郭志剛,李文芳,毛 娟,左存武,陳佰鴻
鉀肥施用對元帥蘋果果實內(nèi)源激素含量及酸代謝的影響
郭志剛1,2,李文芳1,毛 娟1,左存武1,陳佰鴻1※
(1. 甘肅農(nóng)業(yè)大學(xué)園藝學(xué)院,蘭州 730070;2. 天水市果樹研究所,天水 741000)
鉀對果實生長發(fā)育具有重要作用,明確鉀對蘋果果實酸代謝的調(diào)控機(jī)制具有重要的理論和實踐意義。采用2 a的田間定位試驗,以7 a生瓦里短枝(Vallee spur Del)為研究對象,按K2O用量設(shè)5個處理,分別為T1(0.20 kg/株)、T2(0.35 kg/株)、T3(0.50 kg/株)、T4(0.65 kg/株)和CK(不施鉀肥),分初果期(鉀肥用量的30%)、果實膨大期(鉀肥用量的40%)和果實成熟期(鉀肥用量的30%)3次施入,研究了鉀對果實品質(zhì)、果實內(nèi)源激素含量及酸代謝的影響。施鉀處理顯著提高了果實單果質(zhì)量、Vc含量、硬度及可溶性固形物含量,顯著降低了可滴定酸含量, 2016年和2017年T4可滴定酸含量較CK分別下降了26.47%和18.18%。在不同生育期,各處理蘋果樹新稍、葉片及果實中鉀積累量大小順序依次為:T4﹥T3﹥T2﹥T1﹥CK,T4和T3之間差異不顯著(﹤0.05)。施鉀處理提高了花后30~120 d果實中(zeatin riboside,ZR)、(indol-3yl-acetic acid,IAA)、(gibberellic acid,GA)的含量及花后150 d果實中(abscisic acid,ABA)的含量,T3對ABA含量影響最顯著(<0.05),花后150 d時2016年和2017年T3 ABA含量較CK分別提高了15.28%和18.08%。蘋果酸與檸檬酸的含量隨施鉀量的增加而降低,花后150 d時2016年T4蘋果酸和檸檬酸含量較CK分別下降了34.68%和12.3%,2017年分別下降了32.60%和16.0%。(malate dehydrogenase,MDH)和(phosphoenolpyruvate carboxylase,PEPC)活性隨施鉀量增加而降低,(phosphoenolpyruvate carboxykinase,PEPCK)活性及NAD-cy ME活性隨施鉀量增加而升高,花后150 d時,2016年T4 PEPCK 和NAD-cy ME活性較CK分別提高了13.3%和16.9%,2017年分別提高了18.9%和20.3%。果實成熟期,單果質(zhì)量和可溶性固形物含量與IAA和ABA呈極顯著正相關(guān)(﹤0.01),可滴定酸含量與GA、ZR和IAA呈顯著正相關(guān)(﹤0.05),與ABA呈極顯著負(fù)相關(guān)(﹤0.01)。蘋果酸和草酰乙酸與ZR和IAA呈極顯著正相關(guān)(﹤0.01),而與ABA呈極顯著負(fù)相關(guān)(﹤0.01)。MDH和PEPC與IAA呈顯著正相關(guān)(﹤0.05),與ABA呈顯著負(fù)相關(guān)(﹤0.05)。PEPCK與ABA呈極顯著正相關(guān)(﹤0.01)。NAD-cy ME與IAA呈顯著負(fù)相關(guān)(﹤0.05),與ABA呈顯著正相關(guān)(﹤0.05)。鉀通過調(diào)節(jié)果實內(nèi)源激素的含量而影響有機(jī)酸代謝相關(guān)酶活性,進(jìn)而對果實酸代謝產(chǎn)生調(diào)控作用。
鉀素;激素;有機(jī)酸;元帥蘋果;酸代謝
鉀對植物的生長發(fā)育有著重要的生理和營養(yǎng)作用,除了直接參與果實品質(zhì)形成過程外,還通過調(diào)節(jié)內(nèi)源激素間接影響果實內(nèi)在和外在品質(zhì)的形成[1]。內(nèi)源激素在植物各生長階段起重要的調(diào)控作用[2],在蘋果果實的發(fā)育過程中,內(nèi)源激素參與果實生長發(fā)育、調(diào)控果實內(nèi)代謝酶活性和同化產(chǎn)物的分配和卸載[3]。有機(jī)化合物含量和糖酸比與果實的風(fēng)味密切相關(guān),是衡量果實商品性的重要指標(biāo)。果實有機(jī)酸代謝是一個極為復(fù)雜的過程,其含量的高低是內(nèi)在的遺傳特性、外在的自然環(huán)境及栽培措施等因素共同作用的結(jié)果。鉀與果實的品質(zhì)形成有密切的關(guān)系,因此,研究鉀對蘋果果實內(nèi)源激素和有機(jī)酸代謝的調(diào)控作用具有重要的理論和實踐意義。
Weyers等[4]認(rèn)為鉀參與了植物激素的形成過程,且在生長素和細(xì)胞分裂素共同催化下促進(jìn)了碳水化合物的運(yùn)轉(zhuǎn)與代謝。Parson和Robert等[5]發(fā)現(xiàn)鉀與生長期菠蘿果實中有機(jī)酸和可溶性糖積累量相關(guān)。Lobit等[6]認(rèn)為在桃果實發(fā)育早期液泡內(nèi)pH值較高,K+含量的升高會促使蘋果酸含量降低,而缺K+則有利于蘋果酸積累。Nieves-Cordones等[7]認(rèn)為鉀元素能影響磷酸烯醇式丙酮酸羧化酶(PEPC)和蘋果酸酶(NADP-ME)活性而調(diào)節(jié)植物內(nèi)蘋果酸含量,說明鉀與果實有機(jī)酸代謝相關(guān)酶活性有密切關(guān)系。Neilsen[8]、姜學(xué)玲等[9]認(rèn)為施用鉀肥具有促進(jìn)蘋果果實膨大、提高產(chǎn)量和改善品質(zhì)的作用。Zlámalová等[10]對‘Zweigelt’葡萄葉面噴施不同的肥料發(fā)現(xiàn),噴施硫酸鉀比對照產(chǎn)量高13.9%。郭磊等[11]認(rèn)為鉀肥可以提高蟠桃的果實品質(zhì)。馬海洋等[12]認(rèn)為施鉀可增加卡因菠蘿果實中維生素C、可滴定酸和可溶性糖含量。路永莉等[13]認(rèn)為蘋果增施鉀肥明顯改善了果實品質(zhì)提高了蘋果產(chǎn)量。唐巖等[14]對18 a生海棠砧紅將軍蘋果葉面噴施磷酸二氫鉀,結(jié)果表明果實硬度、可滴定酸和VC含量無明顯變化規(guī)律。鉀在促進(jìn)果實品質(zhì)形成、調(diào)節(jié)果實內(nèi)源激素及有機(jī)酸代謝過程中發(fā)揮著重要的作用[4,15]。目前關(guān)于鉀影響果實品質(zhì)的研究多是分析鉀與果實可溶性固形物含量、維生素C含量、可滴定酸含量以及硬度等果實指標(biāo)的相關(guān)性。關(guān)于鉀對蘋果果實內(nèi)源激素含量和酸代謝的影響,以及施鉀后果實內(nèi)源激素與酸代謝的關(guān)系尚需進(jìn)一步研究。本研究通過2 a田間定位試驗,利用不同鉀水平處理,探索鉀調(diào)節(jié)蘋果果實內(nèi)源激素和有機(jī)酸代謝的機(jī)理,為鉀肥的合理利用及實現(xiàn)蘋果的優(yōu)質(zhì)豐產(chǎn)提供理論依據(jù)。
試驗于2016~2017年在甘肅省天水市秦州區(qū)玉泉鎮(zhèn)楊河村(34°54′N,105°70′E)開展,海拔1 350 m,年均氣溫10.72 ℃,年最高氣溫38 ℃左右,最低氣溫-19 ℃,無霜期170 d左右,年降水量530 mm,主要集中在7~10月份,占年降雨量70%左右,春旱比較明顯。供試品種為7 a生元帥系品種瓦里短枝(Vallee spur Del),砧木為山定子(malus baccata),株行距3 m×4 m,樹形為自由紡錘形。果園土壤為黃綿土,采用柵格采樣方法對土壤進(jìn)行采樣[16],測定了試驗前果園土壤(取樣深度0~30 cm)的基本營養(yǎng)狀況:有機(jī)質(zhì)15.80 g/kg,全氮1.43 g/kg,全磷1.25 g/kg,全鉀34.06 g/kg,堿解氮135.80 mg/kg,速效磷54.83 mg/kg,速效鉀388.00 mg/kg,pH值為8.17。
1.2.1 試驗設(shè)計
試驗用氮肥為尿素(總氮≥46.2%),磷肥為過磷酸鈣(P2O5≥12%),N+P2O5用量為0.4 kg/株+0.25 kg/株,全部基施(試驗前1 a 9月25日)。鉀肥為氯化鉀(K2O ≥52%),試驗設(shè)5個處理:T1~T4 K2O用量依次為0.20、0.35、0.50、0.65 kg/株,CK不施鉀肥。采用隨機(jī)區(qū)組試驗設(shè)計,2 a的處理選相同的樹,每個處理5株,3次重復(fù)。鉀肥分3次即初果期(每年5月5日施入鉀肥用量的30%)、果實膨大期(每年6月15日施入鉀肥用量的40%)和果實成熟期(每年7月25日施入鉀肥用量的30%)施入。在樹盤內(nèi)開挖4條放射溝,施肥后覆土,然后將50 kg水均勻灌于施肥溝內(nèi)。
1.2.2 測定指標(biāo)與方法
每次采樣選擇長勢基本一致、無病蟲害、結(jié)果正常的蘋果樹,各處理于花后30 d(5月12日)、花后60 d(6月12日)、花后90 d(7月12日)、花后120 d(8月12日)及花后150 d(9月12日)采集果實樣品50個,迅速將樣品用錫箔紙包裹,掛好標(biāo)簽放入液氮中冷凍保存,帶回實驗室裝入-80 ℃冰箱保存?zhèn)溆谩M瑫r于5月12日(幼果期)、7月12日(果實膨大期)、9月12日(成熟期)用修枝剪在樹上東、西、南、北4個方位各采集果實、葉片和新梢樣品各10份,稱量各器官的鮮質(zhì)量,然后將樣品置于信封袋,帶回實驗室,于100~105 ℃下殺酶15 min,然后于70~80 ℃下烘干至恒質(zhì)量。樣品粉碎后,用H2SO4-H2O2消解,火焰分光光度計測定鉀含量。鉀累積量=器官生物量(鮮質(zhì)量)×鉀含量。蘋果采收期每個處理隨機(jī)抽取5株樹,每株樹上在東、西、南、北4個方位各采集10個果實,分別測定果實單果質(zhì)量、硬度(HP-230型硬度儀測定)、可滴定酸(NaOH滴定法)、Vc含量(2,6-二氯酚靛酚滴定法測定)、可溶性固形物含量(WYT-4型測糖計測定)。
赤霉素(GA)、吲哚乙酸(IAA)、玉米素核苷(ZR)和脫落酸(ABA)含量用液相高效色譜法測定[17];果實有機(jī)酸含量用高效液相色譜法測定[18],所有標(biāo)準(zhǔn)品均為色譜級。蘋果酸脫氫酶(MDH)和蘋果酸酶(NAD-cy ME)活性的測定依據(jù)Sayre等[19]和Detarsio等[20]方法。磷酸烯醇丙酮酸羧化酶(PEPC)活性的測定采用Wang等[21]方法,磷酸烯醇丙酮酸羧化激酶(PEPCK)活性的測定采用Walker等[22]方法,PEPCK活性以340 nm波長下的NADH氧化程度表示。
采用Excel 2016與SPSS22.0軟件對試驗數(shù)據(jù)進(jìn)行方差分析和相關(guān)性分析,用LSD法進(jìn)行多重比較(<0.05)。
由表1可知,果實的單果質(zhì)量、Vc含量和硬度均隨施鉀量的增加而提高,但T3和T4差異不顯著(﹤0.05),2016年T3單果質(zhì)量、Vc含量及硬度較CK分別提高了18.83%、9.78%及8.47%,2017年分別提高了16.32%、11.17%及7.46%;2016年T4單果質(zhì)量、Vc含量及硬度較CK分別提高了24.40%%、14.60%及7.68%,2017年分別提高了16.30%、14.55%及6.93%。施鉀量達(dá)到T3后,可溶性固形物含量沒有隨著施鉀量的增高而增高,而呈輕微下降的趨勢,2016年和2017年T4可溶性固形物含量比T3分別下降了2.08%和2,20%,可見過高濃度K+不利于可溶性固形物的積累。可滴定酸含量隨施鉀量的增加而呈現(xiàn)下降的趨勢, 2016年和2017年T4可滴定酸含量較CK分別下降了26.47%和18.18%。綜上所述,T3對果實的單果質(zhì)量、Vc含量、可溶性固形物以及果實硬度的促進(jìn)作用最顯著(﹤0.05),而T4對果實可滴定酸含量的抑制作用最顯著(﹤0.05),說明在該試驗條件下施鉀量的臨界值為K2O 0.50~0.65 kg/株。

表1 鉀對蘋果果實品質(zhì)的影響Table 1 Effect of potassium on fruit quality of apple
注:CK、T1~T4分別為K2O用量0、0.20、0.35、0.50、0.65 kg/株。同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平。下同。
Note: CK and T1-T4 were 0, 0.20, 0.35, 0.50 and 0.65 kg/plant respectively.Values followed by different letters in a column are significant among treatments at the 5% level. Same as below.
由表2可知,在不同生育期,各處理新稍、葉片及果實中鉀積累量大小的總體趨勢為:T3﹥T2﹥T1﹥CK,T4和T3差異不顯著(<0.05)。葉片對鉀的吸收、儲存主要集中在生育前期,隨著樹體的生長發(fā)育,葉片中積累的鉀逐漸轉(zhuǎn)移到果實中,供其生長發(fā)育,導(dǎo)致葉片中鉀的含量逐漸降低。從不同施鉀水平來看,施鉀量達(dá)到T3后,新稍、葉片及果實中鉀積累量沒有顯著增加,說明鉀未被植株充分吸收,這可能是因為過量施鉀不利于樹體對K+的吸收和利用。

表2 蘋果樹體不同器官鉀累積量的年周期變化
由圖1可知,與CK相比,施鉀處理提高了幼果期至膨大期果實中赤霉素(GA)、玉米素核苷(ZR)及吲哚乙酸(IAA)的含量,對成熟期ZR、IAA、GA的含量影響不顯著;提高了成熟期果實中脫落酸(ABA)的含量,對幼果期至膨大期果實中ABA的含量影響不顯著,T3對ABA含量影響最顯著(<0.05),花后150 d時,2016年和2017年T3 ABA含量較CK分別提高了15.28%和18.08%。各激素含量T3和T4的差異不顯著(<0.05),施鉀量達(dá)到T3后,激素含量沒有隨施鉀量的增高呈現(xiàn)隨之增高的趨勢。可見,過高濃度的K+可抑制激素在果實中的積累量。
如圖2所示,與CK相比,施鉀處理顯著降低了果實有機(jī)酸的含量。在不同生育期,果實蘋果酸的含量隨施鉀量的增加而呈降低的趨勢,其中T4差異最顯著(<0.05),花后150 d時,2016年和2017年T4蘋果酸的含量分別下降了34.68%和32.60%。檸檬酸的含量在果實膨大期隨施鉀量的增加而降低,花后120 d和花后150 d時,2016年T4檸檬酸的含量下降了20.8%和12.3%,2017年下降了26.5%和16.0%。果實成熟期施鉀量對檸檬酸的含量影響不顯著。施鉀處理對草酰乙酸含量和琥珀酸含量影響不顯著(<0.05)。

a. 2016年果實赤霉素含量變化 a. Changes in gibberellic acid (GA)content in 2016b. 2017年果實赤霉素含量變化 b. Changes in gibberellic acid (GA)content in 2017c. 2016年果實玉米素核苷含量變化 c. Changes in zeatin riboside (ZR) content in 2016 d. 2017年果實玉米素核苷含量變化 d. Changes in zeatin riboside(ZR)content in 2017e. 2016年果實生長素核苷含量變化 e. Changes in indol-3yl-acetic acid (IAA) content in 2016f. 2017年果實生長素核苷含量變化 f. Changes in indol-3yl-acetic acid (IAA) content in 2017

a. 2016年果實蘋果酸含量變化a. Changes in malic acids content in 2016b. 2017年果實蘋果酸含量變化b. Changes in malic acids content in 2017c. 2016年果實檸檬酸含量變化c. Changes in citric acids content in 2016 d. 2017年果實檸檬酸含量變化 d. Changes in citric acids content in 2017e. 2016年果實草酰乙酸含量變化 e. Changes in oxaloacetic acids content in 2016f. 2017年果實草酰乙酸含量變化 f. Changes in oxaloacetic acids content in 2017
如圖3所示,與CK相比,施鉀處理對幼果期蘋果酸脫氫酶(MDH)活性影響不顯著(<0.05),而降低了膨大期和成熟期MDH 活性,其中T3差異最顯著(<0.05),花后120 d和花后150 d,2016年T3 MDH 活性分別降低了25.3%和21.5%,2017年分別降低了28.6%和24.5%。磷酸烯醇丙酮酸羧酶(PEPC)活性隨施鉀量的增加逐漸降低,其中T4差異最顯著(<0.05),花后120 d和花后150 d,2016年T4 PEPC活性分別降低了29.1%和24.7%,2017年分別降低了34.9%和25.9%。施鉀處理對幼果期磷酸烯醇丙酮酸羧激酶(PEPCK)和蘋果酸酶(NAD-cy ME)活性影響不顯著(<0.05),而提高了膨大期和成熟期PEPCK和NAD-cy ME活性,其中T4差異最顯著(<0.05),花后150 d,2016年T4 PEPCK 和NAD-cy ME活性分別提高了13.3%和16.9%,2017年分別提高了18.9%和20.3%。綜上所述,在果實生長發(fā)育的不同時期,鉀能夠抑制參與蘋果酸合成途徑的MDH和PEPC活性,促進(jìn)參與蘋果酸分解過程的PEPCK和NAD-cy ME活性。

a. 2016年果實蘋果酸脫氫酶活性變化 a. Changes in malate dehydrogenase (MDH) activity in 2016b. 2017年果實蘋果酸脫氫酶活性變化 b. Changes in malate dehydrogenase (MDH) activity in 2017c. 2016年果實磷酸烯醇丙酮酸羧化酶活性變化 c. Changes in phosphoenopyruvate carboxylase (PEPC) activity in 2016 d. 2017年果實磷酸烯醇丙酮酸羧化酶活性變化 d. Changes in phosphoenopyruvate carboxylase (PEPC) activity in 2017e. 2016年果實磷酸烯醇丙酮酸羧化激酶活性變化 e. Changes in phosphoenolpyruvate carboxykinase (PEPCK) activity in 2016f. 2017年果實磷酸烯醇丙酮酸羧化激酶活性變化 f. Changes in phosphoenolpyruvate carboxykinase (PEPCK) activity in 2017
不同施鉀處理后,成熟期果實激素含量與果實品質(zhì)、有機(jī)酸含量及酸代謝相關(guān)酶活性的相關(guān)性分析結(jié)果如表 3所示,單果質(zhì)量和可溶性固形物含量與IAA和ABA呈極顯著正相關(guān)(﹤0.01),可滴定酸含量與GA、ZR和IAA呈顯著正相關(guān)(﹤0.05),與ABA呈極顯著負(fù)相關(guān)(﹤0.01);蘋果酸和草酰乙酸與ZR和IAA呈極顯著正相關(guān)(﹤0.01),而與ABA呈極顯著負(fù)相關(guān)(﹤0.01)。MDH和PEPC與IAA呈顯著正相關(guān)(﹤0.05),與ABA呈顯著負(fù)相關(guān)(﹤0.05)。PEPCK與ABA呈極顯著正相關(guān)(﹤0.01)。NAD-cy ME與IAA呈顯著負(fù)相關(guān)(﹤0.05),與ABA呈顯著正相關(guān)(﹤0.05)。說明在果實成熟期,IAA能夠促進(jìn)蘋果酸合成相關(guān)的MDH和PEPC酶活性抑制蘋果酸分解的NAD-cy ME酶活性而提高果實有機(jī)酸的含量,ABA能夠抑制蘋果酸合成相關(guān)的MDH和PEPC酶活性促進(jìn)蘋果酸分解的PEPCK和NAD-cy ME酶活性而降低果實有機(jī)酸的含量。

表3 成熟期果實內(nèi)源激素含量與果實品質(zhì)、有機(jī)酸含量及酸代謝相關(guān)酶活性的相關(guān)性分析Table 3 Correlation analysis of endogenous hormone content with fruit quality, organic acid content and acid metabolism-related enzymes activities in ripening fruits
注:表中*表示顯著(<0.05),**表示極顯著(<0.01)
Note: *indicate significant, significant at<0.05. **indicate extremely significant effect at<0.01.
K+是植物細(xì)胞中含量最為豐富的陽離子之一,是植物正常生長和發(fā)育必不可缺的品質(zhì)元素[23],與果實發(fā)育、品質(zhì)形成及產(chǎn)量的提高有密切的關(guān)系。本研究結(jié)果表明施鉀顯著提高了瓦里短枝蘋果果實的單果質(zhì)量、可溶性固形物含量及Vc含量,這與諶琛等[24]的研究結(jié)果一致。何忠俊等[25]、高義民等[26]、郭磊等[8]分別在獼猴桃、葡萄、蟠桃中得出相似結(jié)論。本研究中施鉀可提高果實硬度,這與李書田等[27]、Zhang等[28]的研究結(jié)果一致,而Fallahi等[29]、諶琛等[24]研究認(rèn)為施鉀降低了果實硬度,是由于施鉀使果實鈣含量降低,因而降低了采收時果實硬度,然而施鉀后果實硬度的變化還可能受到施鉀時期、濃度、方式等因素的影響,其具體機(jī)制還需進(jìn)一步研究。本研究中T3施鉀量對果實的單果質(zhì)量、Vc含量及果實硬度的促進(jìn)作用最明顯,而T4對果實可滴定酸含量的抑制作用最明顯,施鉀量達(dá)到臨界值時可溶性固形物含量并沒有隨著施鉀量的增高呈現(xiàn)隨之增高的趨勢,這與張雯[30]的觀點一致。因此,鉀肥用量在適宜的范圍內(nèi)能提高果實的品質(zhì)和產(chǎn)量,盧精林等[31]在‘紅地球’葡萄田間試驗中得出相似的結(jié)論。本研究中生長期內(nèi)果樹對鉀素養(yǎng)分的吸收結(jié)果表明,在4月30日~7月30日生長季內(nèi)果實中鉀累積量逐漸增加,表明果實生長發(fā)育過程中始終有鉀素進(jìn)入,而7月30日~9月20日果實中鉀累積量增加幅度最大,說明果實膨大期和成熟期需要消耗大量的鉀素養(yǎng)分,這與樊紅柱等[32]的研究結(jié)果一致。
在植物內(nèi)源激素的積累和運(yùn)輸過程中,鉀離子起到不可取代的重要作用。庫文珍等[33]研究表明低鉀脅迫降低了水稻葉片中IAA、GA1和ZR的含量,提高了水稻葉片中ABA的含量。常強(qiáng)等[34]對龍眼施用氯酸鉀(KClO3)提高了葉片中生長素(IAA)的含量。Tu等[35]研究表明施鉀肥對菜用大豆中IAA、GA和ZR的含量有一定的促進(jìn)作用。本研究結(jié)果表明,施用鉀肥能提高蘋果初果期和膨大期果實中IAA、ZR、GA的含量和成熟期果實中ABA的含量。說明施鉀有利于提高初果期和膨大期果實中細(xì)胞分裂素和生長素的含量以促進(jìn)果實膨大,而進(jìn)入果實成熟期后,增加ABA的含量促進(jìn)了果實成熟,該結(jié)果與秦偉等[36]的研究結(jié)果一致。本研究中,施鉀提高了成熟期果實中ABA的含量,這與庫文珍等[33]、Tu等[35]的研究結(jié)果有差異。庫文珍等[33]認(rèn)為低鉀脅迫提高了水稻葉片中ABA的含量,其原因之一可能是低鉀提高了在ABA生物合成過程中起重要作用的植物鉬輔因子(MoCo),原因之二可能是低鉀使植物對Na+、Ca2+、Mg2+等離子吸收增強(qiáng)從而有利于ABA生物合成。Tu等[35]認(rèn)為施用鉀肥降低了菜用大豆籽粒形成期葉片中ABA的含量,進(jìn)而延緩了葉片和莢皮的衰老進(jìn)程,使更多的光合作用產(chǎn)物輸送到籽粒中,保證了籽粒中能量的充分供應(yīng)和積累。與本研究有差異的原因可能是研究對象存在“源-庫”的差異,施鉀降低葉片中ABA的含量可提高光合作用速率,促進(jìn)蛋白質(zhì)的合成,起到延緩衰老的作用[37]。而施鉀提高成熟期果實中ABA的含量,可誘導(dǎo)果實成熟[38],同時刺激液泡膜上H+-ATPase和糖的載體活性,提高質(zhì)膜的通透性,促進(jìn)蔗糖和其他同化物進(jìn)入蘋果果實的細(xì)胞[39],提高果實糖積累量。
果實中可溶性固形物含量和可滴定酸含量是決定果實感官品質(zhì)的2個重要指標(biāo)[40]。有機(jī)酸也是果實內(nèi)可溶性固形物的重要組成部分。本研究發(fā)現(xiàn),隨施鉀量的增加,果實中的蘋果酸及檸檬酸含量顯著降低,而琥珀酸和草酸含量的變化無規(guī)律性。由于蘋果果實中蘋果酸含量遠(yuǎn)高于草酸、檸檬酸和琥珀酸含量[41],因此施鉀能抑制果實中有機(jī)酸的代謝,這與張雯等[30]、Beruter等[42]的研究結(jié)果一致。而馬海洋等[12]研究了氮、磷、鉀肥不同配比對卡因菠蘿品質(zhì)的影響,認(rèn)為鉀元素配合一定的氮肥和磷肥可以促進(jìn)果實內(nèi)有機(jī)酸的積累,劉亞男等[16]認(rèn)為鉀元素對巴厘菠蘿有機(jī)酸含量的影響不顯著。這可能是因為不同果實的有機(jī)酸組分及其含量存在明顯差異,菠蘿果實中有機(jī)酸主要由檸檬酸、蘋果酸和奎寧酸組成[43],而蘋果的主要有機(jī)酸是蘋果酸[42],鉀素對不同種類有機(jī)酸的影響有差異,故對不同果實的有機(jī)酸含量影響不一致。
鉀是植物體內(nèi)氧化還原酶、合成酶、轉(zhuǎn)移酶和磷酸激酶等多種酶的活化劑。PEPC和MDH是參與蘋果酸合成途徑的蛋白酶,而PEPCK和NAD-cyME是參與蘋果酸分解過程的蛋白酶[44]。本研究中,施鉀降低了MDH和PEPC活性,而增加了PEPCK和NAD-cy ME活性,這與Nieves-Cordones等[2]的研究結(jié)果一致。NAD-cy ME活性隨施鉀量的增加而增加,這可能是由于鉀是NAD-cy ME的激活離子,可以催化酶的反應(yīng)[45]。張弦[46]研究認(rèn)為K+對PEPCK的活性有促進(jìn)作用,這與本研究結(jié)果一致。綜上所述,鉀素通過抑制參與蘋果酸合成途徑的MDH和PEPC活性,促進(jìn)參與蘋果酸分解過程的PEPCK和NAD-cy ME活性而降低果實中有機(jī)酸的積累量,這與張雯[30]的研究結(jié)果一致。
激素在調(diào)控果實品質(zhì)、碳水化合物代謝酶活性以及調(diào)節(jié)碳水化合物在庫器官中的積累過程中都發(fā)揮重要的作用[47-48]。本研究中,在果實成熟期,K+對果實有機(jī)酸代謝的影響主要是由于K+促進(jìn)了果實內(nèi)源激素含量的變化,進(jìn)而調(diào)節(jié)果實中酸代謝相關(guān)酶活性,促進(jìn)了果實中有機(jī)酸分解代謝。果實進(jìn)入成熟期后,有機(jī)酸含量下降,是因為一部分有機(jī)酸轉(zhuǎn)化為糖,一部分作為呼吸底物被消耗,或被K+、Ca+等離子中和而生成鹽[49]。張弦[46]研究認(rèn)為一部分可能是由于果實增大引起的稀釋作用以及蘋果酸分解作用的增強(qiáng),一部分通過糖異生轉(zhuǎn)化成糖,還有一部分作為呼吸底物用作果實發(fā)育。本研究認(rèn)為還有一個原因是內(nèi)源激素對酸代謝相關(guān)酶活性的影響。ABA能夠抑制蘋果酸合成相關(guān)的MDH和PEPC酶活性促進(jìn)蘋果酸分解的PEPCK和NAD-cy ME酶活性而降低果實有機(jī)酸的含量,雖然IAA能夠促進(jìn)蘋果酸合成相關(guān)的MDH和PEPC酶活性抑制蘋果酸分解的NAD-cy ME酶活性而提高果實有機(jī)酸的含量,但在果實整個發(fā)育過程中,IAA含量在成熟期處于最低值,而ABA含量處于最高值,且施鉀能顯著提高成熟期果實ABA的含量,而對成熟期果實IAA含量影響不顯著,因此在ABA的調(diào)控下降低了成熟期果實有機(jī)酸的含量,提高了果實的糖酸比,改善了果實的風(fēng)味品質(zhì)。
在果樹研究和生產(chǎn)中,常用的無機(jī)鉀肥為K2SO4和KCI,但關(guān)于兩種鉀肥的施用效果,不同的學(xué)者觀點不盡一致。劉侯俊[50]研究認(rèn)為從增產(chǎn)效果、果實品質(zhì)及經(jīng)濟(jì)效益綜合考慮,蘋果、酥梨應(yīng)首選KCI,獼猴桃應(yīng)首選K2SO4。金會翠等[51]研究認(rèn)為施用K2SO4對紅富士蘋果葉片營養(yǎng)及果實品質(zhì)都有促進(jìn)作用。黃顯淦等[52]認(rèn)為果樹施鉀應(yīng)首選KCI,葉面噴鉀應(yīng)選擇K2SO4或KH2PO4。高艷敏等[53]連續(xù)6 a在蘋果樹上施用KCl后未見副作用,且其效果與K2SO4相當(dāng)。諶琛[24]等研究認(rèn)為施KCl有利于含糖量及VC含量的升高,而且產(chǎn)量及單果重均高于施K2SO4,施用K2SO4樹體長勢更旺,枝葉旺長會與果實爭奪養(yǎng)分,因而使輸入果實的同化產(chǎn)物量降低,減輕單果重,最終導(dǎo)致產(chǎn)量低于施KCl。故短期內(nèi)施KCl在增加產(chǎn)量、促進(jìn)果實膨大、改善采收時果實品質(zhì)方面效果稍好于K2SO4;而K2SO4在促進(jìn)樹體養(yǎng)分吸收,提高果實貯藏性能方面優(yōu)于KCl。雖然施用KCl會對果實品質(zhì)造成不良影響還很少有試驗證實,但蘋果樹長期施用KCl還是存在安全隱患。氯作為植物必需的微量元素之一,在低濃度下對果樹生長有促進(jìn)作用,但高濃度則會抑制其生長。Cl-隨KCl肥料帶入土壤后,不易被土壤膠體吸附,而易隨水移動。在中國西北地區(qū),由于降水量小,土壤中Cl-累積狀況與灌溉條件有關(guān),在非灌區(qū),因無淋溶條件,Cl-極易殘留于土體,對植物造成危害,而在灌區(qū),肥料帶入的Cl-可通過灌溉水淋洗至土壤下層,從而降低表層土壤Cl-濃度[24]。蘋果為多年生木本植物,根系龐大,大量根系集中在0~80 cm土層[54],深層土壤養(yǎng)分也是果樹營養(yǎng)的重要來源,因此長期施用KCl肥后導(dǎo)致的下層土壤Cl-大量累積或?qū)μO果根系產(chǎn)生高鹽脅迫[55],其將誘發(fā)樹體滲透脅迫和離子毒害,使樹體凈光合速率下降、影響葉片干物質(zhì)積累及碳水化合物的組成等[56],長期施用可能會對果實產(chǎn)量和品質(zhì)造成負(fù)面影響。本研究只開展了2年的定位試驗,而且沒有對K2SO4與KCl做對比研究,在今后工作中我們會進(jìn)一步深入研究。
本研究通過不同鉀肥水平處理研究了鉀對元帥蘋果果實品質(zhì)、果實內(nèi)源激素含量及酸代謝的影響,所得結(jié)論如下:
1) 施鉀處理提高了果實單果質(zhì)量、Vc含量、可溶性固形物含量及果實硬度,降低了果實可滴定酸的含量,與CK相比,2016年T4單果質(zhì)量、Vc含量及硬度分別提高了24.40%%、14.60%及7.68%,2017年分別提高了16.30%、14.55%及6.93%。2016年和2017年T4可滴定酸含量分別下降了26.47%和18.18%。
2)施鉀處理提高了幼果期和膨大期果實中ZR、IAA、GA的含量及成熟期果實中ABA的含量,T3對ABA含量影響最顯著(<0.05),與CK相比,花后150 d時2016年和2017年T3 ABA含量分別提高了15.28%和18.08%。
3) 鉀通過抑制蘋果酸、檸檬酸的含量降低了果實中有機(jī)酸的積累量,同時通過調(diào)節(jié)果實中內(nèi)源激素的含量而影響有機(jī)酸代謝相關(guān)酶活性,進(jìn)而對果實酸代謝產(chǎn)生影響。
[1] Feliziani E, Smilanick J L, Margosan D A, et al. Preharvest fungicide, potassium sorbate, or chitosan use on quality and storage decay of table grapes[J]. Plant Disease, 2013, 97(3): 307-314.
[2] Ozga J A, Reinecke D M. Hormonal interactions in fruit development[J]. J Plant Growth Regul, 2003, 22: 73-81
[3] Ulger S, Sonmez S, Karkacier M, et al. Determination of endogenous hormones, sugars and mineral nutrition levels during the induction, initiation and differentiation stage and their effects on flower formation in olive[J]. Plant Growth Regulation, 2004, 42(1): 89-95.
[4] Weyers J D B, Paterson N W. Plant hormones and thecontrol of physiological processes[J]. New Phytol, 2001, 152 (3): 375-407.
[5] Parson S, Robert E. Pineapple organic acid metabolism and accumulation during fruit development[J]. Sci Hort, 2007, 112: 297-303.
[6] Lobit P, Génard M, Soing P, et al. Modelling malic acid accumulation in fruits: Relationships with organic acids, potassium, and temperature[J]. J Exp Bot, 2006, 57(6): 1471-1483.
[7] Nieves-Cordones M, Al Shiblawi F R, Sentenac H. Roles and transport of sodium and potassium in plants[J]. Metal Ion Life Sci, 2016, 16: 291.
[8] Neilsen G H, Parchomchuk P, Neilsen D, et al. Dripfertigation of apples trees affects root distribution and the development of K deficiency[J]. Canadian Journal of Soil Science, 2000, 80: 353-361
[9] 姜學(xué)玲,徐維華,李延菊, 等. 鉀肥對富士蘋果著色的影響及機(jī)理[J]. 中國農(nóng)業(yè)科學(xué),2014,47(5):946-954. Jiang Xueling, Xu Weihua, Li Yanju, et al. Influence and mechanism of potassium fertilizer on thecoloration of ‘Fuji’ apple[J]. Scientia Agricultura Sinica, 2014, 47( 5) : 946-954 (in Chinese with English abstract)
[10] Zlámalová T, Elbl J, Baron? M, et al. Using foliar applications of magnesium and potassium to improve yields and some qualitative parameters of vinegrapes()[J]. Plant Soil&Environment, 2015, 61(10): 451-457.
[11] 郭磊,張斌斌,宋宏峰,等. 增施鉀肥對大棚蟠桃品質(zhì)及營養(yǎng)生長的影響[J]. 西北植物學(xué)報,2015,35(11):2273-2279. Guo Lei, Zhang Binbin, Song Hongfeng, et al. Effect of potassium fertilizer application on fruit quality and vegetative growth of flat peach[J]. Acta Bot Boreal Occident Sin,2015, 35(11): 2273-2279. (in Chinese with English abstract)
[12] 馬海洋,石偉琦,劉亞男,等. 氮磷鉀肥對卡因菠蘿產(chǎn)量和品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2013,19(4):901-907. Ma Haiyang, Shi Weiqi, Liu Yanan, et al. Influence of N, P, K fertilization on yield and quality of smooth cayenne pineapple[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 901-907. (in Chinese with English abstract)
[13] 路永莉,楊憲龍,李茹,等. 不同施鉀時期對紅富士蘋果產(chǎn)量和品質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報,2015,26(4):1179-1185. Lu Yongli, Yang Xianlong, Li Ru, et al. Effects of different potassium fertilizer application periods on the yield and quality of Fuji apple[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 1179-1185. (in Chinese with English abstract)
[14] 唐巖,宋來慶,孫燕霞,等. 葉面噴施磷酸二氫鉀對紅將軍蘋果葉片性狀、果實品質(zhì)和香氣成分的影響[J]. 山東農(nóng)業(yè)科學(xué),2017,49(5):82-85. Tang Yan, Song Laiqing, Sun Yanxia, et al. Effects of foliage application of potassium dihydrogen phosphate on blade, fruit quality and aroma components of red general Fuji apple[J]. Shandong Agricultural Sciences, 2017, 49(5): 82-85. (in Chinese with English abstract)
[15] Mosa W F A E, EL-Megeed N A A, Paszt L S. The effect of the foliar application of potassium, calcium, boron and humic acid on vegetative growth, fruit set, leaf mineral, yield and fruit quality of‘Anna’ apple trees[J]. Amer J Exp Agr, 2015, 8: 224-234.
[16] 王秀,趙春江,孟志軍,等. 精準(zhǔn)農(nóng)業(yè)土壤采樣?xùn)鸥駝澐址椒ǖ难芯縖J]. 土壤學(xué)報,2005 (2):199-205. Wang Xiu, Zhao Chunjiang, Meng Zhijun, et al. Field soil sampling grids for precision agriculture[J]. Acta Pedologica Sinica, 2005(2): 199-205. (in Chinese with English abstract)
[17] 張詠梅,馬暉玲,張鎖科,等. 高效液相色譜法測定草地早熟禾4種內(nèi)源激素的方法[J]. 草地學(xué)報,2016,24(6):1384-1387. Zhang Yongmei, Ma Huiling, Zhang Suoke, et al. A detection method of four endogenous hormones inL. by HPLC[J]. Acta Agrestia Sinica, 2016, 24(6): 1384-1387. (in Chinese with English abstract)
[18] Suárez M H, Galdón B R, Mesa D R, et al. Sugars, organic acids and total phenols invarieties of chestnut fruits from tenerife[J]. Food Nutr Sci, 2012, 3: 705-715.
[19] Sayre R T, Kennedy R A. Photosynthetic enzyme activities and localization in mollugo verticillata populations differing in the levels of C3and C4cycle operation[J]. Plant Physiology, 1979, 64(2): 293-299.
[20] Detarsio E, Gerrard W M C, Campos B V A, et al. Maize C4 NADP-malicenzyme: Expression inand characterization of site-directed mutants at the putative nucleotide binding sites[J]. J Bio Chem, 2003, 278: 13757-13764.
[21] Wang Y, Li J, Wang J, et al. Exogenous H2O2improves the chilling tolerance of manilagrass andmascarenegrass by activating the antioxidative system[J]. Plant Growth Regul, 2010, 61: 195-204.
[22] Walker R P, Chen Z H, Tecsi L I, et al. Phosphoenolpyruvatecarboxykinase plays a role in interactions of carbon and nitrogen metabolism during grape seed development[J]. Planta, 1999, 210: 9-18.
[23] Grabov A. Plant KT/KUP/HAK potassium transporters: Single family-multiple functions[J]. Annals of Botany, 2007, 99: 1035-1041.
[24] 諶琛,同延安,路永莉,等. 不同鉀肥種類對蘋果產(chǎn)量、品質(zhì)及耐貯性的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2016,22(1):216-224. Chen Chen, Tong Yanan, Lu Yongli, et al. Effects of different potassium fertilizers on production, quality and storability of Fuji apple[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 216-224. (in Chinese with English abstract)
[25] 何忠俊,張廣林,張國武,等,鉀對黃土區(qū)彌胡桃產(chǎn)量的影響[J].果樹學(xué)報,2002,19(3):163-166. He Zhongjun, Zhang Guanglin, Zhang Guowu, et al. Effect of potash application on the output and quality of Kiwifruit in loess area[J]. J. Fruit Sci, 2002, 19(3):163-166. (in Chinese with English abstract)
[26] 高文民,同延安,馬文娟. 陜西關(guān)中葡萄園土壤養(yǎng)分狀況分析與平衡施肥研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報,2006,34(9):41-44. Gao Wenmin, Tong Yanan, Ma Wenjuan. Study on grapery soil nutrients condition and balanced Fertilization in Shaanxi Guanhong area[J]. Journal of Northwest A &F University, 2006, 34(9): 41-44. (in Chinese with English abstract)
[27] 李書田,崔榮宗,同延安,等. 鉀肥用量和施用時期對蘋果產(chǎn)量、品質(zhì)和果園鉀素平衡的影響[J]. 中國果樹,2016(5):11-18, 28.
[28] Zhang W, Zhang N S, Zhao J J, et al. Potassium fer-tilization improves apple fruit)development by regulating trehalose metabolism[J]. The Journal of Horticultural Science and Biotechnology, 2017. 92(5): 1-11.
[29] Fallahi E, Fallahi B, Neilsen G H. et al. Effects of mineral nutrition on fruit quality and nutritional disorders in apples[J]. Acta Horticulturae (ISHS),2010, 868: 49-59.
[30] 張雯. 鉀對蘋果果實品質(zhì)的影響及其與6-磷酸海藻糖代謝途徑的關(guān)系[D]. 楊凌:西北農(nóng)林科技大學(xué),2017. Zhang Wen. Effects of Potassium on Fruit Quality and its Association with Metabolic Pathway of Trehalose 6-phosphate in Apple[D]. Yangling: Northwest Agriculture and Forestry University, 2017. (in Chinese with English abstract)
[31] 盧精林,張紅菊,劉志芳. 增施鉀肥對日光溫室葡萄產(chǎn)量和品質(zhì)的影響[J]. 土壤通報,2015,46(3):694-697. Lu Jinglin, Zhang Hongju, Liu Zhifang. Effects of application of potassium on the yield and quality of grape in greenhouse[J]. Chinese Journal of Soil Science, 2015, 46(3): 694-697. (in Chinese with English abstract)
[32] 樊紅柱,同延安,呂世華,等. 蘋果樹體鉀含量與鉀累積量的年周期變化[J]. 西北農(nóng)林科技大學(xué)學(xué)報,2007(5):169-172. Fan Hongzhu, Tong Yanan, Lu Shihua, et al. Annual change of potassium content and accumulation in apple tree[J]. Journal of Northwest A &F University, 2007(5): 169-172. (in Chinese with English abstract)
[33] 庫文珍,彭克勤,張雪芹,等. 低鉀脅迫對水稻苗期礦質(zhì)營養(yǎng)吸收和植物激素含量的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2009,15(1): 69-75. Ku Wenzhen, Peng Keqin, Zhang Xueqin, et al. Effect of lo w potassium stress on mineral nutrient absorption and phytohormone contents of rice seeding[J]. Plant Nutrition and Fertilizer Science, 2009, 15(1): 69-75. (in Chinese with English abstract)
[34] 常強(qiáng),蘇明華,吳少華,等. 氯酸鉀對龍眼成花誘導(dǎo)期葉片和頂芽內(nèi)源激素含量的影響[J]. 園藝學(xué)報,2015,42(2):332-340. Chang Qiang, Su Minghua, Wu Shaohua, et al. Effects of KClO3on hormones within leaves and apical buds during floral induction phase in longan[J]. Acta Horticulturae Sinica, 2015, 42(2): 332-340. (in Chinese with English abstract)
[35] Tu Bingjie, Liu Changkai, Tian Bowen, et al. Reduced abscisic acid content is responsible for enhanced sucrose accumulation by potassium nutrition in vegetable soybean seeds[J]. J. Plant Res. 2017, 130: 551-558.
[36] 秦偉,陳波浪,何瓊,等. 不同配比氮、磷、鉀施肥對新疆紅富士蘋果內(nèi)源激素的影響[J]. 新疆農(nóng)業(yè)大學(xué)學(xué)報,2012,35(5):373-378. Qin Wei, Chen Bolang, He Qiong, et al. Effects of different ratios of N, P and K fertilizers on endogenous hormone of xinjiang fushi apple[J]. Journal of Xinjiang Agricultural University, 2012, 35(5): 373-378. (in Chinese with English abstract)
[37] 張晨光,趙德英,袁繼存,等. ‘富士’蘋果幼樹葉片內(nèi)源激素與礦質(zhì)營養(yǎng)年動態(tài)變化分析[J]. 果樹學(xué)報,2017,34(3):303-311. Zhang Chenguang, Zhao Deying, Yuan Jicun, et al. Annual dynamic analysis of leaf endogenous hormones and mineral nutrition on young‘Fuji’apple trees[J]. Journal of Fruit Science, 2017, 34(3): 303-311. (in Chinese with English abstract)
[38] 馬文瑤,程大偉,顧紅,等. 脫落酸(ABA)促進(jìn)果實著色研究進(jìn)展[J]. 果樹學(xué)報,2018,35(8):1016-1026. Ma Wenyao, Cheng Dawei, Gu Hong, et al. Advances in ABA promoting fruit coloration[J]. Journal of Fruit Science, 2018, 35(8): 1016-1026. (in Chinese with English abstract)
[39] 王宇斐. 蘋果果實糖代謝對不同施鉀水平的響應(yīng)及與SnRK1的關(guān)系[D]. 楊凌:西北農(nóng)林科技大學(xué), 2018. Wang Yufei. Response of Sugar Metabolism in Apple Fruit to Different Potassium Levels and its Relationship with SNRK1[D]. Yangling: Northwest Agriculture and Forestry University, 2018. (in Chinese with English abstract)
[40] Etienne A, Génard M, Lobit P, et al. What controls fleshy fruit acidity areview of malate and citrate accumulation in fruit cells[J]. J Exp Bot, 2013, 64: 1451-1469.
[41] Scherer R, Rybka A C P, Ballus C A, et al. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices[J]. Food Chemistry, 2012, 135(1): 150-154.
[42] Beruter J. Carbohydrate metabolism in two apple genotypes that differ in malate accumulation[J]. J Plant Physiol, 2004, 161(9): 1011-1029.
[43] 張秀梅,杜麗清,孫光明,等. 菠蘿果實發(fā)育過程中有機(jī)酸含量及相關(guān)代謝酶活性的變化[J]. 果樹學(xué)報,2007(03):381-384. Zhang Xiumei, Du Liqing, Sun Guangming, et al. Changes in organic acid concentr ations and the r elative enzyme activities during the development of Cayenne pineapple fruit[J]. Journal of Fruit Science, 2007(3): 381-384. (in Chinese with English abstract)
[44] Yao Y X, Li M, Liu Z, et al. Molecular cloning of three malic acid related genes Md PEPC, Md VHA-A, Mdcy ME and their expression analysis in apple fruits[J]. Sci Hort, 2009, 122(3): 404-408.
[45] Gohara D W, Di Cera E. Molecular mechanisms of enzyme activation by monovalent cations[J]. Journal of Biological Chemistry, 2016, 291(40): 20840-20848.
[46] 張弦. 不同施鉀水平對“嘎拉”蘋果果實糖、酸生理代謝的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2016. Zhang Xian. Effects of Different Potassium Level on Sugar and Acid Metabolism in ‘Gala’Apple Fruit[D]. Yangling: Northwest Agriculture and Forestry University, 2016. (in Chinese with English abstract)
[47] 劉文,周恩達(dá),呂德國,等. 外源激素處理對‘寒富’蘋果果形及品質(zhì)的影響[J]. 中國果樹,2018(3):26-28, 36.
[48] 張穎,蔣衛(wèi)杰,余宏軍,等. 外源ABA緩解黃瓜幼苗中低溫誘導(dǎo)的氧化損傷[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(增刊2):221-228. Zhang Ying, Jiang Weijie, Yu Hongjun, et al. Exogenous abscisic acid alleviates low temperature-induced oxidative damage in seedlings of[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp. 2): 221-228. (in English with Chinese abstract)
[49] 劉麗媛. 山葡萄糖酸積累規(guī)律及代謝調(diào)控機(jī)理研究[D]. 楊凌:西北農(nóng)林科技大學(xué), 2016. Liu Liyuan. The Physiological Study on the Sugar and Acid Accumulations and Metabolic Regulation Mechanisms ofGrape[D]. Yangling: Northwest Agriculture and Forestry University, 2016. (in Chinese with English abstract)
[50] 劉侯俊. 陜西省果園養(yǎng)分狀況和鉀肥肥效研究[D]. 楊凌:西北農(nóng)林科技大學(xué).2002. Liu Houjun. The Status of Nutrients and Effect of Potassium Fertilizer of Orchard in Shaanxi Province[D]. Yangling: Northwest Agriculture and Forestry University, 2002. (in Chinese with English abstract)
[51] 金會翠,張林森,李丙智,等. 增施鉀肥對紅富士蘋果葉片營養(yǎng)及果實品質(zhì)的影響[J]. 西北農(nóng)業(yè)學(xué)報,2007,16(3):100-104. Jin Huicui, Zhang Linsen, Li Bingzhi, et al. Effect of potassium on the leaf nutrition and quality of Red Fuji apple[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(3): 100-104. (in Chinese with English abstract)
[52] 黃顯淦,趙天才,王勤. 鉀素在我國果樹優(yōu)質(zhì)增產(chǎn)中的作用[J]. 果樹學(xué)報,2000,17(4):309-313. Huang Xiangan, Zhao Tiancai, Wang Qin. Effects of potassium fertilizers for improving quality and production of fruit crops[J]. Journal of Fruit Science, 2000, 17(4): 309-313. (in Chinese with English abstract)
[53] 高艷敏,欒本榮,辛貴金,等. 果樹施用氯化鉀的效應(yīng)[J]. 北方果樹. 1995(3):6-8.
[54] 甘卓亭,劉文兆. 渭北旱塬不同齡蘋果細(xì)根空間分布特征[J]. 生態(tài)學(xué)報,2007,28(7):3401-3407. Gan Zhuoting, Liu Wenzhao. Distribution of the fine roots of different aged apple trees in Weibei rainfed tableland of theloess plateau[J]. Acta Ecologica Sinica, 2007, 28(7): 3401-3407. (in Chinese with English abstract)
[55] Motosugi H, Sugiura A, Tomana T. Salt tolerance of various apple root stock cultivars[J]. J Jap Hort Sci, 1987, 56(2): 135-141 .
[56] 高光林,姜衛(wèi)兵,俞開錦,等. 鹽脅迫對果樹光合生理的影響[J]. 果樹學(xué)報,2003,20(6):493-497. Gao Guanglin, Jiang Weibing, Yu Kaijin, et al. A review of studies on effect of salt stress on photosynthesis in fruit crops[J]. Journal of Fruit Science, 2003, 20(6): 493-497. (in Chinese with English abstract)
Effects of potassium fertilizer on endogenous hormone content and acid metabolism in fruit of apple cv. ‘Red Delicious’
Guo Zhigang1,2, Li Wenfang1, Mao Juan1, Zuo Cunwu1, Chen Baihong1※
(1.,,730070,; 2.,741000,)
K plays an important role in fruit growth and development. It is of great theoretical and practical significance to clarify the regulation mechanism of Kon acid metabolism in apple fruit. In this study, the field positioning experiment of 2 years was used, and the 7-year-old ‘Vallee spur Del.’ apple tree was used as the research object. The K-free fertilizer was used as the control (CK), and 4 treatments were set according to the K2O dosage, namely T1 (0.20 kg/ plant), T2 (0.35 kg/plant), T3 (0.50 kg/plant) and T4 (0.65kg/plant). All of the treatments were applied three times, namely including initial fruiting stage (30%), fruit expansion stage (40%) and fruit ripening stage ( 30%). Four radial 30~40 cm deep ditches were excavated in the tree pan during fertilization and irrigated after fertilization. The regulation mechanism of K on acid metabolism of ‘Red Delicious’ apple fruit was discussed through the determination and analysis of K accumulation, fruit quality, endogenous hormone content, organic acid content and acid metabolism related enzyme activities in different organs during its growth and development. The results showed that fruit weight, Vc content, soluble solids content and hardness increased with the increase of K application, but there was no significant difference between T4 and T3 (< 0.05). Compared with CK, the single fruit weight, Vc content and hardness of T4 increased by 24.40%, 14.60% and 7.68% in 2016, and also increased by 16.30%, 14.55% and 6.93% in 2017, respectively. The titratable acid content decreased with the increase of K application, and the difference of T4 was the most significant (< 0.05). Compared with CK, the titratable acid content of T4 in 2016 and 2017 decreased by 26.47% and 18.18%, respectively. At different growth stages, the order of K accumulation was T4 > T3 > T2 > T1 > CK, and there was no significant difference between T4 and T3 (< 0.05). The absorption and storage of K+in leaves are mainly concentrated in the early growth stage. With the growth and development of trees, K accumulated in leaves gradually transfers to fruit branches and other parts for their growth and development, resulting in the gradual decrease of K+content in leaves. K application increased the contents of ZR, IAA and GA in fruits from 30 to 120 days after anthesis, and ABA content at 150 days after anthesis. T3 had the most significant effect on the content of ABA (< 0.05). Compared with CK, ABA content of T3 increased by 15.28% and 18.08% in 2016 and 2017 at 150 days after anthesis, respectively. The content of malic acid and citric acid decreased with the increase of K application. Compared with CK, the content of malic acid and citric acid of T4 at 150 days after anthesis decreased by 34.68% and 12.3% in 2016, and also decreased by 32.60% and 16.0% in 2017, respectively. The activities of MDH and PEPC decreased with the increase of K application, while the activities of PEPCK and NAD-cy ME increased with the increase of K application from 120 d to 150 d after anthesis. The activities of PEPCK and NAD-cy ME from T4 at 150 days after anthesis increased by 13.3% and 16.9% in 2016, and also increased by 18.9% and 20.3% in 2017, respectively. At the ripening stage, single fruit weight and soluble solids content were positively correlated with IAA and ABA (< 0.01), titratable acid content was positively correlated with GA, ZR and IAA (< 0.05), and negatively correlated with ABA (< 0.01). Malic acid and oxaloacetic acid were positively correlated with ZR and IAA (< 0.01) and negatively correlated with ABA (< 0.01). MDH and PEPC were positively correlated with IAA (< 0.01) and negatively correlated with ABA (< 0.05). PEPCK was positively correlated with ABA (< 0.01). NAD-cy ME was negatively correlated with IAA (< 0.05) and positively correlated with ABA (< 0.05). In conclusion, K affects the activity of enzymes related to organic acid metabolism by regulating the content of endogenous hormones in fruits, and then affects the acid metabolism of fruits, reduces the organic acid content in fruits, and improves the fruit quality.
potassium; hormones; organic acids; 'Red Delicious'; acid metabolism
10.11975/j.issn.1002-6819.2019.10.036
S143.3
A
1002-6819(2019)-10-0281-10
2019-01-06
2019-03-26
國家重點研發(fā)計劃(2018YFD1000200);甘肅省科技重大專項(18ZD2NA006)
郭志剛,副研究員,博士生,主要從事果樹栽培與生理研究。Email:3148123508@qq.com
陳佰鴻,教授,博士生導(dǎo)師,主要從事果樹生物技術(shù)領(lǐng)域的研究。Email:bhch@gsau.edu.cn
郭志剛,李文芳,毛 娟,左存武,陳佰鴻. 鉀肥施用對元帥蘋果果實內(nèi)源激素含量及酸代謝的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(10):281-290. doi:10.11975/j.issn.1002-6819.2019.10.036 http://www.tcsae.org
Guo Zhigang, Li Wenfang, Mao Juan, Zuo Cunwu, Chen Baihong. Effects of potassium fertilizer on endogenous hormone content and acid metabolism in fruit of apple cv. ‘Red Delicious’[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 281-290. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.036 http://www.tcsae.org