Meta分析方法,定量研究有機肥、有機肥配施無機肥對農田土壤CO2排放量的影響。結果表明:與不施肥、施用無機肥相比,有機肥施用總體上顯著提高了農田土壤CO2排放量,分別提高了50.6%和36.3%;有機肥施用下,農田土壤CO2排放量依次減少的順序為:單施有機肥、有機無機配施、無機肥+有機肥+緩釋肥;采用有機肥+無機肥+緩釋肥配施,土壤CO2排放量未顯著增加;相比牛糞、豬糞和商品有機肥,雞糞類有機肥對土壤CO2排放正效應最大;有機肥施用下,灰漠土農田土壤CO2排放量相對高;農田土壤CO2排放量與年均氣溫正相關,與年均降水量負相關。從環境的角度考慮,建議在中國北方采用無機肥+有機肥+緩釋肥配施技術,不建議雞糞大量施用及在灰漠土農田大量施用有機肥。該研究成果可為有機肥替代部分化肥在中國北方地區的推廣應用提供參考。
呼吸;土壤;肥料;北方;Meta
中國實施的“生態文明”、“鄉村振興”、“化肥減量、有機肥替代”、“溫室氣體減排”等戰略均反映出在農業領域有機肥替代化肥和溫室氣體減排的重要性。大量研究[1-5]表明,有機肥替代化肥施用,可改善土壤結構、增加土壤肥力、提高作物產量、提升品質、影響土壤呼吸,不同的氣候類型、土壤類型和施肥措施下土壤呼吸對有機肥的響應也不同[6-8]。土壤呼吸是土壤釋放CO2的過程,土壤呼吸強度可用土壤CO2排放量作為評價指標。因此,從環境角度考慮,明確不同區域農田施用有機肥對土壤CO2排放量的影響對農田溫室氣體減排具有重要意義。
近年來,在中國北方的典型區域均設置了有機肥施用的農業田間試驗,也開展了一系列研究。較多研究[8-13]表明有機肥施用比不施肥、無機肥施用均提高了土壤呼吸通量,增加了農田土壤CO2排放量,部分研究[14]表明農田土壤CO2排放量在習慣施肥、優化施肥和有機肥配合優化施肥等處理間差異不顯著。大多模擬、短期田間試驗研究也表明有機肥施用下土壤呼吸通量變化受溫度、水分、施肥措施和有機肥類型等因素影響[15-20]。由于不同研究的氣候、管理措施和土壤屬性等不同,施用有機肥后土壤CO2排放量對有機肥的響應可能存在很大的差異,哪些影響因素導致了差異[21-25],解決這些問題需要綜合分析有機肥施用對農田土壤CO2排放量的影響[26-31]。
Meta分析是一種對同類研究結果進行統計分析的方法[32-34]。本研究運用Meta分析方法,以不施肥和無機肥施用分別作為有機肥施用的對照,通過收集現有的相關田間試驗數據,量化不同條件下施用有機肥之后農田土壤CO2排放量的差異特征,明確農田土壤CO2排放量差異的主要驅動因子,以期為有機肥替代部分化肥在中國北方農業區的推廣應用提供參考依據。
通過Web of Science、Springer、中國知網(CNKI)、萬方、維普、Google Scholar 等中英文數據庫分別輸入“有機肥(manure/organic fertilizer)”或(or)(牛糞:cow manure,豬糞:pig manure,雞糞:chicken manure,羊糞:sheep manure)和(and)“溫室氣體(GHG/CO2/soil respiration/carbon dioxide)”和(and)“中國北方(north and china)”等關鍵詞,檢索了截止2018年5月1日前公開發表的中國北方有機肥施用與土壤呼吸相關的文獻,并對檢索到的文獻進行篩選。篩選標準如下:1)試驗區域為中國北方地區,試驗起止年份清楚;2)試驗方式為大田試驗,試驗時間跨度至少為1個生長季節(從種植到收獲),且作物全生育期描述清楚;3)試驗處理包含有機肥(單施有機肥、有機無機配施、無機有機緩釋肥配施)、無機肥(單施氮肥、氮磷肥、氮磷鉀配施)、不施肥(CK)等的1個或多個,且同一研究有機肥與不施肥或有機肥與無機肥對照明確;4)研究點的背景條件、研究方法明確。
通過EndNote剔除試驗地點、試驗年份、作物類型和試驗數據結果相同的文獻。對符合標準的文獻提取區域(region)、試驗點位置(experimental location,EL)、年均氣溫(annual average temperature,AAT)、年降水量(annual precipitation,AP)、土壤類型(soil types,ST)、施肥措施(fertilization measures,FM)、施肥年限(application time,AT)、施肥方式(application ways,AW)、有機肥類型(organic fertilizer types,OT)和標準差(standard deviation,S)等數據。本文收集的數據主要源于以下參考文獻(表1)。

表1 Meta分析所用的參考文獻
根據文獻中有機肥的施用方法,對篩選的數據進行分類,將試驗組分為單施有機肥、有機肥+無機肥2類,對照組分為不施肥和施用無機肥,共收集了89組配對試驗數據,其中,對照組為不施肥、施用無機肥的有效數據分別為42和47組。
考慮到本研究試驗點數量的限制及分布在中國北方,本文根據種植制度[32,36-37]劃分為3個區域:東北、華北和西北地區(表2);土壤類型分為黑土、灰漠土、塿土、潮褐土、黑壚土和鹽化潮土;施肥年限分為4類(第1類:5 a以下;第2類:>5~10 a;第3類:>10~20 a;第4類:>20 a);施肥措施分為單施有機肥、氮肥+有機肥+緩釋肥、氮磷鉀+有機肥、氮磷+有機肥配施和無機肥;施肥方式分為基肥+追肥和一次性施肥;有機肥類型分為雞糞和牛糞、豬糞和商品有機肥。

表2 中國北方農田區域劃分及氣候特征
本研究的數據均來自檢索的文獻,在進行文獻數據搜集時,以圖表示的數據,用WebPlotDigitizer[38]軟件提取。試驗結果以排放速率表示的樣本,計算出作物生育期內土壤CO2排放量,以CO2-C表示的樣本,乘以44/12得出CO2的排放量。若文獻中提供的數據為標準誤(S),則利用重復次數()來計算標準差(),見式(1)。

利用各研究中處理組和對照組的平均值、標準差和重復數計算反應比(response ratio,RR)及研究的總體異質性,計算95%的置信區間(confidence interval,CI)[39]。


采用隨機效應模型的限制性最大似然法計算平均效應值(effect size,ES)[40-41]。


式中CI為累計效應值的95%置信區間;em為綜合效應值的標準誤。
為更直觀地反映施用有機肥對土壤CO2排放效應,將效應量轉化為增加率[42]

為篩選異質性影響因素,參考文獻[40],通過建立1個或多個解釋變量與結果變量之間的回歸模型,用軟件R內函數“glmulti”確定修正的小樣本赤池信息量(Akaike’s information criterion corrected for small samples,AICc),查看AICc值最低的模型結果,確定最優模型,計算最優模型中各個影響因素的權重,所有最優模型子集中每個因素的權重加權之和被確定為每個因素的相對重要性,尋求最優模型中因素的重要性程度,以因素相對重要性>0.8表示重要[40,42],篩選導致異質性的重要影響因素。
所有數據分析均采用R3.4.4編程軟件進行數據處理[43],使用R作圖。發表偏倚檢驗用失安全系數法[40]。
總體上看,相比不施肥和無機肥,有機肥施用能顯著提高農田土壤CO2排放量(<0.05),分別平均提高了50.6%(95% CI為37.7%~66.5%)和36.3%(95% CI為20.9%~53.7%)。有機肥與不施肥、有機肥與無機肥異質性檢驗結果分別為1 342.9、1 531.7(<0.05),表明異質性強,需要引入解釋變量。通過失安全系數法檢驗發表偏愛性,有機肥與不施肥、有機肥與無機肥的潛在效應值分別為30 218和23 650(臨界值為215和480),潛在效應值大于臨界值表明無發表偏愛。
北方不同區域有機肥施用對農田土壤CO2排放量的影響(圖1)表明,東北、西北和華北3個區域間農田土壤CO2排放量均無顯著差異。幾種不同類型有機肥施用對農田土壤CO2排放量的影響(圖1)表明,與不施肥相比,牛糞、雞糞、豬糞和商品有機肥施用下農田土壤CO2排放量均有顯著的增加,分別增加了95.4%、498.9%、29.7%、30.9%(<0.05),雞糞和牛糞、豬糞、商品有機肥差異顯著,其他有機肥類型間差異不顯著;與無機肥施用相比,農田土壤CO2排放量的規律同上,均反映出施用雞糞后農田土壤CO2排放量高于其他類型有機肥。

圖1 不同分類下土壤CO2排放量總體效應值
2.2.1 影響因素的重要性分析
將數據按年均氣溫、年降水量、土壤類型、施肥年限、施肥措施和施肥時期分組,運用Meta回歸分析進行多因素分析,尋求最優模型中影響因素重要性(圖2)。相對重要性>0.8的影響因素包括年降水量、年均氣溫、施肥措施和土壤類型。

Note: AP: annual precipitation; AAT: annual average temperature; FM: fertilization measures; ST: soil types; AW: application ways; AT: application time.
2.2.2 農田土壤CO2排放量影響因素分析
1)不同氣候條件
年均氣溫與效應值的關系(圖3)表明,與不施肥相比(圖3a),施用有機肥農田土壤CO2排放量隨著年均氣溫升高顯著增加(<0.05),年均氣溫能解釋11%的效應值變異。與施無機肥相比(圖3b),施用有機肥農田土壤CO2排放量隨著年均氣溫升高顯著增加(<0.05),年均氣溫能解釋16%的效應值變異。總體上看,農田土壤CO2排放量隨著年均氣溫升高而增加。
年降水量與效應值的關系表明,與不施肥相比(圖3c),施用有機肥農田土壤CO2排放量隨年降水量增加顯著降低(<0.05),年降水量能解釋10%的效應值變異,與施用無機肥相比(圖3d),施用有機肥農田土壤CO2排放量隨著年降水量增加顯著降低(<0.05),年降水量能解釋12%的效應值變異。總體上看,農田土壤CO2排放量隨著年降水量增加而降低。
2)不同土壤類型
不同土壤類型下有機肥施用對農田土壤CO2排放量的影響(圖4)表明,有機肥與不施肥相比(圖4a),黑土、灰漠土、塿土、潮褐土、黑壚土和鹽化潮土農田土壤CO2排放量均有顯著的增加,分別增加了39.0%、301.4%、109.5%、23.4%、58.4%、113.8%(<0.05);灰漠土與其他土壤類型差異顯著(<0.05),塿土與潮褐土差異顯著(<0.05),其他土壤類型間差異不顯著。與施用無機肥相比(圖 4b),黑土、灰漠土、塿土、潮褐土、黑壚土和鹽化潮土農田土壤CO2排放量均有顯著增加,分別增加了16.1%、259.7%、20.9%、27.1%、32.3%、85.9%(<0.05),灰漠土與其他土壤類型差異顯著(<0.05),其他土壤類型間差異不顯著。

注:虛線表示95%的置信區間的上下限值,實線表示回歸線,下同。
Note: Dotted lines are upper and lower limits of 95% confidence interval and solid lines are regression lines. The same below.
圖3 影響因素與土壤CO2排放量的效應值的關系
Fig.3 Relationship between effect size and influencing factors on soil CO2emission
3)不同施肥措施
有機肥和無機肥配施對農田土壤CO2排放量的影響(圖4)表明,與不施肥相比(圖4c),單施有機肥、氮肥+有機肥、氮磷鉀+有機肥、氮磷+有機肥配施下,農田土壤CO2排放量均有顯著的增加,分別增加了78.6%、15.0%、56.8%、55.3%(<0.05),氮肥+有機肥+緩釋肥、減量施氮+有機肥+緩釋肥模式下農田土壤CO2排放量未顯著增加,進一步兩兩比較,有機肥與氮肥+有機肥、氮肥+有機肥+緩釋肥、減量施氮+有機肥+緩釋肥間差異顯著;與無機肥施用相比(圖4d),有機肥、氮肥+有機肥、氮磷鉀+有機肥、氮磷+有機肥配施下,農田土壤CO2排放量均有顯著的增加,分別增加了66.5%、28.4%、29.6%、28.4%(<0.05),氮肥+有機肥+緩釋肥措施下農田土壤CO2排放量未顯著增加(>0.05),進一步兩兩比較,有機肥與氮肥+有機肥、氮磷鉀+有機肥、氮磷 +有機肥差異顯著。

注:O:有機肥;N+O:氮肥+有機肥;N+O+SR:氮肥+有機肥+緩釋肥;NPK+O:氮磷鉀+有機肥;NP+O:氮磷+有機肥:RN+O+SR:減量施氮+有機肥+緩釋肥
Note: O: organic fertilizer; N+O: nitrogen fertilizer + organic fertilizer; N+O+SR: nitrogen fertilizer + organic fertilizer + slow-release fertilizer; NPK+O: nitrogen, phosphorus and potassium + organic fertilizer; NP+O: nitrogen and phosphorus + organic fertilizer; RN+O+SR: reduced nitrogen + organic fertilizer + slow-release fertilizer.
圖4 土壤CO2排放量的影響因素分析
Fig.4 Analysis of influencing factors on soil CO2emission
本研究通過整理已發表的文獻數據,運用Meta分析方法,從區域尺度分析了我國北方典型農田土壤施用有機肥后土壤CO2排放量特征及驅動因子。研究發現:與不施肥、無機肥施用相比,有機肥施用顯著增加了農田土壤CO2排放量,分別提高了50.6%和36.3%(<0.05)。相關研究[8,9,21-23,25]也得出相似結論。本研究通過亞組分析也發現在不同區域、不同有機肥類型和不同土壤類型下有機肥施用均促進農田土壤CO2排放量,不同施肥措施間存在差異,農田土壤CO2排放量與平均氣溫呈正相關,與降水量呈負相關。分析原因:1)北方相對干旱少雨,有機肥施用顯著增加了土壤碳庫,土壤有機碳在環境因子的作用下礦化速率增大,成為土壤CO2排放的主要來源[44-45];2)有機肥比無機肥進一步改善了土壤孔隙度、有機質和養分等土壤理化性質,促進植物生長,根系分泌物增加,為微生物提供了可以利用的底物,使土壤呼吸增加[46-47];3)施用有機肥改善了土壤有效持水量、通氣性,增加了蚯蚓、彈尾目密度和土壤動物多樣性指數,促進了土壤動物呼吸的增加[48]。研究還發現,施用雞糞后土壤CO2排放顯著高于牛糞、豬糞和商品有機肥,相關研究[7,35]也得出相似結論。究其原因,雞糞的養分含量高于牛糞、豬糞和商品有機肥,屬熱性肥料,有機氮含量高,C/N比較低,一般來講土壤C/N與有機質分解速度呈反比關系,因為土壤微生物在生命活動過程中,既需要碳素做能量,也需要氮素來構建自己的身體,微生物的活性變化有可能促進了土壤CO2排放量[49-52]。
3.1.1 氣候類型
本研究表明,有機肥施用后農田土壤CO2排放量隨年均氣溫的升高而增加,隨年降水量的增加而降低,較多研究得出相同的結論[53-55],分析其原因:1)溫度是決定陸地生態系統碳循環過程的關鍵因素,溫度影響著土壤呼吸過程的所有環節,在一定范圍內增加溫度可以提高土壤微生物活性,進而影響有機碳的礦化,從而使CO2排放量與氣溫具有極顯著正相關關系[53,55];2)降水量影響土壤含水率,土壤CO2排放量與土壤水分含量呈極顯著負相關[54],隨著降水的增大,土壤含水率增加,可直接降低CO2在土壤孔隙中的擴散速率以及增加CO2在土壤水中的溶解量,導致呼吸速率下降。本研究與Birch效應[54]有一定差別,因本研究主要關注的是年降水量與生育期土壤CO2累計排放量的關系,Birch效應指干旱條件下單次少量降水激發了土壤呼吸的效應,研究側重點不同。本研究發現,在效應值與年均氣溫、年降水量回歸中,回歸方程顯著,但決定系數不高,對于一元回歸模型,樣本決定系數是研究自變量對因變量的解釋程度。本研究樣本量比較大,線性回歸顯著,但數據集中性可能不高,導致誤差項方差大,使決定系數不高[39]。回歸方程也說明了年均氣溫、年降水量影響農田土壤CO2排放量,但不是主要驅動因子。
3.1.2 土壤類型和施肥措施
研究發現有機肥施用下不同土壤類型均能顯著提高農田土壤CO2排放量,其中灰漠土與其他土壤類型差異顯著。灰漠土是在溫帶荒漠氣候條件下形成的,主要分布在新疆、寧夏和甘肅等地區,土壤質地為粉砂壤或砂壤,腐殖質的積累作用弱,有機質含量低,有機肥施入后,灰漠土對有機物質的固持能力較弱,且灰漠土分布區氣溫相對高,礦化加劇,從而有機肥施用會提高灰漠土土壤CO2排放量[56]。研究也表明,單施有機肥比有機無機配施促進了農田土壤CO2排放,緩釋肥+有機肥+無機肥配施模式下農田土壤CO2排放量均與不施肥、無機肥之間差異不顯著,這與郭俊娒等有關研究[9,23]相似,原因主要是不同類型的肥料組合會降低有機肥的施用量,增加肥料利用效率,也可能是長期氮肥施用可以減弱土壤呼吸作用,促進碳在土壤中的貯存,具體機理可能是氨基形態的氮作用于可降解的木質素形成更穩定、難降解的芳香類化合物,也有可能直接抑制木質素分解酶的形成[57]。
本研究得出有機肥施用會增加農田土壤CO2排放量的結論。農田土壤CO2排放包括3個生物學過程和1個非生物學過程,因此,下一步研究需明確有機肥施用后的主導過程及形成機制[7];土壤CO2排放量增加能促進農田生態系統光合產物積累,增加土壤碳儲量,形成固碳效應(A),另一方面也加劇了溫室效應(B),已有研究也表明有機肥有改善土壤結構,增加作物產量、優化作物品質的效果[3-5],因此,要明確施用有機肥在低碳農業中的綜合效應需界定在農田生態系統尺度,弄清A和B的關系,從基于生命周期評價碳排放的綜合凈溫室氣體、兼顧作物產量的溫室氣體排放強度和作物品質等3個方面綜合分析[58-59]。
經對中國北方地區施用有機肥后作物生育期CO2排放量的綜合分析,得出以下結論:
1)與不施肥和施無機肥相比,施用有機肥能顯著提高生育期農田土壤CO2排放量;東北、華北和西北不同區域間差異不顯著;不同有機肥類型中,施用雞糞有促進土壤CO2排放量的作用。從環境的角度考慮,不建議雞糞單獨大量施用。
2)有機肥施用后,農田土壤CO2排放量和年均氣溫成正比、和年均降水量成反比;有機肥+無機肥、有機肥+無機肥+緩釋肥配施比單施有機肥減少了農田土壤CO2排放量;農田土壤CO2排放量在有機肥+無機肥+緩釋肥配施與不施肥間差異不顯著。建議在中國北方采用無機肥+有機肥+緩釋肥配施技術。
3)施用有機肥會顯著增加灰漠土農田土壤CO2排放量,建議綜合考慮環境經濟效益,加大對灰漠土施肥技術的研究。
[1] 吳瑞娟,王迎春,朱平,等. 長期施肥對東北中部春玉米農田土壤呼吸的影響[J]. 植物營養與肥料學報,2018,24(1):44-52. Wu Ruijuan, Wang Yingchun, Zhu Ping, et al. Effects of long-term fertilization on soil respiration in spring maize field[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 44-52. (in Chinese with English abstract)
[2] 溫延臣,李燕青,袁亮,等. 長期不同施肥制度土壤肥力特征綜合評價方法[J]. 農業工程學報,2015,31(7):91-99. Wen Yanchen, Li Yanqing, Yuan Liang, et al. Comprehensive assessment methodology of characteristics of soil fertility under different fertilization regimes in north china[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 91-99. (in Chinese with English abstract)
[3] 張運龍. 有機肥施用對冬小麥—夏玉米產量和土壤肥力的影響[D]. 北京:中國農業大學,2017. Zhang Yunlong. Effects of Organic Manure Application on Yield and Soil Fertility of Winter Wheat and Summer Maize[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)
[4] 宋震震,李絮花,李娟,等. 有機肥和化肥長期施用對土壤活性有機氮組分及酶活性的影響[J]. 植物營養與肥料學報,2014,20(3):525-533. Song Zhenzhen, Li Xuhua, Li Juan, et al. Effects of long term application of organic manure and chemical fertilizer on soil active organic nitrogen components and enzyme activities[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 525-533. (in Chinese with English abstract)
[5] 陶磊,褚貴新,劉濤,等. 有機肥替代部分化肥對長期連作棉田產量、土壤微生物數量及酶活性的影響[J]. 生態學報,2014,34(21):6137-6146. Tao Lei, Chu Guixin, Liu Tao, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition[J]. Acta Ecologica Sinica, 2014, 34(21) : 6137-6146. (in Chinese with English abstract)
[6] 沈仕洲,王風,薛長亮,等. 施用有機肥對農田溫室氣體排放影響研究進展[J]. 中國土壤與肥料,2015,4(6):1-8. Shen Shizhou, Wang Feng, Xue Changliang, et al. Research progress on effects of organic fertilizer on greenhouse gas emissions in farmland[J]. Soil and Fertilizer in China, 2015, 4(6): 1-8. (in Chinese with English abstract)
[7] 張玉銘,胡春勝,張佳寶,等. 農田土壤主要溫室氣體(CO2、CH4、N2O)的源/匯強度及其溫室效應研究進展[J]. 中國生態農業學報,2011,19(4):966-975. Zhang Yuming, Hu Chunsheng, Zhang Jiabao, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2018, 19(4): 966-975. (in Chinese with English abstract)
[8] 賀美,王立剛,王迎春,等. 長期定位施肥下黑土呼吸的變化特征及其影響因素[J]. 農業工程學報,2018,34(4):151-161. He Mei, Wang Ligang, Wang Yingchun, et al. Characteristics and influencing factors of black soil respiration under long term fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 151-161. (in Chinese with English abstract)
[9] 李燕青,唐繼偉,車升國,等. 長期施用有機肥與化肥氮對華北夏玉米N2O和CO2排放的影響[J]. 中國農業科學,2015,48(21):4381-4389. Li Yanqing, Tang Jiwei, Che Shengguo, et al. Effects of long-term application of organic manure and fertilizer nitrogen on N2O and CO2emissions from summer maize in north china[J]. Scientia Agricultura Sinica, 2015, 48(21): 4381-4389. (in Chinese with English abstract)
[10] 孫海妮,岳善超,王仕穩,等. 有機肥及補充灌溉對旱地農田溫室氣體排放的影響[J]. 環境科學學報,2018,38(5):2055-2065. Sun Haini, Yue Shanchao, Wang Shiwen, et al. Effects of organic fertilizers and supplementary irrigation on greenhouse gas emissions from drylands[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 2055-2065. (in Chinese with English abstract)
[11] Dong Wenjun, Guo Jia, Xu Lijun, et al. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China[J]. Journal of Environmental Sciences, 2018, 64(2): 289-297.
[12] 白雪原,紅梅,楊彥明,等. 施肥對河套灌區土壤CO2和N2O排放的影響[J]. 灌溉排水學報, 2017,36(7):66-70. Bai Xueyuan, Hong Mei, Yang Yanming, et al. Effects of fertilization on soil CO2and N2O emissions in Hetao Irrigated Area[J]. Journal of Irrigation and Drainage, 2017, 36(7): 66-70. (in Chinese with English abstract)
[13] Hang Xiaoning, Zhang Xin, Song Chunlian, et al. Differences in rice yield and CH4and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai area, china[J]. Soil and Tillage Research, 2014, 144(7): 205-210.
[14] 劉東雪. 施肥對冬小麥—夏玉米輪作生態系統溫室氣體排放的影響[D]. 青島:山東農業大學,2013. Liu Dongxue. Effects of Fertilization on Greenhouse Gas Emissions from Winter Wheat-Summer Maize Rotation Ecosystem[D]. Qingdao: Shandong Agricultural University, 2013. (in Chinese with English abstract)
[15] 薛曉輝. 典型旱作區施肥對農田氮淋溶以及溫室氣體排放的影響[D]. 楊凌:中國科學院研究生院,2010. Xue Xiaohui. Effects of Fertilization on Nitrogen Leaching and Greenhouse Gas Emissions in Typical Rainfed Areas[D]. Yangling: Graduate University of Chinese Academy of Sciences, 2010. (in Chinese with English abstract)
[16] 史培. 長期施肥對黃土旱塬小麥產量及土壤CO2和N2O排放的影響[D]. 楊凌:西北農林科技大學,2011. Shi Pei. Effects of Long-term Fertilization on Wheat Yield and Soil CO2and N2O Emissions in Loess Plateau[D]. Yangling: Northwest A&F University, 2011. (in Chinese with English abstract)
[17] 郭蕓. 長期施肥下旱地塿土CO2和CH4排放特征的研究[D].楊凌:西北農林科技大學,2017. Guo Yun. Emission Characteristics of CO2and CH4from Upland Soil under Long-term Fertilization[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)
[18] Chen Zengming, Xu Yehong, Fan Jianling, et al. Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in northeast China[J]. Soil Biology and Biochemistry, 2017, 110(6): 103-115.
[19] Chen Haixin, Liu Jingjing, Zhang Afeng, et al. Effects of straw and plastic film mulching on greenhouse gas emissions in loess plateau, china: A field study of consecutive wheat-maize rotation cycles[J]. Science of the Total Environment, 2017, 579(2): 814-824.
[20] Htun Yinmin, Tong Yanan, Gao Pengcheng, et al. Coupled effects of straw and nitrogen management on N2O and CH4emissions of rainfed agriculture in northwest China[J]. Atmospheric Environment, 2017, 157(10): 156-166.
[21] 王玉英,李曉欣,董文旭,等. 華北平原農田溫室氣體排放與減排綜述[J]. 中國生態農業學報,2018,26(2):167-174. Wang Yuying, Li Xiaoxin, Dong Wenxu, et al. Review on greenhouse gas emission and reduction in wheat-maize double cropping system in the north china plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 167-174. (in Chinese with English abstract)
[22] 雷強. 有機肥化肥配施對華北高產農田土壤溫室氣體排放的影響[D]. 太谷:山西農業大學,2015. Lei Qiang. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Greenhouse Gas Emission from High Yield Farmland in north china[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese with English abstract)
[23] 郭俊娒. 不同施肥模式對東北春玉米氮素利用與農田溫室氣體排放的影響[D]. 北京:中國農業科學院,2015. Guo Junmu. Effects of Different Fertilization Modes on Nitrogen Use and Greenhouse Gas Emissions from Spring Maize in Northeast China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
[24] 李海波,韓曉增. 不同土地利用和施肥方式下黑土碳平衡的研究[J]. 中國生態農業學報,2014,22(1):16-21. Li Haibo, Han Xiaozeng. Carbon balance in black soil under different land use and fertilization methods[J]. Chinese Journal of Eco-Agriculture, 2014, 22(1): 16-21. (in Chinese with English abstract)
[25] 高洪軍. 長期不同施肥對東北玉米產量和土壤肥力及溫室氣體排放的影響研究[D]. 南京:南京農業大學,2015. Gao Hongjun. Effects of Long-term Fertilization on Maize Yield, Soil Fertility and Greenhouse Gas Emissions in Northeast China[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)
[26] Li Qiang, Li Hongbing, Zhang Li, et al. Mulching improves yield and water-use efficiency of potato cropping in china: a meta-analysis[J]. Field Crops Research, 2018, 221(5): 50-60.
[27] Feng Jinfei, Chen Changqing, Zhang Yi, et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in china: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2013, 164(1): 220-228.
[28] 任鳳玲,張旭博,孫楠,等. 施用有機肥對中國農田土壤微生物量影響的整合分析[J]. 中國農業科學,2018,51(1):119-128. Ren Fengling, Zhang Xubo, Sun Nan, et al. Integrated analysis of effects of organic manure application on soil microbial biomass in china[J]. Scientia Agricultura Sinica, 2018, 51(1): 119-128. (in Chinese with English abstract)
[29] Borenstein Michael, Higgins Julian P T, Hedges Larry V, et al. Basics of meta-analysis: I2is not an absolute measure of heterogeneity[J]. Research Synthesis Methods, 2017, 8(1): 5-18.
[30] 朱利群,王春杰,楊曼君,等. 施肥對長江中下游稻田溫室氣體排放的影響—基于Meta分析[J]. 資源科學,2017,39(1):105-115. Zhu Liqun, Wang Chunjie, Yang Manjun, et al. Effects of fertilization on greenhouse gas emissions from paddy fields in the middle and lower reaches of Yangtze river based on meta-analysis[J]. Resources Science, 2017, 39(1): 105-115. (in Chinese with English abstract)
[31] 銀敏華,李援農,申勝龍,等. 中國可降解膜覆蓋對玉米產量效應的Meta分析[J]. 農業工程學報,2017,33(19):1-9. Yin Minhua, Li Yuannong, Shen Shenglong, et al. Meta analysis of the effect of degradable film mulching on maize yield in china[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 1-9. (in Chinese with English abstract)
[32] 鄭侃,何進,李洪文,等. 中國北方地區深松對小麥玉米產量影響的Meta分析[J]. 農業工程學報,2015,31(22):7-15. Zheng Kan, He Jin, Li Hongwen, et al. Effects of subsoiling on wheat and maize yield in northern china in meta analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 7-15. (in Chinese with English abstract)
[33] 張冉,趙鑫,濮超,等. 中國農田秸稈還田土壤N2O排放及其影響因素的Meta分析[J]. 農業工程學報,2015,31(22):1-6. Zhang Ran, Zhao Xin, Pu Chao, et al. Soil N2O emission and its influencing factors in straw returning field in china in meta analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 1-6. (in Chinese with English abstract)
[34] Michael Borenstein, Larry V Hedges, Julian P T Higgins, et al. Introduction to Meta-Analysis[M]. Chichester: John Wiley, 2009: 20.
[35] 張鵬鵬. 秸稈管理和施肥措施對綠洲農田土壤碳庫及碳循環影響的研究[D]. 石河子:石河子大學,2017. Zhang Pengpeng. Effect of Straw Management and Fertilization on Soil Carbon Storage and Carbon Cycle in Oasis Farmland[D]. Shihezi: Shihezi University, 2017. (in Chinese with English abstract)
[36] 田康,趙永存,刑喆,等. 中國保護性耕作農田土壤有機碳變化速率研究—基于長期試驗點的Meta分析[J]. 土壤學報,2013,50(3):433-440. Tian Kang, Zhao Yongcun, Xing Zhe, et al. A meta-analysis of long-term experiment data for characterizing the topsoil organic carbon changes under different conservation tillage in cropland of china[J]. Acta Pedologica Sinica, 2013, 50(3): 433-440. (in Chinese with English abstract)
[37] Meng Qingfeng, Hou Peng, Wu Liang, et al. Understanding production potentials and yield gaps in intensive maize production in china[J]. Field Crops Research, 2013, 143(3): 91-97.
[38] Burda Brittany U, O'Connor Elizabeth A, Webber Elizabeth M, et al. Estimating data from figures with a web-based program: Considerations for a systematic review[J]. Research Synthesis Methods, 2017, 8(3): 258-262.
[39] Gordon A Fox, Simoneta Negrete-Yankelevich, Vinicio J Sosa. Ecological Statistics: Contemporary Theory and Application[M]. Oxford: Oxford University Press, 2015: 40.
[40] Nicole L Kinlock, Lisa Prowant, Emily M Herstoff, et al. Explaining global variation in the latitudinal diversity gradient: meta-analysis confirms known patterns and uncovers new ones[J]. Global Ecology and Biogeography, 2017, 4(1): 125-128.
[41] Borenstein Michael, Hedges Larry V, Julian P T Higgins, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis[J]. Research Synthesis Methods, 2010, 1(2): 97-111.
[42] Zhang Haiyang, Lv Xiaotao, Hartmann Henrik, et al. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales[J]. Global Ecology and Biogeography, 2018, 27(4): 1-7.
[43] Wolfgang Viechtbauer. Conducting meta-analyses in R with the metafor package[J]. Journal of Statistical Software, 2010, 36: 1-48.
[44] 張瑞,張貴龍,姬艷艷,等. 不同施肥措施對土壤活性有機碳的影響[J]. 環境科學,2013,34(1):277-282. Zhang Rui, Zhang Guilong, Ji Yanyan, et al. Effects of different fertilizer application on soil active organic carbon[J]. Environmental Science, 2013, 34(1): 277-282. (in Chinese with English abstract)
[45] 王利輝. 不同來源有機肥及其配合施用對土壤性質的影響[D].長春:吉林農業大學,2007. Wang Lihui. Effects of Organic Fertilizers from Different Sources and Their Combined Application on Soil Properties[D]. Changchun: Jilin Agricultural University, 2007. (in Chinese with English abstract)
[46] 胡誠,曹志平,羅艷蕊,等. 長期施用生物有機肥對土壤肥力及微生物生物量碳的影響[J]. 中國生態農業學報,2007,15(3):48-51. Hu Cheng, Cao Zhiping, Luo Yanrui, et al. Effects of long-term application of bio-organic fertilizers on soil fertility and microbial biomass carbon[J]. Chinese Journal of Eco-Agriculture, 2007, 15(3): 48-51. (in Chinese with English abstract)
[47] 臧逸飛. 長期不同輪作施肥土壤微生物學特性研究及生物肥力評價[D]. 楊凌:西北農林科技大學,2016. Zang Yifei. Soil Microbiological Characteristics and Biological Fertility Evaluation under Different Long-term Rotation Fertilization[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)
[48] 朱新玉,董志新,況福虹,等. 長期施肥對紫色土農田土壤動物群落的影響[J]. 生態學報, 2013,33(2) : 464-474. Zhu Xinyu, Dong Zhixin, Kuang Fuhong, et al. Effects of fertilization regimes on soil faunal communities in cropland of purple soil, China[J]. Acta Ecologica Sinica, 2013, 33(2): 464-474. (in Chinese with English abstract)
[49] 王亞飛. 不同畜禽糞便堆肥過程中可培養微生物數量及腐殖質含量和酶活性的變化[D]. 蘭州:甘肅農業大學,2016. Wang Yafei. Changes of Culturable Microorganisms, Humus Content and Enzyme Activities in Composting of Four Kinds of Livestock Dung[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese with English abstract)
[50] 梁斌,周建斌,楊學云,等. 長期施肥對土壤微生物量碳、氮及礦質氮含量動態變化的影響[J]. 植物營養與肥料學報,2010,16(2):321-326. Liang Bin, Zhou Jianbin, Yang Xueyun, et al. Changes of microbial biomass carbon and nitrogen, and mineral nitrogen after a long-term different fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 321-326. (in Chinese with English abstract)
[51] 王建林,鐘志明,王忠紅,等. 青藏高原高寒草原生態系統土壤碳氮比的分布特征[J]. 生態學報,2014,34(22):6678-6691. Wang Jianlin, Zhong Zhiming, Wang Zhonghong, et al. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(22): 6678-6691. (in Chinese with English abstract)
[52] 趙兵. 有機肥生產使用手冊[M]. 北京:金盾出版社,2014:23-50.
[53] 閻佩云. 黃土旱塬旱作玉米農田不同栽培模式溫室氣體排放特征及影響因素[D]. 楊凌:西北農林科技大學,2013. Yan Peiyun. Characteristics and Influencing Factors of Greenhouse Gas Emissions from Different Cultivation Models of Maize Farmland in Dryland of Loess Plateau[D]. Yangling: Northwest A&F University, 2013. (in Chinese with English abstract)
[54] 朱新萍,賈宏濤,周建勤,等. 降雨對干旱半干旱區濕地和農田土壤CO2短期釋放的影響[J]. 農業資源與環境學報,2017,34(1): 54-58. Zhu Xinping, Jia Hongtao, Zhou Jianqin, et al. Effects of rainfall on short-term release of CO2from wetland and farmland soils in arid and semi-arid areas[J]. Journal of Agricultural Resources and Environment, 2017, 34(1): 54-58. (in Chinese with English abstract)
[55] 張俊麗. 耕作和施氮措施下旱作夏玉米田土壤呼吸與土壤碳平衡研究[D]. 楊凌:西北農林科技大學,2014. Zhang Junli. Soil Respiration and Soil Carbon Balance in Rainfed Summer Maize Field under Tillage and Nitrogen Application[D]. Yangling: Northwest A&F University, 2014. (in Chinese with English abstract)
[56] 徐詠文,段萍,羅志華. 淺析中國土壤分類的發生與現狀[J].安徽農業科學,2005,33(10):225-226. Xu Yongwen, Duan Ping, Luo Zhihua. Analysis on the occurrence and current situation of soil classification in china[J]. Journal of Anhui Agricultural Sciences, 2005, 33(10): 225-226. (in Chinese with English abstract)
[57] Burton A J, Pregitzer K S, Crawford J N, et al. Simulated chronic NO3-deposition reduces soil respiration in northern hardwood forests[J]. Global Ecology and Biology, 2004, 10(7): 1080-1091.
[58] 熊正琴,張曉旭. 氮肥高效施用在低碳農業中的關鍵作用[J].植物營養與肥料學報,2017,23(6):1433-1440. Xiong Zhengqin, Zhang Xiaoxu. Key role of efficient nitrogen application in low carbon agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1433-1440. (in Chinese with English abstract)
[59] Liu Shuwei, Ji Cheng, Wang Cong, et al. Climatic role of terrestrial ecosystem under elevated CO2: A bottom-up greenhouse gases budget[J]. Ecology Letters, 2018, 21(1): 1108-1118.
Meta-analysis on farmland soil CO2emission in Northern China affected by organic fertilizer
Wang Xiaojiao1,4, Zhang Renzhi1,2,3※, Qi Peng1,2,3, Jiao Yapeng1, Cai Liqun1,2,3, Wu Jun1,2, Xie Junhong2,5
(1.,,730070,; 2.,,730070,; 3.,730070,; 4.,,730070,; 5.,,730070,)
This paper was aimed to investigate the effects of organic fertilizer application (single application of organic fertilizer and organic-inorganic fertilizer combination) on the CO2emission in farmland soil during crop growth period, under different climate types, fertilization measures, organic fertilizer types and experiment years in Northern China. Non-fertilizer and inorganic fertilizer application were used as control treatments. Based on the published data of relevant experiment and the Meta-analysis method, the quantitative effects on application of organic fertilizer and organic-inorganic fertilizer combination on CO2emission in farmland soil were studied. A total of 534 measurements were obtained including 89 pairs of data from 21 literatures. The experiments lasted from 1980 to 2017. The effects were determined by effect size by Meta-analysis method. The important factors affecting CO2emission were selected by finding out those with important values higher than 0.8. The results showed that the organic fertilizer application significantly generally increased the CO2emission in farmland soil than the non-fertilizer and inorganic fertilizer application, with an increment of 50.6% and 36.3%, respectively. No publication bias was found because the fail-safe number was far higher than the critical values by the fail-safe method. There was not significantly different among regions (>0.05). Under the application of organic fertilizer, the CO2emission of farmland soil decreased successively in the following order: single application of organic fertilizer, organic-inorganic fertilizer combination, and combined application of inorganic fertilizer, organic fertilizer and slow-release fertilizer. Soil CO2emission did not significantly increase under the combined application of organic fertilizer, inorganic fertilizer and slow-release fertilizer. Compared with non-fertilizer, cow manure, pig manure and commercial organic manure, chicken manure had the greatest positive effects on soil CO2emission. Under the application of organic fertilizer, the CO2emission of farmland soil in gray desert was relatively high. The CO2emission of farmland soil was positively correlated with the annual average temperature and negatively correlated with the annual average precipitation. The annual average temperature and annual average precipitation could explain about 11%-16% and 10%-12% change in effect size of CO2emission, respectively. From the perspective of environment, it was suggested to apply the combined application of inorganic fertilizer, organic fertilizer and slow-release fertilizer in Northern China. Meanwhile, the chicken manure should not be applied in large quantities and organic fertilizer should not be used in grey desert farmland. The results of this study can provide valuable information for the popularization and application of organic fertilizer replacing partial chemical fertilizer in Northern China.
respiration; soils; fertilizers; North; Meta
10.11975/j.issn.1002-6819.2019.10.013
S146;S158;S19
A
1002-6819(2019)-10-0099-09
2018-08-07
2019-02-10
甘肅農業大學學科建設基金(GAU-XKJS-2018—205);青年研究生導師扶持基金(GAU-QNDS-201704);甘肅農業大學盛彤笙基金(GSAU-STS-1706)
王曉嬌,講師,博士生,主要從事土地利用變化與土壤碳循環。Email:42321964@qq.com
張仁陟,博士,教授,主要從事土壤學研究。Email:zhangrz@gsau.edu.cn
王曉嬌,張仁陟,齊 鵬,焦亞鵬,蔡立群,武 均,謝軍紅.Meta分析有機肥施用對中國北方農田土壤CO2排放的影響[J]. 農業工程學報,2019,35(10):99-107. doi:10.11975/j.issn.1002-6819.2019.10.013 http://www.tcsae.org
Wang Xiaojiao, Zhang Renzhi, Qi Peng, Jiao Yapeng, Cai Liqun, Wu Jun, Xie Junhong. Meta-analysis on farmland soil CO2emission in Northern China affected by organic fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 99-107. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.013 http://www.tcsae.org