999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一般隨機變量的完全收斂及大數定律

2023-06-29 13:36:54苗雨常萌萌

苗雨 常萌萌

摘 要:通過包含并完善一些已有結論,建立了一般隨機變量的完全收斂和大數定律.特別對于兩兩負象限相關的隨機變量,得到了其完全收斂和Marcinkiewicz-Zygmund型強大數定律之間的等價結論.

關鍵詞:完全收斂;強大數定律;隨機變量

中圖分類號:O175.2文獻標志碼:A

參 考 文 獻

[1] ?HSU P L,ROBBINS H.Complete convergence and the law of large numbers[J].Proc Nat Acad Sci,1947,33:25-31.

[2]ERDS P.On a theorem of Hsu and Robbins[J].Ann Math Statist,1949,20:286-291.

[3]KATZ M.The probability in the tail of a distribution[J].Ann Math Statist,1963,34:312-318.

[4]BAUM L E,KATZ M.Convergence rates in the law of large numbers[J].Trans Amer Math Soc,1965,120:108-123.

[5]LEHMANN E L.Some concepts of dependence[J].Ann Math Statist,1966,37:1137-1153.

[6]EBRAHIMI N,GHOSH M.Multivariate negative dependence[J].Comm Statist A-Theory Methods.1981,10(4):307-337.

[7]LIU L.Precise large deviations for dependent random variables with heavy tails[J].Statist Probab Lett,2009,79(9):1290-1298.

[8]NEWMAN C M.Asymptotic independence and limit theorems for positively and negatively dependent random variables[J].Inequalities in statistics and probability,1984(2):127-140.

[9]THNH L V.On the Baum-Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants[J].C R Math Acad Sci Paris,2020,358(11/12):1231-1238.

[10]RIO E.Vitesses de convergence dans la loi forte pour des suites dépendantes[J].C R Acad Sci Paris Sér I Math,1995,320(4):469-474.

[11]SENETA E. Regularly varying functions.Lecture Notes in Mathematics[M].New York:Springer-Verlag,1976.

[12]BINGHAM N H,GOLDIE C M,TEUGELS J L.Regular variation[M].Cambridge:Cambridge University Press,1989.

[13]SENETA E.An interpretation of some aspects of Karamata's theory of regular variation[J].Publ Inst Math,1973,15(29):111-119.

[14]GALAMBOS J,SENETA E.Regularly varying sequences[J].Proc Amer Math Soc,1973,41:110-116.

[15]ANH V T N,HIEN N T T,THNH L V,et al.The Marcinkiewicz-Zygmund-type strong law of large numbers with general normalizing sequences[J].J Theoret Probab,2021,34(1):331-348.

[16]BOJANIC R,SENETA E.Slowly varying functions and asymptotic relations[J].J Math Anal Appl,1971,34(2):302-315.

[17]DZUNG N C,THNH L V.On the complete convergence for sequences of dependent random variables via stochastic domination conditions and regularly varying functions theory:10.48550/arXiv:2107.12690[P].2021-07-27.

[18]ROSALSKY A,THNH L V,A note on the stochastic domination condition and uniform integrability with applications to the strong law of large numbers[J].Statist Probab Lett,2021,178:109181.

[19]GUT A.Complete convergence for arrays[J].Period Math Hungar,1992,25(1):51-75.

[20]THNH L V.On a new concept of stochastic domination and the laws of large numbers[J/OL].[2022-09-16].https://doi.org/10.1007/s11749-022-00827-w.

[21]WU Q Y.Convergence properties of pairwise NQD random sequences[J].Acta Math Sinica(Chin Ser),2002,45(3):617-624.

[22]SHAO Q M.A comparison theorem on moment inequalities between negatively associated and independent random variables[J].J Theoret Probab,2000,13(2):343-356.

[23]UTEV S,PELIGRAD M.Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J].J Theoret Probab,2003,16(1):101-115.

[24]ASADIAN N,FAKOOR V,BOZORGNIA A.Rosenthal's type inequalities for negatively orthant dependent random variables[J].J Iran Stat Soc,2006,5(1/2):66-75.

[25]SHEN A T.Probability inequalities for END sequence and their applications[J].J Inequal Appl,2011,2011:12.

[26]MIAO Y,YANG G Y,STOICA G.On the rate of convergence in the strong law of large numbers for martingales[J].Stochastics,2015,87(2):185-198.

[27]MATULA P.A note on the almost sure convergence of sums of negatively dependent random variables[J].Statist Probab Lett,1992,15(3):209-213.

On the complete convergence and the strong law of large numbers for general random variables

Miao Yu1, Chang Mengmeng1,2

(1. College of Mathematics and Information Science; Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,

Henan Normal University, Xinxiang 453007, China; 2. College of Mathematics and Information Science, Anyang Institute of Technology, Anyang 455000, China)

Abstract: In the paper, the complete convergence and the strong law of large numbers for general dependent random sequence are established, which include and improve some known results. In particular, the equivalence between complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the pairwise negatively quadrant dependent random variables is obtained.

Keywords: complete convergence; strong law of large numbers; random variables

[責任編校 陳留院 趙曉華]

主站蜘蛛池模板: 国产迷奸在线看| 好紧好深好大乳无码中文字幕| 亚洲天堂首页| 亚洲AV色香蕉一区二区| 国产视频资源在线观看| 午夜久久影院| 美女啪啪无遮挡| 亚洲成a人在线观看| 亚洲动漫h| 免费在线观看av| 久久精品欧美一区二区| 91视频区| 香蕉综合在线视频91| 高潮毛片无遮挡高清视频播放| 日韩国产高清无码| 亚洲美女视频一区| 国产剧情无码视频在线观看| 人妻精品久久久无码区色视| 全部免费毛片免费播放| 一级不卡毛片| 亚洲AⅤ无码国产精品| 中国一级特黄视频| 国产不卡在线看| 国产第一福利影院| 三上悠亚一区二区| 国产在线一区视频| 永久免费av网站可以直接看的| 欧美激情一区二区三区成人| 四虎影视无码永久免费观看| 一本二本三本不卡无码| 2048国产精品原创综合在线| 久久精品丝袜| 91色国产在线| 亚洲香蕉久久| 无码 在线 在线| 国精品91人妻无码一区二区三区| 午夜在线不卡| 五月天香蕉视频国产亚| 99热这里只有精品免费国产| 91精品最新国内在线播放| 国产精品成人观看视频国产| 亚洲,国产,日韩,综合一区| 久久精品只有这里有| 中文字幕日韩久久综合影院| 国产91线观看| 日韩专区欧美| 免费一级全黄少妇性色生活片| 波多野结衣一区二区三视频| 色天堂无毒不卡| 性视频一区| 99热这里只有免费国产精品 | 91原创视频在线| 国产女人在线视频| 亚洲男人的天堂网| 高清无码一本到东京热| 国产免费a级片| 激情乱人伦| 精品国产福利在线| 亚洲欧美成人在线视频| 一级毛片免费不卡在线| h视频在线播放| 青草视频久久| 啪啪永久免费av| 成人在线亚洲| 自拍偷拍欧美| 日韩黄色精品| 国产免费黄| 中文字幕首页系列人妻| 国产特级毛片aaaaaa| 日本人妻一区二区三区不卡影院| 欧美成人国产| 日韩区欧美区| 人人91人人澡人人妻人人爽| 亚洲国产成人久久77| 久久一日本道色综合久久| 国产午夜人做人免费视频| 91青青视频| 中文字幕1区2区| 69av在线| 亚洲,国产,日韩,综合一区| 91区国产福利在线观看午夜 | 美女内射视频WWW网站午夜|